Muon tomography using a 4-layer strip detector

Yamanaka Group Ryota Shiraishi

Lakmin Wickremasinghe, Naoya Okimoto

What is Muon tomography

Muon tomography ... a technique to get a 3D-image using cosmic ray muons

With strip detectors,

- → reconstruct a truck of muon from two (x, y, z) positions
- → there should be some amount of attenuation of muon flux

Cosmic Ray Muons

My research topic

- Estimation of attenuation rate and angular resolution
- To know how many events are required
- To know how accurately we can indicate a position of a target object
- Test measurement & Analysis
- To confirm if our detector works for muon tomography

Setup

Estimation of attenuation rate & angular resolution

Attenuation rate : $R(x_0, y_0) \equiv 1 - N^*(x_0, y_0)/N(x_0, y_0)$ N counts/s N* counts/s N (x_0, y_0) , N* (x_0, y_0) : Count rate at the level of the bottom **y**₀ **y**₀ surface of the lead block $\boldsymbol{x_0}$ $\boldsymbol{x}_{\mathbf{0}}$ Angular resolution : $\delta\theta$ \rightarrow determined by strip width, distance between both detectors, multiple scattering

etc.

Parameters for Toy Monte Carlo simulation

Generate muon with...

p:momentum, θ :zenith angle, φ :azimuthal angle

- Decide above parameters using random numbers
- Intensity of muon depends on p and θ

Energy loss

• Check if muons have enough energy to penetrate a lead block

$$\Delta E \approx (dE/dx)_{mip} [MeV \cdot cm^2/g] \cdot x_{path} [g/cm^2]$$
$$(dE/dx)_{mip} \approx 2 [MeV \cdot cm^2/g]$$
$$T_{\mu} = \sqrt{p_{\mu}^2 + m_{\mu}^2} - m_{\mu} > \Delta E$$

Angular resolution

 $\delta\theta \approx 1.68 \text{ [deg]} (= 0.029 \text{ [rad]})$ $\delta x \approx \delta\theta (l_1 + l_2) = 1.61 \text{ [cm]}$ $\rightarrow \delta x / l_3 \approx 8.1 \%$

Attenuation rate

How many events do we need to observe the lead block? If we require CL $95\% \rightarrow 1.6\sigma$ $\begin{cases} R = 1 - N*/N \\ N*=N - 1.6\sigma \end{cases}$ \rightarrow N = (1.6/R)²

Attenuation rate

 $N \approx 400$ events are necessary at the target object

Test measurement & Analysis

Data taking

The number of events detected by two detectors

	Time	Number of events	Rate
Without lead block	15[h]31[m]25[s]	25779	0.46[/s]
With lead block	9[h]47[m]34[s]	16229	0.46[/s]

*Scintillator strip efficiency : $60 \sim 70\%$

Event selection

• Only one hit or cluster at each detector

 \rightarrow About 47% of events survived

	Time	Number of events	Rate
Without lead block	15[h]31[m]25[s]	25779→ <mark>12155</mark>	0.22[/s]
With lead block	9[h]47[m]34[s]	16229→ 7716	0.22[/s]

Hit position at the two detectors

Angular distribution

Zenith angle

Zenith angle \downarrow Detected up to $\theta \sim 60^{\circ}$

Azimuthal angle

Azimuthal angle \downarrow $0^{\circ} < \varphi < 360^{\circ}$ roughly uniform

15

Count rate distribution at the level of the target object

Without Lead Block

Reconstructed position

With Lead Block

Reconstructed position

Number of events at the lead block

Without the lead block \rightarrow 1505 events With the lead block \rightarrow 912 events

- \rightarrow Statistical error $\sim 4.2\%$
- \rightarrow difficult to observe attenuation of $\sim 8\%$

We need to ...

- take several times number of data
- improve efficiency
- reduce the number of cross-talk events

Conclusion

• Estimated attenuation rate and angular resolution by Toy Monte Carlo simulation for required number of events and expected pointing precision

• Have yet to get an image of the lead block

END

Setup

Lead Block 20cm×20cm×20cm

Detector wrapped in black sheet

DAQ circuit

Geometrical parameters

- $l_1 = 15 \text{ cm}$
- $l_2 = 40 \text{ cm}$
- $l_3 = 20 \text{ cm}$
- $l_4 = 20 \text{ cm}$

Detection area

Wrapping a scintillator strip in aluminized mylar film & black sheet Strip width : $1 \text{cm} \rightarrow 1.2 \text{cm} (0.2 \text{cm} : \text{Insensitive width in each strip})$

Event selection

- Filtering
 - Cross-talk
 - Passing through two adjacent strips
 - Multiple muons detected at the same time
- Number of events...***[events]

Resolution

- Angular resolution
 - Multiple scattering : $\delta \theta_{M.S}$
 - Detector : $\delta \theta_{det}$

- Position resolution
- $\delta x \approx (l_1 + l_2) \delta \theta$

•
$$\delta\theta = \sqrt{(\delta\theta_{M.S})^2 + (\delta\theta_{det})^2}$$

Multiple scattering

•
$$\delta \theta_{M,S} = \frac{13.6MeV}{\beta cp} z \sqrt{x/X_0} [1 + 0.038 \ln(x/X_0)]$$

- βc : velocity
- *p* : momentum
- *z* : charge
- x/X_0 : thickness of the scattering medium in radiation lengths

Detector

• Position resolution at each strip

•
$$(\delta x)^2 = \frac{\int_{-d/2}^{d/2} x^2 dx}{\int_{-d/2}^{d/2} dx} = \frac{d^2}{12}$$

• $\delta x = \frac{d}{\sqrt{12}}$

Detector

•
$$tan\theta = \frac{|x_1 - x_2|}{l_1}$$

• $\delta\theta_{det} = cos^2\theta \,\delta(tan\theta) = cos^2\theta \frac{\delta|x_1 - x_2|}{l_1}$
• $\delta|x_1 - x_2| = \sqrt{(\delta x_1)^2 + (\delta x_2)^2} = \frac{d}{\sqrt{6}}$
• $\delta\theta_{det} = \frac{dcos^2\theta}{\sqrt{6}l_1}$

Intensity distribution

Momentum spectrum of muons

Parameters for Toy Monte Carlo simulation

Set horizontal position (x_1, y_1) generating random numbers on the detector 1

$$\begin{cases} -9.6 < x_1 < 9.6 \\ -9.6 < y_1 < 9.6 \end{cases}$$

Condition 1

• Muons pass through each detection area of both detectors Detector

$$(x_1, y_1, \theta, \varphi) \to (x_2, y_2)$$
$$\begin{cases} -9.6 < x_1 < 9.6 \\ -9.6 < y_1 < 9.6 \end{cases}$$

$$\begin{cases} -9.6 < x_2 < 9.6 \\ -9.6 < y_2 < 9.6 \end{cases}$$

Hit position at the top detector without lead block

X position at the top detector Y position at the top detector hist 1x hist 1y Entries 12155 0.022 Entries 12155 -0.3852 0.03 Mean -0.5552 Mean 5.8 RMS 0.02 RMS 4.8 0.018 0.025 0.016 0.02 0.014 0.012 0.015 0.01 0.008 0.01 0.006 0.005 0.004 0.002 0 -8 -68 -2 2 6 n 4 1 1 1 0 -2 2 -8 0 4 6 8 X₁ [cm] Y₁[cm]

Hit position at the bottom detector without lead block

Hit position at the top detector with lead block

Hit position at the bottom detector with lead block

Y position at the bottom detector

Range in Pb

- R = 11.34[g/cm³] × 20 [cm] = 226.8 [g/cm²]... Pb surface density
- M = 0.1056 [GeV]...muon mass

p = 300 ~ 400 [MeV]...muon momentum
*from Journal of Physics

Future plan

• Change the placement to measure attenuation along the depth direction of the target object

• Change the target object and its configuration to distinguish one from the other