

Works and Plans (what I have done and what I will do)

Takanori Hara (Osaka U)

What is B-Factory?

KEKB Accelerator + Belle Detector

Physics @ Belle

Silicon Vertex Detector

over 20 institutes ~100 members

Belle Detector

SVD1 (upto 2003 summer)	SVD2 (upto now)
3-layer (R3rd = 6.0cm)	4-layer (R4th = 8.8cm) better low P tracking
2.0 (3.0) cm radius	1.5 (2.0) cm radius better vertex
of beam pipe (1st lyr)	of beam pipe (1st lyr) resolution
23°< θ < 139°	$17^{\circ} < \theta < 150^{\circ}$ larger acceptance
VA1 (0.8 μ m) : < 1MRad	VA1TA (0.35 μ m) : < 20MRad rad. hard

Activities in SVD

1996 ~

for Belle (esp. software) .SVD Simulation (SVD1.0, 1.2, 1.4, 1.6, 2.0) . Offline data format (SVD1 \rightarrow SVD2) . Clustering (w/ T.Hojo@Osaka) . Tracking (w/K.Trabelsi@KEK) . trigger simulation . SVD2.0 design . Alignment . Data quality monitor . SVD3 simulation / reconstruction / physics test / design ... for Super-Belle . New readout chip test (w/ T.Tsuboyama+T.Kawasaki)

. modification of Geant3-base simulation

. beam background study (simulation / single-beam run data)

SVD3 was not installed finally.

Configuration Design Beam Pipe Design

Beam background components

. Particle (Beam-gas, Touschek, ...) . SR (direct / backscattering)

Hurdles faced by VTX detector . High radiation (several MRad/yr: CM05/S01 tech.)

. High occupancy

increases fake clusters degrades tracking performance deteriorates vertex resolution

→ have to reduce BG hits as much as possible Behavior of low-E γ (<100keV) is very important !! PXD Occupancy

Single beam run (beam

Activities in Belle

1996 ~ for Belle (esp. software) . management of Geant3-based Simulation (not only for SVD) . implementaion of run-dependence . beam background overlay scheme . W/o this, nobody can make realistic MC data . effect of higher beam background . estimation of the tracking eff. in Hadron event (CDC, KLM) . MC mass production for Super-Belle . Geant3-base simulation for Study Report (ECL, ACC, CDC, SVD,...)

. geometrical design, BG effect, material budget tracking part of the fast simulator for physics studies . manage and develop Geant4-base simulation for TDR

Super-Belle in Geant4

Tracking + Vertexing

Activities in Belle

1996 ~ Physics analyses . CPV with $B \rightarrow \chi_{c1}$ Ks (w/ D.Heffernan) $B \rightarrow \tau \nu$ (2002 \rightarrow lkado@Nagoya in 2006) $.B \rightarrow \phi \pi$ (2006 \rightarrow a Korean student) Belle Software Festa 2007 - Windows Internet Explorer Education 🙆 http://belle.kek.jp/~harat/software2007/Festa-top.html くここからJWord検索 👻 🍫 🗙 Live Search 2 ファイル(F) 編集(E) 表示(V) お気に入り(A) ツール(T) ヘルプ(H) 💌 検索 🗤 🧭 💕 👻 📩 ブックマークマ 👰 ブロック数: 0 🖤 チェック マ 🍙 次に送信マ 🍐 . Software Festa in 2007 設定
🐴 🔹 🔝 🔹 📥 🔹 🞲 ページ(P) 🖛 🍈 ツール(O) 🖛 Belle Software Festa 2007 It is important to encourage young students to increase the number of publications from Belle BELLE Software Festa '07 date/place program contacts participants volunteers requirement Gallery **Belle** Tour QuickFesta

My works are like ...

My works are like ...

My works are like ...

Super Belle

Without Atlas ...

KEK Roadmap

16

Super Belle Detector

Plans for Super-Belle

We have only a couple of years !!

SVD+PXD

. management of Geant4-based Simulation (not only for SVD)

. reconstruction software (clustering, tracking) esp. PXD+SVD self-tracking is very important for physics . low-P tracking cannot be done in CDC

- . impact on CPV in D*D*, etc...
- . impact on full-reconstruction event

. feedback on hardware design from physics requirement check the hardware-oriented design

. chip-on-sensor

. detector configuration

. systematic error caused by mis-alignment

. decision of the readout chip and pixel technology . full demonstration of APV25 front-end, repeater, FADC . DEPFET/CMOS/SOI

Chip-on-Sensor

Technology options

	DEPFET	CMOS (CAPS/MAPS)	501
Material budget	20 ~ 100µm (adjustable)	<~50 μ m (sensitive area 5~10 μ m)	50~100 μm (could be <~50 μ m)
Size	limited by wafer (50 x 75 mm ²)	limited by reticle (21 x 21 mm ²)	limited by reticle (21 x 21 mm ²)
Power consumption	small (0.5w) (reset switcher chip: Voltage swing > 8V)	small	small
Radhardness (3MRad/yr?)	tested < 1MRad (up to 8MRad?: irradiation test)	intrinsic rad. hard (must be > 30MRad)	tested > 30MRad
10kHz trig. rate	estimated ~1% ineff.	? (CAP3 too slow)	not proved
Availability	MPI only (already used in other exp.)	R&D in progress	R&D in progress

Plans for Super-Belle

Current Problems . less communication . unplanned update . human resource

need

a "head"

We have only a couple of years !! Super-Belle management of software . reconstruction tools . vertexing (PXD, SVD) . tracking (PXD, SVD, CDC) . PID (CDC, A-RICH, TOP, ECL, KLM) . GEANT4-base simulation (required for TDR) . analysis tools . tag-side vertexing, etc... . software framework (BASF, Marlin, etc ...) . Improvement of hermeticity . important for $B \rightarrow \tau \nu$, $K \nu \nu$

. beam background study

. feedback on the IR design . check the occupancy of the PXD/SVD

Plans for Super-Belle

Backup

Activities in Kamioka

Physics Results

Beam Pipe Design

DEPFET

Intense R&D has been done for ILC pixel sensors has been used in several experiments already! . Technology is available in MPI only . Sensor size is limited by wafer size $50 \,\mu\text{m} \times 75 \,\mu\text{m} : 215 \times 512$ pixel (adjustable) almost no gap in the acceptance . Not very rad-hard (tested up to 1Mrad) OK up to 8Mrad?? . Small power consumption . Reset switcher chip: Voltage swing > 8V . Thickness $20\mu m \sim 100\mu m$ (adjustable for experiments) . Doubly-correlated sampling can be done \rightarrow low noise . 10kHz trigger rate, O-suppression, ~4pixels/hit, 32 bits/pixel includiing address Disadvantage: ~1% inefficiency . Data processing is done in subsequent chips on repeater system or in backend system

CMOS pixel (CAPS/MAPS)

. The same technology as commercial CMOS cameras 5-10M -pixel chips are in production . Sensor size is limited by reticle size $(21 \times 21 \text{ mm}^2)$ $22.5 \,\mu m \, x \, 22.5 \,\mu m$ gap in the acceptance . Intrinsic rad-hard (deep sub-micron technology) > 30 MRad Particle . Sensor is a thin epitaxial layer (5~10 μ m thick) signal si small \rightarrow No problem as the detector capacitance is also small <= 50µm . N-well is used to collect charge from the epitaxial layer . 100kHz frame rate is achieved (132 x 48 pixel) Full-size detector (928 x 128 pixel) 10kHz trigger rate ???

SOI

. Activity started as PMOS NMOS one of KEK detector R&D project in 2005 Si02 BOX(Buried Oxide) D+Sensor size is limited by reticle size $(21 \times 21 \text{ mm}^{1+2})$ $20\mu m \times 20\mu m : 128 \times 128$ Sensor gap in the acceptance (High Resistive . rad-hard (deep 0.2 μ m technology) n-Substrate) tested > 30 MRad X-ray . Depletion depth of 50-100 μ m has been achieved thinning after silicon process $<=50\mu m$. Signal induced in the sensor can be processed by the CMOS circuit Complex/rad-hard circuit can be made DEPFET/CAP type readoout is also possible 10kHz trigger rate ??? . R&D in progress Evaluation of Belle PIXEL chip will start soon (pixel-shaper-discrimination-digital pipeline)

