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Abstract

The ATLAS pixel detector will be replaced in the future HL-LHC upgrades to

preserve or improve the detector performance at high luminosity environment. To

meet the tighten requirements of the upgrades, a new pixel Front-End (FE) IC

called FE-I4 has been developed. We have developed a readout system for FE-

I4 using a general purpose DAQ board called Soi EvAluation BoArd with Sitcp

(SEABAS). This readout system is meant to be used as an electronic test stand

for FE-I4 as well as a readout system for the module consisting of sensor and

FE-I4. Our system incorporates Silicon Transmission Control Protocol (SiTCP)

technology implemented on a FPGA which utilizes the standard TCP/IP and UDP

communication protocols. This technology allows the direct access and transfer

of the data between the readout hardware chain and PC via high speed Ethernet.

In addition, the communication protocols are small enough to be implemented

in a single FPGA. Because of this our readout system is very compact, versatile

and fast. We have developed the firmware and software together with the readout

hardware chains and established the basic functionalities for reading out FE-I4.

This thesis details the functionalities of each component including the hardware,

firmware and software and how they are integrated to form a functioning readout

system. The thesis also provides a step by step guide on the general DAQ process

flow. On top of that, in later part of this thesis various readout functionalities

and their test results will be presented. Last but not least, numerous efforts which

have been performed to optimize the readout speed are also shown.
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Chapter 1

Introduction

1.1 LHC and the ATLAS detector

Located about 100 meters beneath the France-Switzerland border near Geneva lies

the 27 kilometers long Large Hadron Collider (LHC). It is the world largest and

highest energy particle accelerator designed to investigate fundamental interaction

through proton-proton (p-p) collision at center of mass energy up to 14TeV. The

collider is designed to deliver a peak luminosity of 1034 cm−2s−1 with 25 ns per

bunch crossing for proton-proton collision.

A Toroidal LHC Apparatus (ATLAS) is one of four major detectors installed

at the LHC to probe these collisions. It is a general-purpose experiment designed

to explore various physics processes such as the search for the Higgs boson, H,

supersymmetry (SUSY) and extra dimensions.

In 2011, the ATLAS recorded a total of 5.25 fb−1 of data for pp collisions at 7

TeV centre-of-mass energy. As of the end of proton run in December 2012, ATLAS

has successfully recorded 21.7 fb−1 of data at center-of-mass energy,
√

s = 8 TeV,

which is more than triple the amount collected in 2011. Around 2020, ATLAS

will undergo a major upgrade to prepare for the high luminosity era in the so

called High Luminosity LHC (HL-LHC) upgrade. This will significantly extend

its opportunities to explore new physics and allows us to measure the property of

the newly discovered Higgs-like particle more accurately.
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1.1.1 Overview of the ATLAS experiment

Physics goals and detector requirements

One of the most important physics goals of ATLAS is the search for Higgs boson

in order to understand the mechanism of the electroweak symmetry-breaking. For

low mass SM Higgs (mH < 2mZ), H → γγ would provide the cleanest channel

for the Standard Model (SM) Higgs detection. Several other channels including

associated production of Higgs boson such as ttH, ZH, and WH with H decays to

bb would be the important one as well. On the other hand, searches for Minimal

Supersymmetric Standard Model (MSSM) Higgs such as A and H± will greatly

depend on the detection of τ lepton and b quarks from processes such as A→ τ+τ−,

H → τ±ν and H → 2 jets.

On top of that, the ATLAS experiment also aims for the evidence of the yet

undetected SUSY particles. If they exist, they are predicted to decay mostly into

energetic quarks or gluons and the lightest stable supersymmetric particle (LSP).

Then the most likely signature of these superparticles would be the high energy

jets and large missing transverse energy (Emiss
T ), which signal the escape of LSP

from the detector. Furthermore, the high rate production of heavy quarks such as

top (t) and bottom (b) quarks will allow precision measurement of their mass and

interactions with other particles.

All these physics goals define a set of general requirements for the ATLAS

detector [1, 2]. In particular, the ATLAS detector needs to have an excellent

electrons, muons and photon identification capability, accurate and high-resolution

jet and Emiss
T measurement as well as excellent secondary vertex detection for τ

leptons and b-quarks for various Higgs boson searches. On the other hand, SUSY

searches require a large acceptance in pseudorapidity (η) and very good Emiss
T

measurement and b-tagging performance.

Overview of ATLAS detector

Figure 1.1 shows the layout of the ATLAS detector. It is forward-backward sym-

metric with respect to the interaction point. From inside out is the inner tracker,

the solenoid magnet, the calorimeter, the toroid magnet system and the muon

spectrometer [3].

The inner part of the inner tracker consists of semiconductor pixel and strip

detectors whereas the outer part is the transition radiation tracker (TRT) which

2



Figure 1.1: The ATLAS detector and its four major systems, i.e the inner tracker,

calorimetry and magnet system as well as the muon spectrometer.

can detect transition radiation. The inner tracker is surrounded by a 2 T solenoidal

magnetic field and is most important in providing high-resolution momentum and

vertex measurement. The pixel detector will be described in more detail in the

next section.

For precision measurement of electrons and photons, the ATLAS detector em-

ploys the Lead-Liquid Argon (LAr) electromagnetic sampling calorimeter with high

granularity. On the other hand, the coarser scintillator-tile hadronic calorimeter

provides jet reconstruction.

Surrounding the calorimeters is the muon spectrometer covering the pseudo-

rapidity range |η| < 2.7. Couple with the large bending power of the toroid

magnets, it provides precision momentum measurement for those muons exiting

the calorimeters. In addition, the muon spectrometer is also capable of providing

muon trigger with timing resolution of 1.5 to 4 ns.

3



1.2 Pixel detector

1.2.1 Semiconductor as charged particle detectors

The p-n diode junction

In most high energy physics application, semiconductors are doped with foreign

material to alter their electrical property. Depending on the type of the added

impurities, one obtains n-type or p-type semiconductors. When p and n-type

semiconductor are brought together to create a junction, the difference in the

number of electrons and holes causes a diffusion of majority carriers across the

junction. This migration and electrons-holes recombination leave a region of net

charge of opposite sign on each side. An electric field is induced across the junction

which eventually stops the diffusion process. This is depicted in Figure 1.2.

n p

Migration of charge carriers

Electric field prevents further migration 
E

Depletion region

Figure 1.2: A p-n diode junction in thermal equilibrium when p and n-type semi-

conductor are brought together.

The region of immobile charges left behind after the mobile charge carriers have

diffused away is called the depletion region. This region has an attractive charac-

teristic that recombination can not happen here as there are no electrons or holes

left behind. In addition, any charged particle entering this region will be swept

out by the electric field. Thus electrons or holes created by any ionizing particles

4



traversing this region will be swept out and creates signal that is proportional to

the ionization. These principles can be exploited for charged particle detection.

The depletion depth

Referring to the schematic of a uniformly charged p-n junction in Figure 1.3, the

ND and NA denote the donor and acceptor impurity concentration. Likewise, the

dn and dp are the how deep the depletion zone extent into the n-side and p-side

respectively.

n

ND

p

NA

W
d

dn dp

Figure 1.3: Schematic for depletion zone.

Without external bias voltage, the depletion zone is generally small. The total

thickness of the depletion zone, d is given by [7]:

d = dp + dn =

(
2εVo

e

(NA + ND)

NAND

)1/2

(1.1)

where e is the electron’s charge, Vo is the contact potential and ε is the dielectric

constant. For the case of p+-n junction, meaning NA � ND, then the thickness, d

is approximately,

d ' dn '
(

2εVo

eND

)1/2

(1.2)

or by using the expression:

5



1

ρn

' eNDµe

we can express Equation 1.2 as

d ' (2ρnµeεVo)
1/2 (1.3)

where ρn is the n-bulk resistivity and µe is the mobility of the electrons. By

replacing the ρnµe by ρpµh, we can get the thickness of depletion region at the

p-n+ junction.

The p-n diode under external voltage

Thermal equilibrium will be destroyed when an external bias voltage is applied

across the junction. For a forward bias, the contact voltage will decreases and

the thickness of the depletion zone will shrink. This is not favorable for particle

detection. The remedy is to apply a reverse bias voltage across the junction with

positive voltage at n side while negative voltage at p side. This will enlarge the de-

pletion zone and thus the detection sensitivity of the device. Figure 1.4 illustrates

the enlarged depletion zone under reverse bias voltage.

Figure 1.4: By applying reverse bias voltage, the depletion region can be widen.

From Equation 1.3 and Figure 1.3, we can see that in order to fully deplete the

substrate (d = W ), the depletion voltage, Vd must have the value that is given by:

Vd =
W2

2ερoµo

(1.4)
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where the subscript “o” can be replace by n or p in the case of the p+-n junction or

the p-n+ junction respectively. However, usually this maximum depletion voltage

will not be achieved due to breakdown (Zener breakdown and Avalanche break-

down [9]) of the junction. To achieve higher depletion width, beside increasing the

Vd, it is necessary to use higher resistivity material [9].

Creation of electron-hole pairs in semiconductors

In general, heavy charged particles lose energy by Coulomb interaction with the

atomic electrons and elastic scattering from nuclei of the material. Only in the

former electron-hole pairs are created. Because of its small mass, electron interacts

slightly different from heavy charged particles. Apart from the interaction with

atomic electron, electron also undergoes radioactive process (bremsstrahlung) at

high energies. Whereas for γ or X rays, they interact with the material through

photoelectric effect, the Compton effect, and the pair-production effect depending

on the photon’s energies.

The details of energy loss process when a charged particle traversing a semicon-

ductor are complicated but the average energy, ε necessary to create an electron-

hole pair in a given semiconductor at a fixed temperature is independent of the

type and the energy of the ionizing radiation. Table 1.1 gives the minimum en-

ergy required to create an electron-hole pair in Si and Ge at room and cryogenic

temperature.

Table 1.1: Average energy for electron-hole creation in Si and Ge [7].

Temperature (K) Si Ge

300 3.62eV –

77 3.81eV 2.96eV

Since the forbidden band gap for Si and Ge is only of the order of 1 eV at these

temperatures, we can see that only about 30% of the absorbed energy is actually

spent in breaking the covalent bonds. Another point to take notice of is the small

value of ε compared with the ionization energy of gas (typically 15 to 30 eV). This

represents a superior spectroscopic performance of semiconductor detectors.

As the thickness of the semiconductor sensor increases, the energy loss E by

a charged particle also increases. In case of silicon sensor, a minimum ionizing

particle (MIP) traversing the silicon sensor will generate about 80 electron-hole
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pairs per µm. Hence, for a typical ATLAS pixel detector’s silicon sensor with

thickness of about 250µm, roughly 20000 electron-hole pairs will be generated by

a MIP traversing through the sensor. As we shall see later, due to this reason the

pixel front-end readout IC is tuned to this charge value.

1.2.2 Position Measuring Silicon Pixel Detector

By using the readout electronics that measure signal charge, energy deposited in

the sensor by charged particle can be measured. The 2-D position information

can be obtained by splitting the signal charge among several electrodes and then

measure the ratio of charge at each electrode. Alternatively, dividing the detector

into smaller section that are read out separately may also help. Dividing a detector

active area into pixels, one obtains a position sensitive detector where the position

resolution is linear to the pixel pitch size.

A pixel detector has the advantages [8] of unambiguous hits, unlike the strip

detector that produces ghost hits at high occupancy as can be seen in Figure

1.5. Besides, the smaller segmented area also reduces the capacitance with typical

value close to 1fF/pixel. This also means larger signal to noise ratio. Furthermore

smaller pixel volume also leads to lower leakage current (≈ 1pA/pixel) which means

lower noise value.

Header [7:0] FE-I4/Firmware Ctrl Cmd Trailer [23:0]

Figure 1.5: Pixel detectors produce unambiguous hits [8].

Despite that, the pixel detector needs large number of readout channels, which

means large number of electrical connections and power consumption. Due to its

small size, it is extremely expensive to cover large area. Thus, the pixel detector

is only suitable for particle detection at the innermost region near the interaction

point.
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Hybrid pixel detector

One of the most common pixel detector types for charged particle detection is the

hybrid pixel detector which consists of two separate but geometrically matching

array of detectors and custom designed readout Application-Specific Integrated

Circuit (ASIC). The readout IC has multi-channel and provides various functional

components such as amplification, filtering, storage and so on. These arrays of

electronics and the 2-D diode arrays are usually built on a separate substrate.

They are then connected by the small conducting bumps applied by using the

bump bonding and flip-chip technology [9, 11]. This hybird pixel detector structure

can be seen in Figure 1.6.

Figure 1.6: Schematic of a typical hybrid pixel detector. The zoom-in shows the

indium solder bump bonds that connect the detector to readout electronics [9].

There are a variety of readout architecture and one typical example is the

“column-based structures”. In this type of readout system, each column of pixels is

independently treated. Signal generated by traversing charged particle is amplified,

filtered and temporarily stored in the pixel where it waits for the readout trigger.

Upon receiving the readout trigger, the signal is then stored in an end-of-column

buffer that will be read out asynchronously. This method is advantageous in the

sense that any error in one pixel will affect only one column instead of the whole

device.

As mentioned above, the position measurement is achieved through segment-

ing a large-area diode into many small pixel-like regions and to read them out
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separately. Referring to Figure 1.7, the position sensing process can be explained

succinctly as follows:

1. Charged particles traversing the depletion region create electron-hole pairs.

2. These charges subsequently drift to the oppositely charged electrodes.

3. Electronics in the readout ASIC amplifies, shapes and filter the signal created

by the drift charges.

4. Finally, the segment showing the signal gives the position of path of the

ionizing particles.

+
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oxide

Al
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readout  ASIC

Figure 1.7: Schematic for position measurement by discrete detector. [8]

The ATLAS pixel detector is exactly based on this hybrid pixel technology and

will be discussed next.

1.3 The ATLAS pixel detector

1.3.1 Performance requirements

The pixel detector as shown in Figure 1.8 (a) is the innermost component of the

ATLAS detector. It has a total of about 80 million channels distributed among
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(a)

(b)

Figure 1.8: (a) The ATLAS pixel detector consists of 3 barrel layers and 3 end-

cap disk layers at each ends, and (b) Plan view of a quarter-section of the pixel

detector and its active dimension. [4].

three barrel layers and six end-cap disk layers and covering a total active area of

about 1.7 m2 [4]. As can be seen in Figure 1.8 (b) Barrel layer-0 is positioned at

radius of 50.5mm from the beam axis whereas barrel layer-1 and 2 have radius of

88.5mm and 122.5mm, respectively. It is designed to cover the region |η| < 2.5

and arranged in a way such that each track will typically cross a minimum of three

pixel layers.

As described in previous section, the physics goals of the ATLAS experiment

dictate the performance requirements of the detectors. For the pixel detector,

excellent vertexing performance and robust pattern recognition is a must. Detailed

description of the performance specification for the pixel detector can be found in
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Reference [5, 6], however the general performance requirements can be summarized

here:

1. Excellent 3D vertexing capability and transverse impact parameter resolu-

tion

The transverse impact parameter resolution, σd is required to be better than

about 15µm. The primary vertex reconstruction of charge tracks with lon-

gitudinal resolution, σz < 1mm is also desired [4, 5]. In addition to this,

secondary vertex reconstruction from b-hadron decays also has to be very

accurate.

2. High pattern recognition efficiency

The requirement for the efficiency for high pT isolated track reconstruction is

≥95% with a fake rate of ≤1%. Other than this, the reconstruction efficiency

for all tracks with pT ≥0.5 GeV should be ≥95% as well [5].

1.3.2 The pixel sensor and readout electronics

The 80 million pixels are arranged into 1744 pixel modules with identical function

at the sensor and integrated circuit level. Each pixel module consists of a 256±
3µm thick n+-in-n silicon sensor with 6.08 x 1.62cm2 of active surface. The sensor

contains 47232 pixels which are individually bump bonded to 16 Front End (FE)

readout ICs. All the FE ICs in turn are connected to a module-control chip (MCC)

which provides the necessary communication with the off-detector electronics via

opto-links [4]. The schematic cross section of the ATLAS pixel detector module

is illustrated in Figure 1.9. The back and front side of the ATLAS pixel detector

module with 16 FE readout ICs is shown in Figure 1.10.

Figure 1.9: A not to scale cross section of the ATLAS pixel module. [12]
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(a)

(b)

Figure 1.10: (a) The back side of the pixel module with MCC. (b) The FE side of

the pixel module, 16 FE chips are connected to a single n+-in-n silicon sensor.

Current readout IC for the ATLAS pixel detector is called FE-I3. It contains

2880 pixel cells arranged in a 18 x 160 matrix. Each pixel cell is 50 x 400 µm2

in size and is fabricated in the IBM 0.25 µm CMOS technology. Due to the high

radiation environment at region close to the beam pipe, this pixel FE readout IC

has some strict requirements to follow, among those are [13]:

1. Fast timing

The LHC beams are operated at 40MHz with roughly 2800 collisions per

90µs bunch revolution time. An unique crossing ID has to be associated

with each event. To meet this requirement, a very fast front-end design with

peaking time of about 30ns and the capability of accurately assigning unique

crossing ID to every hit from contiguous crossings are required.

2. Radiation hardness

The pixel electronics should remain within specification after a lifetime radi-

ation dose of 500kGy or 1015neqcm
−2 (where neqcm

−2 is an equivalent 1 MeV

neutron fluence producing the same bulk damage in a specific semiconductor

in non-ionizing energy loss (NIEL) scaling). At a maximum luminosity of

1034cm−2s−1, the innermost layer is expected to reach this radiation dose in

about 5 years while 10 or more years for the other layers.
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3. Low power consumption per readout channel

A limit of 40 µW per channel is set for the FE-I3 to facilitate the cooling of

the sensor and electronics.

4. Threshold, noise and signal height.

After the exposure to lifetime fluence of 1015neqcm
−2, radiation damage

causes the sensor’s charge collection efficiency to decrease and the leakage

current to increase. The front-end readout IC must have the ability to cope

with leakage current of up to 100nA per pixel while keeping the system effi-

ciency higher than 97%. Additionally, the readout IC must also be able to

cope with a threshold as low as 2000 electrons and a noise of a about 200

electrons.

5. High data rate

The readout architecture must be designed to record and readout hits data

at more than 99% efficiency with hit intensity of up to 5 x 107 hits/cm2/sec.

Data loss due to analog signals delay, insufficient buffer size, multiple hits

etc. must be kept to a minimum level.

1.4 ATLAS pixel detector upgrade

The high-radiation environment imposes stringent conditions on the pixel detector

sensors and electronics. Radiation damage will gradually degrade the sensor and

its electronics and in turn its detection performance. To preserve the tracking

performance after a few years of operation or for the operation at even higher

luminosity environment, those defect pixel modules have to either be replaced or

some compensation scheme must be made in place. Besides, over the next 10 years,

the LHC will undergo a series of upgrades in particular the High Luminosity LHC

(HL-LHC) upgrade where higher luminosity would be achieved. To keep up with

this environment, the ATLAS detector has to undergo a major modification as

well.

1.4.1 High Luminosity LHC upgrade

Around year 2022 LHC will undergo a major upgrade under the so called HL-LHC

project. The ultimate goal is to collect 3000fb−1 of data by the year 2030. To
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achieve this goal, the instantaneous luminosity will have to be increased to 5 x 1034

cm−2s−1. This increase in luminosity will greatly enhance the discovery potential

of LHC but there is a high price to pay. At this luminosity, the number of pile-up

events is expected to reach ∼140 per bunch crossing. As a comparison, the nominal

operation of LHC at design luminosity of 1034cm−2s−1 will generate roughly 28

pile-up events per bunch crossing [14, 15]. This harsher radiation environment

and higher event rate poses unprecedented challenges to the detectors especially

those which are closer to the interaction region. Thus for the ATLAS detector a

complete replacement of its inner tracker which consists entirely of silicon pixel

and silicon strip detectors is foreseen.

(a)

(b)

Figure 1.11: The layout of the new Inner Detector accompanying the HL-LHC

upgrade. Detector occupancy illustration (simulated) under 23 pile-up events (a)

and 10 times increase in pile-up events after the luminosity upgrade (b) [14].

Currently the new inner tracker is still under intensive design and development

phase. However, the baseline design consists of 4 pixel and 5 silicon strip barrel

layers while the end-caps have 6 pixel and 5 silicon strip disk layers at each end

[14]. The current estimates for the HL-LHC ATLAS inner tracker replacement are
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roughly 6 m2 and 150m2 for pixel detector and silicon strip detector respectively

[16]. Figure 1.11 illustrates the baseline layout of the new inner tracker and the

simulated pile-up events before and after the luminosity upgrade.

1.4.2 Pixel FE readout electronic in high luminosity era

Motivated by the pixel detector upgrade, a newer generation of front-end readout

IC which can satisfy the criteria of higher granularity, better radiation resistivity

and lower material budget has been developed. The new readout IC is called FE-

I4 [17, 19] and is the largest readout IC produced to date in high energy physics

experiment. It is designed in a 130nm CMOS technology but in the future pixel

readout IC fabricated in 65nm CMOS technology is foreseen [18]. The goals are

to achieve the same or even better tracking and vertexing performance than the

current pixel detector and at the same time give better radiation tolerance.

A more detailed description of the new FE-I4 readout IC will be given in

Chapter 2.

1.5 Research theme and scope

The main theme of my research is to design and develop a readout system which

can act as an electronic test bench for FE-I4 and provide various functionalities

for the IC characterization and performance analysis. It can also serve as a DAQ

system for pixel module with various silicon sensor technologies such as the planar

pixel sensor, 3D silicon sensor or even the diamond pixel sensor.

This research is mainly the continuation of the previous works that have been

kick-started by Y. Takubo (KEK) et al.. Throughout this research, we will mainly

focus on the further design and development of the software and firmware of the

DAQ system to read out FE-I4. Another main topic is to find out ways to improve

the readout speed. Testings of FE-I4 were carried out mainly to demonstrate the

practicability and functioning of the readout system as well as to serve as an

assessment for the correctness of the readout system implementation.
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1.6 Research motivations and objectives

This research is mainly motivated by the advent of the new ATLAS pixel FE

readout IC. Our motivations and goals that we wish to achieve in this undertaking

are as the following:

1. The need of a new readout scheme.

(a) FE-I4 is considered as a second generation pixel readout IC for the AT-

LAS pixel detector with many novel new features in comparison to its

predecessor. Examples of such features that will directly affect the data

readout include the number of pixels, output data rate, charge measure-

ment resolution, readout logic, configuration registers, etc. The devel-

opment of the original readout system for FE-I3, TurboDAQ system,

has long been stopped and the adaptation of its software and hardware

to read out FE-I4 is not feasible. Even though there are well-establish

alternatives to this system, a decision has been made to design a new

readout system from sketch by incorporating several new technology

which we think could make our system faster, more flexible and versa-

tile.

(b) The current design concept for the pixel module for the ATLAS HL-

LHC upgrade is a 4-chip module. The 2 by 2 matrix is based on the ar-

rangement limitation as well as the requirements of reducing the amount

of materials, sharing of data, command and clock line among chips, ben-

efit of localization in the instance of malfunctioning and so on. Hence

it is highly desired to read out 4 chips simultaneously. Nonetheless,

the development of the 4-chip readout scheme was postponed due to

hardware problem and thus will not be covered in this thesis.

(c) Currently there exist two well established FE-I4 readout systems namely

the Reconfigurable Cluster Element (RCE) system and the USBpix sys-

tem. The RCE system is optimized for exploring new DAQ architec-

tures for ATLAS upgrade applications. It is very fast and is capable

of reading out multiple 4-chip modules. Yet, it is based on a ATCA

packaging standard which means the the hardware package is complex

and huge. On the other hand, the USBpix is a very compact modular

readout system. However, currently it is not yet ready for reading out
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multi-chip module. Hence, our goal is to design a readout system that

could fuse together the merit of each systems, i.e fast, compact and

versatile.

2. Compactness

As a pixel FE electronics test system, a more flexible and compact hardware

setup is more attractive and preferable than a bulky one based on the VME

or CAMAC system which require large dedicated hardware. Our aim is to

create a system that is both lightweight and highly portable in view of the

fact that the readout IC and the sensor testing often need to be carried out

in different facilities around the world.

3. Flexibility and versatility

In terms of software functionalities, a user wants a system that is highly

adaptable. There will be instance where a user needs to device their own

test routines to extract relevant data which cannot be obtained by the stan-

dard or preset test routines. This is especially true during the period of

extensive readout IC testing and characterization where the acquisition of

new information is essential to fully understand the IC’s behavior. It is our

goal to design a software and firmware framework that can be rapidly adapt

to suit the user needs by using existing block without involving any extensive

modification to the structure.

The objectives which we aim to achieve are:

1. to prove that our readout system is able:

(a) to communicate with FE-I4 and correctly carry out configuration.

(b) to read out the FE-I4.

(c) to correctly decode and extract relevant data from the output data

stream.

2. to provide and test essential functionalities for FE-I4 testing.

3. to evaluate and improve as much as possible the readout speed.
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1.7 A preview of the readout system

It is in the reader interest that an overview of our readout system be given before

moving on to the following chapters. Figure 3.2 and Figure 3.3 shows the single

chip setup. We have a general purpose DAQ board which is connected to the Single

Chip Card (SCC) via an adapter card. The main DAQ board communicates with

the PC via an Ethernet connection. The software takes care of all the control

routines while the communication firmware and data flow control firmware are

implemented in the two Field Programable Gate Array (FPGA) onboard the main

DAQ board.

In the next chapter, detailed description of the pixel sensor and its front-end

electronic as well as the description of FE-I4 will be given. Chapter 3 will give an

in-depth discussion on various components of the readout system and the imple-

mentation details of the firmware and software. Various software functionalities

and test results will be presented in Chapter 4 while readout system’s performance

evaluation will be made available in Chapter 5. Finally the last chapter will be

dedicated to a brief discussion on the outlook of these research.
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Chapter 2

The New ATLAS Pixel FE

Readout Chip —FE-I4

2.1 Motivation for the new FE chip

The performances of the pixel detector after the LHC luminosity upgrade have

prompted a redesign of the current pixel FE-I3 readout chip. Studies have shown

that current FE-I3 cannot handle the high hit rates environment, leading to un-

acceptable inefficiency for HL-LHC. Figure 2.1 shows the schematic of the FE-I3’s

column-drain based readout architecture and the arrangement of pixels. FE-I3’s

pixel arrays are organized in Double Column (DC) with the buffers located at

the End Of Double Column (EODC). The FE-I3 readout architecture employs a

column-drain based data transfer concept which means that each pixel with the

comparator fires will send timing, charge and address information down to the End

Of Double Column buffers. Until the data transfer is finished, the active pixel will

be unavailable to record the next hit. As the hit rate increases, the Double Column

bus becomes saturated and as a consequence, the inefficiency starts to increase.

As can be seen in Figure 2.2, the inefficiency of the FE-I3 chip is no longer

tolerable starting from about three times the LHC design luminosity. The ineffi-

ciency caused by double-hit or pile-up is directly proportional to the hit rate and

the pixel size. Since all the pixels in the same Double Column share the same

Double Column data bus, while one pixel is transferring its hit data, the other

must wait. During this waiting time, no new hit can be stored in the local buffer

and hence the new hit is lost. This is called as the busy/waiting inefficiency. Every

hit that is recoded by the pixel will be associated with a time stamp called bunch
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Figure 2.1: The standalone pixel logic, the Double Column and the End Of Double

Column (EODC) buffer concept of the FE-I3. The pixel that fires stays inactive

until its data is transferred to the next available end of column buffer [21].

Figure 2.2: Inefficiency of FE-I3 readout chip at r=5cm as a function of hit rate

per double column. At 3 times the LHC design luminosity, the inefficiency starts

to increase drastically up to an unacceptable value. [20]
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crossing ID by the pixel digital circuit. At the End Of Double Column buffer, the

Level 1 trigger time stamp will be compared with the bunch crossing ID. If these

two have the same time stamp, the hit data will be read out. However when the

hit is associated to a wrong bunch crossing ID due to late copying, the hit will not

be read out. This data lost contributes to the so called late copying inefficiency.

Both of these inefficiency rise drastically starting from approximately three times

the LHC nominal luminosity. Thus, in order to preserve the tracking performance

at the luminosity beyond the current LHC design value, a new front-end readout

Integrated Circuit (IC) is needed.

2.2 FE-I4 specification and design

The following discussion is mostly about what is most relevant to our readout

system development. There are currently two FE-I4 versions namely FE-I4A and

its improved version, FE-I4B. More details can be found in references [30, 31].
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Figure 2.3: The physical size of FE-I4 and FE-I3 pixel readout IC

Figure 2.3 shows the physical size of FE-I4 and FE-I3. FE-I4 is fabricated in a

130 nm CMOS process. It is the largest front-end IC used in high energy physics

experiment to date with a total of 26880 pixels arranged in 80 x 336 matrix on a 20

x 18.6 mm2 chip. The larger chip size leads to more efficient system integration and
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thus reduces the amount of material per detector layer. Furthermore, larger chip

size also leads to significant manufacturing cost reduction. The pixel size is about

40% smaller than its predecessor at 50 x 250 µm2. This reduction in pixel size

significantly reduces the pile-up inefficiency and improves single point resolution

in z-direction. Moreover, FE-I4 has an active area close to 90%. In comparison,

FE-I3 only has an active area of 74%. This higher active area of FE-I4 reduces

the material and greatly enhances the vertexing capability.

Moreover, to reduce the cable budget and power losses, both the digital and

analog current is limited to 10µA/pixel. All Input/Output (I/O) of the FE-I4 are

LVDS signal. The nominal I/O bandwidth is raised four times higher than FE-I3

at 160Mb/s. The comparison between FE-I3 and FE-I4 is listed down in Table

2.1. A more complete FE-I4 specification can be found in Appendix A.

Table 2.1: Comparison of the specification between FE-I3 and FE-I4 [13, 17]

Value Units

FE-I3 FE-I4

Chip Size 7.6 x 10.8 20.0 x 18.6 mm2

Pixel Size 50 x 400 50 x 250 µm2

Pixel Array 18 x 160 80 x 336 Col x Row

Active Fraction 74 89 %

Analog Voltage 1.6 1.5 V

Digital Voltage 2.0 1.2 V

Analog Current 16 10 µA/pixel

Digital Current 10 10 µA/pixel

Data Rate (nominal) 40 160 Mb/s

2.2.1 Layout and numbering convention

Figure 2.4 shows the layout of the FE-I4 pixels and their numbering convention.

All the pixels are organized in column pairs. A single column pair consists of 672

pixels which are divided into one Digital Double Columns (DDC) or we call it

Double Column for short and two analog columns. An analog column contains

the pixel analog circuit which is bonded to the sensor. Each Double Column is
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Figure 2.4: The pixel numbering convention. The white box correspond to the

DDC while the gray columns correspond to the analog columns. Pixel (1, 1) is at

the top left corner. The green dots represent the bump bonding location. [31]

bounded by an analog columns at each sides. Double Columns are numbered from

0 to 39 while the analog columns are numbered from 1 to 80. The Double Column-

0 contains the analog column 1 and 2, the Double Column-1 contains the analog

column 3 and 4, and so on. All operation on FE-I4 is based on the Double Column

numbering scheme, thus it is worth taking some time to familiarize with it. Each

pixel address is specified by its column and row number as (Column, Row).

2.2.2 Digital architecture

Thanks to the smaller feature size process, the local buffers can be made next to

each pixel instead of putting them all at the End of Double Column. This feature

allows the hit data to be stored locally inside the double column bus without mov-

ing around unless it is requested by L1 Trigger. By not transferring unnecessary

hit data, the source of inefficiency as in FE-I3 at high hit rate environment can be

reduced. Instead, what is left as a dominant source of inefficiency in FE-I4 is the

single pixel pile-up inefficiency. Simulation on FE-I4 with real physics data has

shown that the pile up inefficiency at 3.7cm from the beam axis could be kept as

low as ∼0.42% at a luminosity of 3 x 1034cm−2s−1 [20].

24



T: read token R: Read flag N: neighbor logic inputs D: Discriminator input
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memory

Figure 2.5: The FE-I4 digital architecture. Unlike FE-I3, FE-I4 implement shared

pixel logic and local data storage. Hit data is not transferred to End of Double

Column Logic unless a trigger is received at the correct timing. [31].

As can be seen in Figure 2.5, four pixels are tied together to form a central

Pixel Digital Region (PDR). This has the effect of area reduction and power saving.

Each Pixel Digital Region contains four groups of hit processing logics, Time Over

Threshold (TOT) counter and memory manager as well as 5 pixel memories. The

region has 5 latency counters and trigger management units which are mapped

one to one to the pixel memories. At any given time, at least one Time Over

Threshold counter must be idle so that one of the pixel can record a hit.

Besides the discriminator in the pixel analog circuit, there is yet another digital

discriminator in the pixel digital logics. This digital discriminator imposes a digital

threshold to the width of the analog discriminator output of each pixel. Essentially

it is a Time Over Threshold comparator. Depending on the setting of this digital

discriminator, even if a signal passed the screening of the analog discriminator,

if the signal’s Time Over Threshold values is too small it will not be qualified

for reading out. Thus, throughout this thesis a qualified hit refers to a hit that

produces a signal that passes both the analog and the digital discriminators.
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2.2.3 Analog readout chain

Figure 2.6: The schematic diagram of the analog pixel for FE-I4. [31]

Figure 2.6 illustrates the analog pixel schematic. From left to right are the input

pad from sensor, the internal charge injection circuitry, the pre-amplifier first stage

and the amplification second stage followed by the discriminator. The sensor is

DC coupled to FE-I4. The charge injection circuitry consists of a large and a small

charge injection capacitor with capacitance of 3.90fF and 1.95fF respectively. Be-

sides providing a high signal gain, the preamplifier also has an adjustable shaping

provided by the feedback circuitry. This feedback circuitry gives the preamplifier

a linear return to baseline, which in turn leads to a discriminator pulse width that

is proportional to the input charge. Therefore we can use the Time Over Thresh-

old value to obtain the signal amplitude. In addition, this feedback filter of the

preamplifier also provides compensation to the DC leakage current from the sensor

with a leakage current tolerance up to 100 nA [31].

The pre-amplifier is AC coupled to the second stage. The ratio of the coupling

capacitance (Cc) to the second stage feedback capacitance (Cf2), Cc/Cf2 gives an

additional amplification factor to the pre-amplifier feedback capacitance, Cf1 [31].

This increase in feedback capacitance has the advantages of increased charge col-

lection efficiency, less power consumption and higher signal rise time [21]. Finally

the discriminator is made out of a 2-input voltage comparator and a threshold
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generator which has a global control and can also be adjusted locally through the

5-bit Threshold Trim DAC (TDAC) register.

There are two local tuning registers in the pixel analog circuit namely the

TDAC and the Feedback DAC (FDAC). The TDAC is used to tune the discrimi-

nator threshold. It is 8-bit complement, which means smaller TDAC value corre-

sponds to higher threshold value and vise versa. On the other hand, the FDAC

register is meant for adjusting the feedback current of the preamplifier. Larger

FDAC value means larger feedback current.

2.3 Operation and control

Everything about operating the chip has been clearly described in reference [30, 31].

Thus, only a concise description relevant to the DAQ development will be given

here.

2.3.1 Registers

There are two kinds of registers. First is the global register which affect the

parameters value that is common to all the pixels on FE-I4. Second is the local

pixel register that control parameters for each pixels. FE-I4A is controlled by 75

global registers whereas FE-I4B has 81 global registers. Both of them have 13

Single Event Upset (SEU) hard local pixel registers for the control of the analog

pixel logic. All the global registers have different length and are grouped into 35

sixteen-bit long words. In addition, there is a 672-bit long shift register (SR) which

is mapped one to one to all the pixels in a Double Column. It is used for reading

and writing the 13 SEU hard pixel registers. A complete description about all the

register types and their functions are available in chapter 8 of reference [30, 31].

2.3.2 I/O protocol

The data transfer to and from FE-I4 is through the serial pseudo-LVDS (Low

Voltage Differential Signal) signal synchronized by an external clock. It is called

as pseudo-LVDS because the FE-I4 driver does not use the standard IEEE LVDS

1.2V offset standard. Nonetheless, the pseudo-LVDS driver can still communicate

with commercial LVDS drivers and receivers. The LVDS circuit has a maximum
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clock rate of 320MHz but nominally 160MHz is used for data output whereas input

rate is 40MHz.

2.3.3 Command and command decoder

FE-I4 uses a very simple serial protocol for all the configuration commands. Com-

mands are subdivided into three classes, i.e “Trigger”, “Fast”, and “Slow” com-

mands. Both of the Trigger and Fast command type only work while FE-I4 is in

the “Run Mode”. While FE-I4 is set to “Configuration Mode”, only Slow com-

mands will be accepted by the command decoder. Different command types can

be easily identified by their unique header as can be seen in Table 2.2. Trigger

command (LV1) is the shortest with 5 bits in total. It triggers the acquisition of

new hit data from FE-I4. Fast command are slightly longer with 9 bits in total.

The BCR and ECR fast commands are responsible for reseting the bunch and

event counters respectively. The CAL command is used for issuing a calibration

pulse in FE-I4.

Table 2.2: Unique identifier for different command types. LV1 is the Trigger

command type while BCR, ECR and CAL belong to Fast command type [31].

Name Field 1 Field 2

size (bits): 5 4 Description Command Type

LV1 111011 - Level 1 Trigger Trigger

BCR 10110 0001 Bunch Counter Reset Fast

ECR 10110 0010 Event Counter Reset Fast

CAL 10110 0100 Calibration Pulse Fast

Slow 10110 1000 Slow command header Slow

Table 2.3 shows the different Slow commands and their interpretation. The

Slow commands are mainly related to reading and writing the global registers,

the shift register and the local pixel registers. They are also used to issue the

Global Reset command and the global pulse which has various functionalities.

On top of that, Slow commands can also be used to switch between the “Run

Mode” and “Configuration Mode”. Unlike the Trigger and Fast command type,

the Slow commands may have 4 other fields in addition to the header part. Note
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that the Data part (Field 6) of the WrRegister command is 16 bit long while for

WrFrontEnd command is 672 bit long. For RunMode command, the Mode (Field

5) should be set to 111000 for Run Mode and 000111 for Configuration Mode.

Table 2.3: Slow commands types and their format. [31].

Name Field 3 Field 4 Field 5 Field 6

size (bits): 4 4 6 Description

RdRegister 0001 ChipId Address - Read addressed global memory register

WrRegister 0010 ChipId Address Data Write into addressed global memory register

WrFrontEnd 0100 ChipId xxxxxx Data Write conf data to selected shift register(s)

GlobalReset 1000 ChipId - - Reset command; Puts the chip in its idle state

GlobalPulse 1001 ChipId Width - Has variable pulse width and functionality

RunMode 1010 ChipId Mode - Sets RunMode or ConfMode

The FE-I4 command decoder handles the decoding of all the command input

and is also responsible for the generation of reset signal for the logic. It is worth

noting that the decoder is not multi-treated which means it can only handle one

command at any single time. There is no way to send multiple commands at the

same time.

2.3.4 Encoding and data format

8b/10b encoding

The FE-I4 output data is 8b/10b encoded by default and can be turned off if

needed. The 8b/10b encoding is crucial for clock recovery, data framing and

phase alignment. The code specifies the encoding of a 8-bit symbol (256 unique

data words) and an additional 12 special (K-Code Group) characters into a 10-bit

symbol. Detailed implementation of 8b/10b can be found in the paper by A.X.

Widmer and P.A. Franaszek of IBM [22].

The 12 special symbols, referred to as control symbols, are shown in Table 2.4.

These control symbols are unique in that their bit pattern never occurs in a string

of data symbols. Among them, K.28.1, K.28.5, and K.28.7 are “comma symbols”

which are used in FE-I4 for data stream framing and alignment. These frames are:

1. IDLE

The FE-I4 Data Output Block (DOB) is always sending out IDLE code
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whenever there is no data to transfer. The IDLE code is the K28.1 comma.

2. EOF

The K28.5 comma is used as the End of Frame (EOF). The EOF serves the

purpose of separating two events. It can also be used in frame synchroniza-

tion when events follow closely one after another (no IDLE state).

3. SOF

The Start of Frame (SOF) is the K28.7 comma. It marks the start of a valid

transmission and is also used in frame synchronization.

Table 2.4: The 12 unique K-Code symbols. FE-I4 uses the K28.1, K28.5 and K28.7

symbols for data stream framming and synchronization.

8-bit DIN 10-bit DOUT 10-bit DOUT

Code Group kin/kout (RD-) (RD+) Frame

HGF EDCBA abcdei fghj abcdei fghj

K28.0 1 000 11100 001111 0100 110000 1011

K28.1 1 001 11100 001111 1001 110000 0110 IDLE

K28.2 1 010 11100 001111 0101 110000 1010

K28.3 1 011 11100 001111 0011 110000 1100

K28.4 1 100 11100 001111 0010 110000 1101

K28.5 1 101 11100 001111 1010 110000 0101 EOF

K28.6 1 110 11100 001111 0110 110000 1001

K28.7 1 111 11100 001111 1000 110000 0111 SOF

K23.7 1 111 10111 111010 1000 000101 0111

K27.7 1 111 11011 110110 1000 001001 0111

K29.7 1 111 11101 101110 1000 010001 0111

K30.7 1 111 11110 011110 1000 100001 0111

Record formatting

FE-I4 data output is a single treaded serialize bit stream. Before 8b/10b encoding,

three 8-bit raw data words are grouped into a 24-bit long word called record. There

are six record types as shown in Table 2.5.

Valid data output from the Data Output Block needs to follow certain se-

quences. For example, a valid pixel data sequence is shown in Figure 2.7
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Table 2.5: Record types for FE-I4B. Bit order follows the [MSB : LSB] convention.

[31]. FE-I4A has slightly different bit order and length for LV1ID and BCID.

Record Field 1 Field 2 Field 3 Field 4 Field 5

Data Header (DH) 11101 001 Flag LV1ID [4:0] BCID [9:0]

Data Record (DR) Column [6:0] Row [8:0] ToT 1 [3:0] TOT 2 [3:0]

Address Record (AR) 11101 010 Type Address [14:0]

Value Record (VR) 11101 100 Value [15:0]

Service Record (SR) 11101 111 Code [5:0] Number [9:0]

Empty Record (ER) abcdefgh abcdefgh abcdefgh

after 8b/10b SOF DH (0 or n) x DR (0 or 1) x SR EOF

before 8b/10b DH (0 or n) x DR (0 or 1) x SR EOF

Figure 2.7: Valid pixel data sequence.

2.4 Data acquisition

A typical data acquisition process first starts with configuration of FE-I4 and all

the pixels to put them in the Acquisition Mode or the Run Mode. A large enough

signal pulse that is generated either from a source such as charged particle or

artificial pulse generator then produces a hit in the pixel. Finally a trigger signal

or readout flag is sent to each pixel to request for the data that has been stored

in the pixel. In this section we will briefly discuss about the triggering mechanism

and the signal pulse generation in FE-I4.

Triggering

Whenever a large enough signal passes the discriminator threshold and the digital

discriminator threshold, the signal is qualified to be stored in the pixel local buffers

awaiting for readout. At the same time, the leading edge of this signal will cause a

latency counter within the PDR to start counting down with the system clock. One

clock lasts for 25ns (40 MHz). The latency counter is a 8-bit counter and the count

down starts at 255. When the counter reaches a pre-defined trigger latency value,
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the readout processor checks for a trigger signal. If a trigger signal is detected at

the same time, the hit data is then qualified for reading out, otherwise it will be

deleted and the latency counter will be reset.

Calibration pulses

As mentioned in Section 2.2.3, FE-I4 has two capacitors in each pixel analog circuit

that are capable of injecting negative charges to the preamplifier. In addition, FE-

I4 is also capable of sending digital pulses downstream of the discriminator directly

into the Pixel Digital Region to simulate hits. From here on, the former will be

referred to as “Analog injection” while the latter as “Digital Injection”. Both of

these methods use the internal pulse generator block, hence hits can be produced

at each pixel even without a sensor connected. On top of that, external pulses can

also be used in replacement of the internal pulse generator to perform the Analog

and Digital Injection.

The pixel column configuration procedure for Analog and Digital Injection is

different. For Analog Injection, the column selection follows this formula:

selected columns =

2n

2n + 1
(2.1)

where n is the Double Column address ranging from 0 to 39. On the other hand,

for Digital Injection, the column selection follows a slightly different formula as

follows:

selected columns =

2n + 1

2n + 2
(2.2)

Nonetheless, the general idea is that when a CAL fast command is received by

FE-I4, a start pulse will be generated by the pulse generator. Upon receiving

the start pulse, corresponding digital or analog pulse will be generated. Various

properties of the output pulse such as delay, pulse width, pulse height, rise time

and so on can be programmed by approximately 10 global registers. The detail for

pulse generator configuration is omitted here but the relation between the start

input and the digital and analog output is shown in Figure 2.8.

Referring to Figure 2.6, analog calibration injection is achieved through two

selectable capacitors, Cinj1 (smaller capacitance) and Cinj2 (larger capacitance).
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A calibration voltage (VCAL) which can be controlled by the PlsrDAC global

register is applied across the capacitors. The calibration voltage is switched very

quickly (<10ns [31]) to ground and held at ground level for the duration of tw2.

Charge is injected at the falling edge of this calibration voltage output.

Figure 2.8: The timing diagram for the pulse generator output pulse. All the

variables tw0, tD, tw1, tw2 and tR are programmable [31].
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Chapter 3

The SEABAS Readout System

Figure 3.1: The complete setup of the SEABAS FE-I4 test system.

Figure 3.1 shows the complete setup of our SEABAS FE-I4 test system which

includes a oscilloscope for signal checking and debugging, a power supply, DAQ

boards and a computer containing the DAQ software. Additional power supplies

may be needed depending on the FE-I4 chip powering scheme and for sensor

biasing.

Each and every single pieces of the DAQ boards and the DAQ software will be

given an in-depth description in the following sections.
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3.1 Readout system hardware

3.1.1 System overview

Soi EvAluation BoArd with Sitcp (SEABAS) readout system aims at using a min-

imal set of hardware which is compact and flexible. The hardware includes a main

SEBAS DAQ board, adapter cards and a Single Chip Card (SCC) which house

the FE-I4 chip. The communication between the SEABAS main DAQ board and

the DAQ software is achieved with an Ethernet interface. Data flow and commu-

nication relay are controlled by firmwares implemented in the Field-Programable

Gate Arrays (FPGA).

For the record, two setups have been used throughout the development of this

readout system. First is the single-chip setup with USBpix adapter card as a

temporary interface. Towards the end of the development phase, a setup with an

original daughter card specifically designed to suit our SEABAS readout system

is used. Both of them will be described here.

3.1.2 Single FE-I4 setup with USBpix

Figure 3.2 shows the single FE-I4 setup. In this setup a SEABAS-USBpix daughter

card is used to route the signals essential for operating FE-I4. In particular, the

signal lines include the input command and input reference clock to FE-I4, the

FE-I4 output data, power supply channel on/off signal and various others.

We have borrowed the USBpix FE-I4 adapter card made by the SiLab of Uni-

versity of Bonn [24] as a temporary solution while waiting for a dedicated adapter

card to be made to suit our system. The USBpix FE-I4 adapter card is connected

to SEABAS-USBpix daughter card via a KEL 100-pin connector. All the signals

sent from SEABAS to the adapter card are single ended. Remember that FE-I4

works with LVDS signal, the adapter card therefore will convert the single ended

signal to LVDS signal before sending it to FE-I4 and vise versa. In addition to

the LVDS transceiver, the adapter card also hosts the bias voltage regulators for

FE-I4. One thing to take note is that when using this setup, we did not manage

to configure the power supply controller onboard the adapter card via the Inter-

Integrated Circuit (I2C). Because of this, the FE-I4 analog and digital voltage

supplies (VDDA and VDDD) were set at the default DAC value of ∼1.5V. Even

though FE-I4 specifies a 1.2V VDDD, the chip can still be operated at VDDD of
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Figure 3.2: The setup using USBpix adapter card.

1.5V. As this is a temporary setup, it is sufficient for DAQ software and firmware

development and testing phase.

The Single Chip card is where the FE-I4 is mounted on and wire bonded to the

bond pads on the card. The Single Chip Card is connected to the adapter card

via the RJ45 connector (via Ethernet cable) or the KEL 50-pin connector (via a

flat ribbon cable). When the RJ45 connector is used, power lines must be routed

through a dedicated power connector. Conversely, all data lines and power can be

routed via the flat ribbon cable alone.

3.1.3 Single FE-I4 setup using 4-chip daughter board

Figure 3.3 shows the single FE-I4 setup using a 4-chip daughter board. The 4-chip

daughter board is designed and built by Dr. Y. Ikegami and Dr. Y. Takubo from

KEK. This daughter board is meant for the final implementation of the FE-I4

4-chip readout system, therefore there are a total of four in/out channels with

RJ45 connectors. Each channel routes three critical signals between SEABAS and

FE-I4. Those signals are the 40MHz reference clock, command signal to FE-I4,

and the data output from FE-I4.
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Figure 3.3: The single FE-I4 setup using 4-chip daughter board

The design of this daughter board utilizes eight DS90CP22 2x2 cross point

switch [23] as the LVDS buffers for low power and high speed operation. By using

LVDS signal for both the input and output data lines, it enables point-to-point high

speed interconnection plus low noise and pulse width distortion. The DS90CP22

switches are set to repeater mode which operates as a 2 channel LVDS buffer. In

repeater mode, the LVDS signal amplitude is restored before being forwarded to

FE-I4.

Unlike the USBpix adapter card, there is no on board power supply unit to

regulate the voltage to FE-I4. Hence, an external low voltage power supply is

needed to power up FE-I4. In this case, the VDDA and VDDD can be controlled

by adjusting the output of the low voltage power supply.

3.1.4 SEABAS Board

Figure 3.4 shows the SEABAS DAQ board. SEABAS is a general purpose DAQ

board developed by the Silicon On Insulator (SOI) collaboration at KEK [26]. Its

main features include:

• one user FPGA

• one SiTCP FPGA
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Figure 3.4: The SEABAS general purpose DAQ board.

• two PROMs

• 100 Base T Ethernet

• 65Mhz 12-bit ADC

• 4 channels 12-bit DAC

SEABAS user guide can be found in reference [27]. A voltage of ±5V should

be supplied to power the board. Depending on the setup, the current is 1A to

1.7A. For first time user, the following network setting should be used:

• SEABAS’s MAC address: 01-00-C0-A8-00-10

• SEABAS’s IP address: 192.168.0.16

The two FPGAs are for the implementation of the SiTCP firmware (SiTCP

FPGA) and the device specific firmware (User FPGA). The SiTCP FPGA is a

Xlinx Virtex-4 XC4VLX15 device with 864Kb Block RAM capacity while the

User FPGA is a Xilinx Virtex-4 XC4VLX25 device with a maximum 1296Kb

Block RAM capacity.
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SiTCP

Silicon Transmission Control Protocol (SiTCP) basically is a hardware based

TCP/IP processor which is specifically designed to simplify the communication

with front-end device [29]. On top of the TCP protocol, a control mechanism over

User Datagram Protocol (UDP) is also provided. SiTCP processes TCP/IP, UDP

and Ethernet/IP protocol where user needs only to establish the control protocol

for their specific application. In other word, the communication and data transmis-

sion between PC and SEABAS is entirely taken care automatically by the SiTCP

FPGA. This significantly simplifies the development of the readout firmware or

any further upgrades. SiTCP was developed by T. Uchida of KEK. SiTCP has

the following advantages:

1. Small hardware size

The standard TCP communication protocol are very complex and large.

It needs powerful CPU for high rate processing. In general, embedding a

powerful CPU in a single ASIC is hard to achieve without extra devices.

SiTCP only adopts the minimum set of TCP/IP protocol, hence the circuit

size can be made very small and thus can be implemented in a single FPGA.

This makes the system inherently more flexible than other hardware bus

systems like CAMAC, VME and etc.

2. High-speed data transfer

The SiTCP is compatible with the commercial Ethernet protocols. The

SEABAS version 1 which we are using uses the 100Base-T standard while

the newest version of SEABAS can provide up to 1Gbps data transfer rate.

The utilization ratio, which is defined to be the bandwidth ratio of effective

data to the line bandwidth, of SiTCP has been shown to reach up to 95%

[28, 29].

3. Simple user interface to external circuit

The SiTCP user interface is designed to behave like a synchronous FIFO

memory device with minimal interfaces to an external circuit. Once the

connection between SiTCP and its communication partners (i.e. the User

FPGA and PC) is established, user needs only to concern with providing

proper read and write flags for the data transferring to work.
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3.2 Firmware implementation

As mentioned above, SEABAS holds two FPGAs. One of the FPGAs has SiTCP

firmware pre-installed while the other is for the implementation of user specific

firmware, which is what we are developing.

The firmware is written in Verilog, a hardware description language used to

model analog and digital circuits at the register-transfer level of abstraction. The

Verilog’s syntax is similar to the C programming language. In general, the user

firmware takes care of the following tasks:

• forwarding command bit stream from the control software to FE-I4.

• generation of Fast commands (LV1, CAL etc.) that need precise timing.

• receiving FE-I4 data output and data parsing.

PC
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Figure 3.5: The SEABAS firmware design.
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The firmware is designed such that it consists of the modules that encapsulate

design hierarchy. Each module handles a specific set of tasks and communicates

with other modules through a set of declared input, output, and bidirectional

ports. An overview of the SEABAS firmware modular structure is given in Figure

3.5. The functionalities of each module are described as follows:

1. Top module

All I/O ports are declared in this module and are constrained in a separate

User Constrained File (UCF). The top module contains the Digital Clock

Manager (DCM) and Clock Generator (Clk Gen) block, SiTCP Communi-

cator block, Command Decoder (CMD Decoder) block and Trigger Manager

(Trig Manager) block. The function of each block is as follows:

• DCM and Clk Gen

This component is used to derive and control the various clocks needed

within the system. It contains a delay-locked loop (DLL) to completely

eliminate clock distribution delays. The Digital Clock Manager is also

used to synthesize clocks with different frequencies and phase shift.

The Clk gen block is coupled to the Digital Clock Manager to produce

additional clock frequencies. The clocks generated by these two blocks

include:

(a) 25MHz clock

This is the primary clock used to drive most of the Finite State

Machines (FSM) in the Top module. It also serves as a driver

clock for the SiTCP Communicator as well as the readout FIFOs

in the Signal Reader module.

(b) 160MHz clock and 160MHz clock with the phase shifted by 135◦

and 180◦

These clocks are selectable and are fed directly into the Signal Reader

Block to drive the receiver FSM. In addition, the 160MHz clock is

used to drive the Channels Manager block and used as an input for

the Clk Gen block to generate 20MHz and 40MHz clocks.

(c) 20MHz clock

The sole purpose of this clock is to function as the write clock for

the asynchronous FIFOs in Signal Reader block.
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(d) 40MHz clock

This is the reference clock that is used to drive the FE-I4 logics.

As 40MHz is the reference frequency for FE-I4 input, it also means

that all the FSMs in Job Manager that deal with the inputs to

FE-I4 is driven by this clock.

In addition, power-up reset is implemented in the firmware based on the

Digital Clock Manager’s LOCKED signal. When this signal is high it

means the clock outputs already established the correct frequency and

phase.

• SiTCP Communicator

As its name implies, this block defines and constrains the I/O ports

that link to SiTCP FPGA. It contains the TCP/IP as well as the UDP

interfaces. All the data transfer are entirely taken care by this block

automatically.

• CMD Decoder

This block identifies header from the data stream that is sent from the

control software and decide what to do next. The headers are associated

with a set of tasks, for example, to activate other modules or to assign

values to registers from the payload extracted from the data stream.

• Trig Manager

This block consists of three FSMs that set the triggers for Signal Sender

Module. It tells the Signal Sender module when it can start sending out

the command bit stream to FE-I4. In particular, it manages the interval

between each successive CAL and LV1 command and stops sending the

commands when the desired number of LV1 triggers is reached.

2. Job Manager

This module consists of the Signal Sender and the Signal Reader modules

as well as the Channel Manager and Reset blocks. In the Reset block, one

master counter issues the internal reset signal that is used by all other FSMs

contained in the Job Manager module. On the other hand, the Channel

Manager simply flags the FIFOs for readout whenever it is ready.

3. Signal Sender

Through this block the command or configuration bit stream is routed to FE-
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I4. As the CAL and LV1 command need precise timing, they are the only

commands that are directly managed and sent from the firmware without

intervention of the control software.

4. Signal Reader

As described in Section 2.3.4, a valid data record is framed by the SOF,

DH and EOF frames. Since FE-I4 is always sending out IDLE states when

there is no hit data, a FSM is used to check the data stream for the SOF

and EOF frames. When a SOF frame is recognized, it starts to extract the

correct portion of data and pass it to the 8b/10b decoder for decoding. The

decoded data is then stored in an asynchronous FIFO which is embedded

in the Signal Reader module. Once the FSM finds an EOF frame, it stops

taking out data. At the same time the SiTCP Communicator starts to read

out the stored data from the FIFO.

3.3 Software framework

The software is written in C++ to exploit the features that object-oriented pro-

gramming style offers. The concept is to have a program that composed of self-

sufficient reusable functional modules (“classes”) with a collection of interacting

objects that contain all the information needed to manipulate its own data struc-

ture. We try to limit the interdependencies between each module to reduce system

complexity and thus increases its robustness and maintainability.

Figure 3.6 illustrates the modular structure of the DAQ and the control soft-

ware. The control software has two main classes which other classes are built upon,

that is the Configuration Class (CONFIG ) and the Data Acquisition (DAQ) Class.

The Operation (OPR) and Injection (INJ) sub-classes are derived from CONFIG

and DAQ top level classes respectively. In addition, there are two stand alone

classes that are independent from the other, namely the SiTCP Controller and

Data Output (DOUT) classes. Each instance (object) of classes is capable of re-

ceiving messages, processing data, and sending messages to other objects. The

functions of the main classes will be explained next.

1. SiTCP Controller

At the control software end there is also a SiTCP controller which talks to

its counterpart in the firmware. It is primarily responsible for establishing
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Figure 3.6: The modular framework of SEABAS readout system software.

connection to SEABAS DAQ board and providing UDP control. TCP/IP

data transfer is established entirely by using the standard socket functions

that are readily available in network programing language.

2. Configuration class

In this class there is a Configuration and a Command Generator block. The

Configuration block essentially takes care of all the routines that provide

configuration of all the registers in FE-I4 including both the global registers

and the local pixel registers. It provides the algorithms to select which pixel

to activate or mask based on the user selection. Two simple text files, one

contains all the register values and the other contains all the parameters

essential for the execution of the program are read at the very beginning of
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the program execution. The stored FE-I4 register values are then passed to

the Command Generator block which performs data reformatting according

to the description in Section 2.3.3. Additionally, an extra header and trailer

are inserted before sending it to the firmware. The reformatted data stream

has a simple structure as shown in Figure 3.7. The purpose of adding a

trailer is to separate two configuration bit stream. On the other hand, each

unique 8-bit-long header corresponds to a certain task to be carried out by

the firmware as defined in Table 3.1.

Header [7:0] FE-I4/Firmware Ctrl Cmd Trailer [23:0]

Figure 3.7: Reformatted configuration data stream. The payload can be either the

configuration command for FE-I4 or the control command for the firmware.

Table 3.1: Header to be read by the Command Decoder block in firmware.

Header Description

1110 1001 write global registers.

1110 1101 write pixel 672-bit shift register.

1110 1010 start signal for issuing CAL or LV1 command.

1110 1011 start trigger for various blocks in Job Manager module.

1110 1111 assign payload bits to registers in firmware.

3. DAQ class

This is another class that contains an Injection module, a DAQ block and a

Decoder. The primary function of the Data Acquisition block is to monitor

the kernel buffer for any data packet that has been transferred from the

SEABAS. Any data stored in the kernel buffer is retrieved and temporarily

stored in the user buffer. The Data Acquisition block then unpacks the data

into a 24-bit data record. From this 24-bit data record, relevant information

is extracted based on the format described in Section 2.3.4.
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3.4 DAQ Operation Overview

Having discussed about the FE-I4 chip, the readout hardware and the implemen-

tation details of the firmware and software, it is by all means appropriate to go

through the whole process of acquiring data from the FE-I4 chip. The overall DAQ

flow using FE-I4 internal calibration pulse generator is illustrated in Figure 3.8.

Software SEABAS FE-I4
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END
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Send registers reset commands
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Power-up 
Reset

Send FE-I4 global register configuration commands
Send pixel local register configuration command

Sending calibration & LV1 cmd

Send DAQ 
start signal

decode 8b/10b encoded data

Trig_sent 
== # trig ?

NO

YES

Trig_sent 
== # trig ?

Receive data 

NO

YES

All 
pixels done?

YES

NO
IDLE IDLE

output 8b/10b 
encoded data

send 
decoded data

Figure 3.8: The overall DAQ flow chart.

An succinct overview of the DAQ process flow is as follows:

1. Establish connection between PC and the SEABAS.

2. Reset the user firmware and FE-I4.

3. Send configuration commands to configure FE-I4’s global registers.

4. Send configuration commands to configure selected pixels’ local registers.
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5. Signal the user firmware to start the DAQ process.

6. Send calibration pulse command and Level 1 trigger command from firmware

to FE-I4.

7. FE-I4 output hit data in 8b/10b encoded format to SEABAS.

8. User firmware decodes the 8b/10b encoded data and send it to PC.

9. DAQ software receives and extracts relevant information from the received

data stream.

10. Repeat the whole process on other pixels.
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Chapter 4

DAQ and Functionality Test

At this stage, reader should have a general idea about how FE-I4 and each compo-

nent of the readout system function as well as the overall process of data taking.

In the first half of this chapter we will examine the results of various tests to es-

tablish the basic DAQ operation. One of the main objectives of this research is

to provide the functionalities to test the FE-I4 electronics. In the second half of

this chapter, numerous other functionalities which are essential for the role of our

readout system as an electronic test stand for FE-I4 will also be discussed. A few

terms that will be used frequently are defined in advance. They are as follows:

1. Scan

A series of loops in which a particular register value is reconfigured before

the start of each loop.

2. Time Over Threshold (TOT)

A measurement of the time a certain signal is above a threshold. The unit

used in FE-I4 case is 25ns or 1 bunch crossing (BC).

3. Mask stage

To avoid the overflow of User FPGA’s buffer, typically only a fraction of the

pixels is selected for injection test. The injection procedures is repeated to

cover all the pixels on FE-I4. Each of this repetitions is referred to as a mask

stage.
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4.1 Basic DAQ operation test

To confirm that our readout system is working as designed, a few basic DAQ

operation tests have been performed. Through each test, the following points will

be proved:

• communication with FE-I4 is successfully established.

• configuration of the specific global registers and the local pixel registers can

be performed correctly.

• calibration command and Level 1 trigger command can be sent to FE-I4.

• both analog and digital injection can be performed.

• decoding and data extraction is correctly carried out.

4.1.1 Communication between SEABAS and PC

Before proceeding with any further tests, it is essential to verify that signal trans-

mission from computer to FE-I4 has been established. In order to see if the LVDS

configuration command signal and clock signal are routed to FE-I4 correctly, we

probed the corresponding output ports either on the USBpix adapter card or the

4-chip daughter board with oscilloscope.

ref_clk_LVDS_P ref_clk_LVDS_N

ref_clk @ 40MHz

Figure 4.1: The 40MHz reference clock that is fed into the FE-I4 clock generator

block.
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The 40MHz reference clock sent from SEABAS to FE-I4 was verified as shown

in Figure 4.1. The horizontal time scale is 25ns per unit grid. The command

signals’ bit pattern was also verified to be exactly what had been sent from the

computer. One example of slow command bit pattern is shown in Figure 4.2. The

correct value for each field formatted according to item 2 (WrRegister) in Table

2.3 can be clearly seen. In both Figure 4.1 and Figure 4.2, the yellow signal line

is the LVDS positive signal, the green line is the LVDS negative signal and the

purple line is the difference between the two.

101101000001011110000111111111111111111

LVDS_P

LVDS_N

Figure 4.2: Slow command (WrRegister) bit pattern that was sent to FE-I4. In this

case, the bit pattern was 10110 1000 0010 1111 000011 1111111111111111.

4.1.2 Digital Injection Test

The main purpose of the Digital Injection Test is to examine the functionality of

the pixel digital region circuit as well as the readout chain. Nonetheless, it can

also serve as a reliable mean to test the five points mentioned in Section 4.1.

In the Digital Injection Test, strobe signals with a fixed length are sent down-

stream of the pixel discriminator directly into the pixel digital region circuit to

simulate a hit in the pixel. The number of hits should be the same as the number

of strobe signals that have been sent. In addition, the Time Over Threshold value

for every hit should be the same as the strobe signal length.

All pixels on FE-I4B were used in this digital test. In total, 100 strobe signals

with length lasting for 13 bunch crossing were sent. If the hit map shows the

correct hit pattern with the correct Time Over Threshold value, then we can be

convinced that the decoder and data extraction is implemented correctly.
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Figure 4.3 (a) shows the resultant hit map. For this particular FE-I4, all but

two pixels returned 100 hits. These two pixels which do not register any hit are

known to be as dead pixels, and hence masked. Figure 4.3 (b) shows that the

correct Time Over Threshold value, which is 13, was returned from all the hits.

We confirmed by these results that the digital injection, the decoding, and data

extraction were correctly carried out.

(a)

Hit Map (Digital Test --- 100 triggers) Time Over Threshold (TOT)

(b)

Figure 4.3: (a) The hit map for Digital Injection Test. The horizontal axis cor-

responds to the column number while the vertical axis is the row number. The

color scale gives the total number of hits. (b) Time Over Threshold value for all

the digital injection hits.

Apart from this, by setting the column mask in the global register or the

row mask in the local pixel register, we can test whether these registers can be

configured properly or not. With this test we can also check the ability of selecting

any combination of pixel for testing. In Figure 4.4 we can see the effect of masking
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column 33 to column 64 and activating the row mask in the local pixel register for

all pixels other than every third row of pixels. We confirmed that the configuration

of the global register and the local pixel registers can be performed correctly.

Likewise, the fact that we obtained the correct hit pattern means the decoder has

decoded the data accurately.

 
 

Hit Map (Digital Test --- 100 triggers)
Every 3th row, Mask Col. 33-64

Figure 4.4: The hit map obtained by masking column 33 to column 64 and every

third row of pixels.

4.1.3 Analog Injection Test

The Analog Injection Test is meant for testing the pixel analog circuit components

such as the charge injection capacitors, pre-amplifier, amplifier and the discrimi-

nator. From the hit map, pixels that have defect can be isolated and masked. For

the Analog Injection Test to work, the pixel’s charge injection capacitors need to
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be activated by configuring the corresponding local pixel registers. Furthermore,

the global threshold and the calibration voltage also need to be set by configuring

the global registers called Vthin Alt Fine and PlsrDAC, respectively. Thus, analog

injection can serve as a good indicator whether these local pixel registers and the

global registers can be configured properly.

Hit Map (AnalogTest --- 100 triggers) Time Over Threshold (TOT)

(a) (b)

Figure 4.5: (a) The hit map for Analog Injection Test on all pixel on FE-I4B. (b)

The measured Time Over Threshold value by an Analog Injection Test.

To perform an Analog Injection Test, charge is injected to the pixel analog

circuit’s pre-amplifier through the charge injection capacitors. To make sure every

pixel has its analog discriminator fires, a large input charge well above the threshold

is injected. This can be ensured by setting the global register, PlsrDAC, to an

appropriate value. In this test, 100 triggers were sent to FE-I4. We then expect

the number of hits to be the same as the number of triggers.

Figure 4.5 (a) shows the hit map of the Analog Injection Test for all pixels of
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FE-I4B by using PlsrDAC value of 300. Most of the pixels returned a full 100 hits.

A maximum hit value of 100 means the decoder and data extraction did not mess

up in obtaining hit information. If that is the case, some pixels might register

hit number that is more or less than the number of triggers that had been sent.

On the contrary, those pixels without a hit might be due to the fact that their

threshold value is way too high or their charge injection capacitors have broken.

Figure 4.5 (b) shows the measured Time Over Threshold distribution.
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Figure 4.6: Time Over Threshold distribution in Analog Injection Test with the

same setting other than charge injection capacitor setting: (a) small capacitor ON,

(b) big capacitor ON.

Recall that in analog injection charge is injected by the two charge injection

capacitors, one has larger capacitance than the other. We can turn either one off

and run the Analog Injection Test with the same setting. The average Time Over

Threshold value should be larger when the high capacitance capacitor is turned

on and vice versa. By performing this test, we can verify that the specific local

pixel registers can be configured correctly.

Figure 4.6 shows the observed change in Time Over Threshold value. As ex-

pected, the average Time Over Threshold value was larger for the case where the

large capacitor was selected.
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4.1.4 Latency Scan

As a reminder, the leading edge of a valid hit signal in each pixel starts a 8-bit

latency counter. The latency counter counts down from 255 with the system clock

until it reaches the trigger latency value programmed in the FE-I4 global register.

If the LV1 trigger does not reach the pixel when the latency counter is equal to

the programmed trigger latency value, the hit is not read out and is discarded.

This process is illustrated in Figure 4.7. For the instance when Digital or Analog

Injection Test failed completely (blank occupancy plot), one possibility might be

that the trigger latency setting is wrong. This is when the Latency Scan comes in

handy by telling us the correct trigger latency to use.

255 254 253 252 251 250 249 130 129 128 127 126 125

40MHz Clk

Discri. output

Latency counter

LV1 trigger

LV1 trigger
wrong value; 
not read out

correct value; 
read out

Firmware 
Calibration cmd 
& LV 1 trigger 

cmd Calibration cmd LV1 trigger cmd

latency

latency

Figure 4.7: The total hits (ordinate) versus trigger latency (abscissa) histogram.

The peak gives the correct trigger latency value that should be used.

The precise timing when a LV1 trigger should arrived is controlled in the

firmware. As shown in Figure 4.7, if the true latency is 125, this latency value

must also be correctly set in the firmware. Otherwise, no hit is ever registered in

any pixel. To check whether this is true, we perform the so called Latency Scan.

In the Latency Scan the same number of triggers are sent to the selected pixels

at each 255 possible trigger latency (global register, Trig lat) values in either the

digital or the analog injection. If the latency value is set correctly in the firmware,

the histogram (when the trigger multiplier register, Trig cnt is set to 1) is expected

to have a single peak at the programmed trigger latency value. This is confirmed

as shown in Figure 4.8. In this case, the latency value is set to 125.
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Figure 4.8: The number of hits (ordinate) versus trigger latency (abscissa). The

peak gives the correct trigger latency value that was used.

Note that the trigger latency register is 8-bit compliment thus the trigger la-

tency is not the actual LV1 latency value. Instead, for the real LV1 latency of 125

clocks, for example, the trigger latency register value should be set to 255-125 =

130.

4.2 Functionality test

We have developed several essential readout functionalities in which their operation

is built upon the Analog Injection Test mentioned in the previous chapter. These

functionalities play a major role as an electronic test stand for FE-I4 as well as

the DAQ system for the module consisting of sensor and FE-I4. Furthermore,

they also serve as further verification for the functioning of the control software

and firmware. In the subsections below, the description for each functionality is

explained.

The functionalities that we describe here include:
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1. Injected Charge Scan

2. Threshold tuning

3. Time Over Threshold Scan

4. Time Over Threshold tuning

4.2.1 Injected Charge Scan

The main purpose of this scan is to find the threshold and measure the noise for

each pixel. The FE-I4 specification states that the single pixel Equivalent Noise

Charge should be lower than 300 electrons. In order to measure the threshold

and noise correctly, we have to first get the correct charge conversion factor from

the global register, PlsrDAC. PlsrDAC is a 10-bit global register that controls the

calibration pulse voltage which in turn determines how much charge is injected

into each pixel. In the Injected Charge Scan, analog injection is performed and

the hit efficiency is scanned against the injected charge at a fixed discriminator

threshold.

The calibration voltage, Vcal can be expressed in term of the PlsrDAC as follow:

Vcal = a + b(PlsrDAC) (mV) (4.1)

where a is the the Vcal offset and b is the slope of Vcal versus PlsrDAC plot.

Likewise, the relation between the capacitance, the calibration voltage and the

charge (in unit of the number of electrons) can be expressed as below:

Nelectron =
CinjVcal

e
=

Cinj[a + b(PlsrDAC)]

e
(4.2)

where e is the electron charge and Cinj is the summed capacitance of both the

injection capacitors. The typical value of Cinj is 5.85fF if both capacitors are

used. The Vcal offset is small and thus is out of consideration in the context of the

readout system development.

By measuring the VCal for each PlsrDAC value, we can get the conversion

factor, b. The result can be seen in Figure 4.9. The value b was measured to be
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around 1.4mV/PlsrDAC. By using Equation 4.2, the value in PlsrDac register can

now be converted to the corresponding number of electrons.
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Figure 4.9: The calibration voltage (VCal) versus PlsrDAC value. The slope was

measured to be approximately 1.4mV/PlsrDAC.

Due to noise contribution from the electronics as well as the sensor, the hit

efficiency as a function of injected charge is smeared out into more or less a “S”

shape. This smeared distribution can be modeled with the normal cumulative

distribution function as in Equation 4.3:

effhit(Qinj) =
1

2

(
1 + Erf

(
Qinj −Qth√

2σnoise

))
(4.3)

where Qinj is the injected charge, Qth is the threshold and σnoise is the noise

expressed in equivalent noise charge and is proportional to the slope of Equation

4.3 at effhit = 0.5. The threshold is defined as the injected charge that gives 0.5

of hit efficiency.

As illustrated in Figure 4.10, by injecting various charge, a S-curve can be

mapped out. In this case, the Injected Charge Scan was carried out on a single
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Figure 4.10: The Injected Charge Scan. The vertical axis is the efficiency (total

hits/total triggers input) and the horizontal axis is the number of injected electron

converted from PlsrDAC by using Equation 4.2.

pixel. Fifty events were taken at each PlsrDAC value from 0 to 200 with the step of

4. From Figure 4.10, the threshold for this particular pixel is measured to be 5589

electrons while the noise is 104 electrons. As required by the FE-I4 specification,

the single pixel equivalent noise charge is less than 300 electrons [31].

By performing Injected Charge Scan for each pixel, the mean threshold and the

average noise for the whole FE-I4 can be obtained. To cover all the pixels, typically

120 mask stages are required. Figure 4.11 shows the threshold distribution for a

single FE-I4 while Figure 4.12 shows noise distribution for a single FE-I4.
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Figure 4.11: The threshold distribution of the whole FE-I4. The vertical axis is

the number of pixels while the horizontal axis is the threshold value in unit of

electrons. In this case the mean threshold, Qth mean is about 1667 electrons with

a typical threshold dispersion of 512 electrons for an untuned FE-I4.
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Figure 4.12: The noise distribution of the whole FE-I4. The average noise value

of 181 electrons comply with the FE-I4 specification.
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4.2.2 Threshold tuning

In actual particle detection experiment, the threshold of each pixel must be prop-

erly set in order to optimize the particle detection efficiency and the position

resolution. Ideally, all pixels should have the same threshold. This is also true

in FE-I4 testing phase where we need to study its characteristic or to study how

certain electrically properties affect the threshold. Thus the purpose of thresh-

old tuning is to bring the threshold of all pixels as close as possible to the target

threshold value.

There are two threshold tuning methods. One is the coarse tuning, namely

the Global Threshold Tuning and the other is the fine threshold tuning, or Local

Threshold Tuning. The FE-I4 specification specifies that the spread of the tuned

threshold must be less than 100 electrons. This requirement serves as a judge on

the accuracy of our threshold tuning procedures.

Global Threshold Tuning

FE-I4’s global threshold value which is common to all pixels is controlled by a

global register called GDAC. Before performing the pixel by pixel threshold ad-

justment, it is vital to make the FE-I4 average threshold closer to the target

threshold by first selecting a global threshold register setting. This allows finer

adjustment of pixel threshold to be performed later.

The procedure for the Global Threshold Tuning is to measure the average

threshold of FE-I4 for four global threshold register values. Then the average

threshold versus global threshold register plot is interpolated to get the proper

global threshold register that matches the target threshold value.

The result can be seen in Figure 4.13. In this test, the result was a global

threshold register value of 132 at target threshold of 3000 electrons. Note that

the global threshold tuning only brings the average threshold closer to the tar-

get threshold value, it does not reduce the spread in threshold. The threshold

distribution before and after the Global Threshold Tuning can be seen in Figure

4.14.
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Figure 4.13: The global threshold tuning. Threshold distribution at four different

global threshold register values (130, 140, 150 and 160). The average threshold

versus global threshold register was interpolated to find the correct global threshold

register value for a target threshold of 3000 electrons.
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Figure 4.14: The threshold distribution: (a) before and (b) after performing the

global threshold tuning. The average threshold of the whole FE-I4 was brought

near to the target of 3000 electrons. Nonetheless, the spread in threshold still

remained at a high value.

Local Threshold Tuning

Each pixel has a 5-bit local pixel threshold tuning register, called TDAC. A finer

threshold tuning can be performed by adjusting this local pixel register. To per-

form a linear search for the correct TDAC which gives the closest value to the

target threshold is extremely time consuming. A faster way is to use the binary

search algorithm.

Think of the 32 values of TDAC as a sorted array. What binary search does is

to find the TDAC value that gives the threshold value that is the nearest or equal

to the target by stepping through 2N−n unit per step, where N is the number of bits

and n is the nth step. To be more specific, in each step the threshold corresponding

to the middle element of the TDAC array is compared with the target threshold.

If the threshold of the middle TDAC element is smaller than the target threshold,

then in next iteration the same action is repeated on the sub-elements to the left

of the current TDAC middle element and vice versa. In the case of equality, the

algorithm stops and returns the corresponding TDAC, threshold and noise for that

particular pixel. Otherwise if there is no more element to search for, the algorithm

returns the TDAC that gives the nearest value to the target threshold. A flow

chart for the binary search is illustrated in Figure 4.15.
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Binary Search
Given: - A sorted array, TDAC[x] with attribute 
              TH (threshold) where integer x has  
              values from 0 to 31.

 - THtarget.
Find: TDAC element such that TDAC[x].TH is 
nearest to THtarget.

START

Set bounds:
Min = 0, Max = 32

More element?

TDAC[x].TH < THtarget

YES

Set probe:
x = (Max +  Min)/2

Max = x
Min = Min

Compare
TDAC[x].TH to  

THtarget
TDAC[x].TH > THtarget

Max = Max
Min = x

TDAC[x].TH = THtarget

Target matched.
Store data.

END

Find nearest TDAC
[x].TH to THtarget

Store data.

NO

Figure 4.15: The binary search flow chart has three comparison paths: one for

equality, one greater than and one for less than. The equality path is rarely taken

as most of the time the threshold does not match with the target threshold.

The expected number of iterations in a successful search is log2(N) and the

worst case is log2(N)+1. In our case N = 32 thus the average number of iteration

to cover all the 32 TDAC values is 5 while the largest number of iterations is 6.

The extra one iteration comes from the rare case of TDAC reaching zero. A binary

search decision tree covering all 32 values of the 5-bit TDAC register is shown in

Figure 4.16.

An implementation example of the binary search for one pixel during the TDAC

tuning is shown in Figure 4.17. The TDAC initial value was 16 and depending on

the comparison with the target threshold, TDAC value in subsequence steps was
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Figure 4.16: A binary search decision tree for our 5-bit TDAC tuning. The thresh-

old value in any node’s left sub-tree is smaller than the target threshold while the

threshold value in any node’s right sub-tree is larger than the target threshold.
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Figure 4.17: Implementation example of binary search for a single pixel. The

threshold converged to target threshold of 3000 electrons. The number beside the

data point is the TDAC value corresponding to that tuning step.
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Figure 4.18: Threshold distribution for FE-I4 before and after the tuning.

reduced by 8, 4, 2, and 1. With each advancing step, the threshold converged to

the target value.

Figure 4.18 (a) shows the threshold distribution before the Local Threshold

Tuning and Figure 4.18 (b) shows the threshold distribution after a successful

tuning was performed. After the tuning, the mean threshold has been brought

very near to target threshold of 3000 electrons while the threshold dispersion was

reduced from around 455 electrons to just 78 electrons. This tuned threshold

dispersion satisfies the FE-I4 specification of less than 100 electrons [31].

4.2.3 Time Over Threshold Scan

Other than position information, FE-I4 is also capable of indirectly measuring the

charge deposited by particle traversing the sensor through the measurement of

Time Over Threshold. This measured charge information can be used to improve

the track reconstruction and position resolution. Figure 4.19 illustrates the Time

Over Threshold value.

To measure the Time Over Threshold value for a certain input charge value, we

perform the so called Time Over Threshold Scan. It is carried out by doing analog

injections at a fixed input charge to each pixel and measuring the average Time

Over Threshold value of each pixel. Figure 4.20 shows the result of the Time Over

Threshold Scan where the average Time Over Threshold is 7.5 bunch crossing.
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Figure 4.19: Time Over Threshold (TOT) is the period of time, ttot during which

input signal to the discriminator is above a predefined threshold.
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Figure 4.20: Time Over Threshold (TOT) distribution for the whole FE-I4 at a

fixed input charge.

4.2.4 Time Over Threshold tuning

The purpose of Time Over Threshold tuning is to obtain a uniform Time Over

Threshold response to certain input charge across all pixels on FE-I4. The Time
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Over Threshold corresponding to a certain input charge can be adjusted by chang-

ing the preamplifier feedback current. The feedback current controls how fast the

falling edge of the preamplifier output signal returns to the baseline. As illustrated

in Figure 4.21, the higher the preamplifier feedback current, the faster the signal

returns to baseline and hence the smaller the Time Over Threshold value.

ttot
t (unit: BC)

Voltage (V)

V_threshold

ttot

high feedback current

low feedback current

baseline

Figure 4.21: Effect of the feedback current on the Time Over Threshold value.

The higher the feedback current, the smaller the Time Over Threshold value.

Similar to threshold tuning, there are two kinds of Time Over Threshold Tun-

ing. One is the Global Time Over Threshold Tuning and the other is the Local

Time Over Threshold Tuning.

Global Time Over Threshold tuning

PrmpVbpf is a 8-bit coarse adjustment for the master feedback current of the

preamplifier which is common to all pixels. Before performing the fine tuning, the

preamplifier feedback current has to be tuned at the front-end IC level by using

the so called Global Time Over Threshold Tuning.

The Global Time Over Threshold Tuning aims at obtaining an optimum Prm-

pVbpf value that will be used in the fine tuning process. This optimum PrmpVbpf

value should bring the average Time Over Threshold close to a target value at a

fixed input charge. The Global Time Over Threshold Tuning algorithm steps

through all 255 possible PrmpVbpf values. At each step, a Time Over Thresh-

old Scan is performed for the selected pixels. Figure 4.22 shows the Time Over
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Threshold value as a function of PrmpVbpf. In this case, the input charge was

set to 20000 electrons and the target Time Over Threshold was 10 bunch crossing.

From the plot, the optimum PrmpVbpf is determined to be 78.
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Figure 4.22: Average Time Over Threshold per FE-IC as a function of PrmpVbpf

setting. The error bar represents the spread in the Time Over Threshold distribu-

tion.

Local Time Over Threshold Tuning

The Local Time Over Threshold Tuning aims at getting a uniform Time Over

Threshold response across all pixels for a fixed injected charge. This tuning is

performed by adjusting the feedback current of each pixel through the 4-bit local

pixel feedback current tuning register, FDAC.

This tuning is performed after obtaining the optimum PrmpVbpf setting for the

average Time Over Threshold per front-end IC. In order to cover all values in the

FDAC range with minimum number of steps, this tuning employs the same binary

search algorithm as in the threshold tuning discussed in Section 4.2.2. Similarly,

the middle FDAC value is chosen to be the binary search starting point. At
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each step, a Time Over Threshold Scan is performed and the mean Time Over

Threshold for each pixel is recorded. Then, the FDAC value that gives the closet

Time Over Threshold value to the the target value is selected for each pixel.

A comparison of the tuned Time Over Threshold value with the untuned value

is shown in Figure 4.23. In this case, the Time Over Threshold was tuned to 10

bunch crossing at 20000 electrons.
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Figure 4.23: The Time Over Threshold tuning. In this case, the target Time Over

Threshold value was 10 bunch crossing at input charge of 20000 electrons.
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Chapter 5

Readout Speed

5.1 Target and requirement

One of the most important attributes of a readout system is the readout speed.

It is especially crucial in the case of multi-chip (4-chip in our case) readout as the

readout time consumption scales linearly with the number of front-end IC to be

read out. Thus, readout speed optimization on a single chip setup is needed in

preparation for the 4-chip readout system.

We started off by defining the readout speed to be how fast it takes to com-

plete an operation for all pixels on a single FE-I4. A complete operation includes

everything from the start of the execution of the control software until the end of

its execution. The threshold tuning has been chosen to be the reference operation

for the readout speed measurement since it covers all DAQ sub-operations and

involves a large number of sub-operation steps. This provides a reliable statistics

to compare the optimization result.

Of two of the currently available FE-I4 readout system, the RCE readout sys-

tem is the fastest. It take about 23 minutes to complete a threshold tuning [25].

For the USBpix system, typically about 40∼50 minutes is needed. The initial

target is to achieve a complete threshold tuning in 1 hour or faster.

With the target set, we need to identify which stages of a typical readout

operation are most likely to create bottlenecks and contributes to a reduction in

readout speed. A reasonable guess would be the return path, i.e from FE-I4 to

SEABAS and from SEABAS to the computer, where heavy data traffic is expected.

On this path, the most probable source of data congestion would be the receiver

and decoder module in the software and the receiver module in the User FPGA’s
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firmware. With these in mind, we can start the investigation one by one.

5.2 Data transfer rate of SEABAS

The SEABAS DAQ board currently in use is version 1.1 which is capable of pro-

viding 100Mbps (12.5MBps) data transfer rate. The first step in readout speed

optimization is to verify this specification. Secondly, we also need to find out which

data receiver’s coding style gives the highest data transfer rate.

Since we are interested in measuring only the data transfer rate between the

SEABAS DAQ board and the computer, there is no need to involve FE-I4. Instead

of getting data from FE-I4, a driver operated by a 12.5MHz clock was prepared in

the firmware to send a 8-bit dummy data packet continuously. This ensures the

data packet is always sent out at a rate of 12.5MBps. Referring to the simplified

flow chart for the data transfer from SEABAS to computer in Figure 5.1, the

firmware starts sending out a stream of 8-bit TCP data packets as soon as it

receives the start signal from the computer. Those TCP data packets are directly

placed into the kernel buffer as soon as they are available at the network input port.

This process of placing incoming TCP packets into the kernel buffer is managed

by the operating system which we have left it untouched. Once the data packets

are stored in the kernel buffer, we check how much data there is for reading, and

then write it into the user defined buffer where our execution code can have access

to. While taking data out from the kernel buffer, the total amount of data is also

counted. When enough data is taken, a STOP signal is sent to the firmware to

stop the data transfer and the whole process ends.

We are interested in the time it takes the data packet to go from SEABAS to

PC. However, it is hard to measure it precisely without an elaborate setup. In

contrast, it is much easier to estimate the data transfer rate by measuring the

overall time from START to END. In other word, the total time is equal to t1 +

t2 + t3 + t4 as indicated in Figure 5.1. We define the TCP transfer rate as:

transfer rate =
total data

total time
=

D

(t1 + t2 + t3 + t4)
(5.1)

To retrieve data from the kernel buffer, first we have to check whether any data

sent from SEABAS has arrived at the input port to PC. This is achieved by calling

the standard socket function called select(). Then the socket function, recv(), is
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Figure 5.1: Flow chart for measuring the data transfer speed by SEABAS.

used to transfer the available data in the kernel buffer into the user buffer. We

can specify how much data to transfer per recv() function call. Here we compared

three options:

• Option 1: transfer 1Byte per function call

• Option 2: transfer 6.25MBytes per function call

• Option 3: transfer all immediately readable data (nBytes) per function call

For Option 3, there is an additional step to perform. We need to check how

much data is available in the kernel buffer that is ready for reading out. This is

carried out by calling the socket function, ioctl(). On success, the ioctl() function
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returns the number of bytes of data that is available for reading. This return value

is then passed to the recv() function. For Option 1 and Option 2, this step is

skipped as we have already specified how much data to transfer out. Furthermore,

in the case of Option 2 where a large amount of data is specified, the recv() function

will simply block the program and wait for all the specified amount of data to be

fully transferred.

Besides, for each of these options, two different computer systems were also

compared. One is a 2.4GHz Core 2 Duo, 4G RAM machine running Mac OS X

and the other is a 2.8GHz Quad-core Intel i7, 8G RAM machine running Scientific

Linux 6.3.

Table 5.1: Measurement of data transfer rate from SEABAS to PC.

PC nBytes
function call

Total data, Total time (s) Data transfer

D (MB) rate (MB/s)

Mac

1 12.5 50.833 0.2459

6.25x106 12.5 2.324 5.378

n 12.5 2.120 5.895

Linux

1 12.5 795.732 0.01571

6.25x106 12.5 1.048 11.922

n 12.5 1.032 12.118

Table 5.1 shows the result of the measurement of data transfer rate from

SEABAS to PC. At first glance, the transfer rates are 2 times higher for the

Linux machine than the MAC OS X machine. For both machine the transfer rate

is generally higher when more data is transferred out from the kernel buffer per

function call. In any case, transferring just 1 byte at a time seriously impairs

the transfer rate especially for the Linux machine. This might be caused by the

fact that different Operating System implements different TCP tuning technique.

Taking just 1 Byte per function call obviously hurt the network performance of

Linux system. Moreover, this method involves a large number of repetitions which

obviously adds to the time, t3.

We also observed that by taking out a large amount of data per function call

on Linux machine, we could reach a transfer rate close to 95% of the SEABAS’s

Ethernet 12.5Mbps specification. Nonetheless, in real data taking scenario we

might not always have a long continuous stream of data coming from FE-I4 at all
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time. What is more, we cannot know for sure how much data is being transferred

at any given time. Thus, specifying a large amount of data to be transferred from

the kernel buffer per function call may actually block the program to run until

the specified amount of data is returned. If not enough data is sent from FE-I4,

the time spent for waiting the extra data is wasted. Therefore, this option is not

implemented.

From the table, we can see that the readout scheme using n-bytes per function

call in Linux system has the highest transfer rate. It recorded a 12.118MB per

second of data transfer rate which is roughly 97% of the SEABAS’s 12.5Mbps

specification. In this method we transfer out only what is readily available at the

moment of the function call. In this manner we save the time spent on waiting. One

thing to be kept in mind is that the actual time taken for data transfer is only t2,

hence the exact transfer rate is actually faster than what we have measured here.

This data retrieving method of n-bytes per function call has been incorporated

into our readout system.

Moreover, the sharp difference between taking out just one Byte per function

call and the other two methods shows us that the data transfer speed is limited

by t3 instead of the actual data transfer from SEABAS.

5.3 Optimization

As mentioned before, the threshold tuning is the reference operation for the readout

speed measurement. The target is to make the tuning time under 1 hour. The

parameters in a threshold tuning that have direct influence on the readout speed

are the number of scan points, the number of mask steps and the number of

triggers. To set a benchmark threshold tuning that can be compared against, the

parameters have been set to:

1. the number of scan points: 50

2. the number of mask stages: 120

3. the number of triggers: 50

Next, the total readout time for the threshold tuning operation was broken

down into its sub-components so that they become simple enough to be optimized
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Figure 5.2: Total readout time broken down into its sub-categories.

directly. Referring to Figure 5.2, the total time, Ttotal can roughly be grouped into

the major categories as below:

1. Tconfiguration — This includes all the time needed to configure FE-I4 so that

it is in a correct state of operation.

2. Tdaq — This can be sub-divided into two smaller categories as follows:

(a) Ttcp data retrival — This is the time needed to retrieve the TCP data

packet sent from SEABAS to the user buffer on PC. It includes the

waiting time for the TCP data packet to arrive at kernel buffer, Twaiting,

and the time needed to copy the data from the kernel buffer to user

buffer, Tcopying.

(b) Tdecoding — This is the overall decoding time that can be further broken

down into T8b/10b and Tdecode alg. T8b/10b is mainly the time to decode

the 10-bit 8b/10b encoded symbols to the 8-bit raw data. Likewise,

Tdecode alg encompasses the rest of the decoding algorithm, for example,

frame matching, data parsing, data extraction and so on.

3. Tother — This includes other routines that cannot fit into the major cate-

gories, for example, creating, filling and saving a ROOT files as well as any
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overhead in every function call.

Three factors that greatly influence the readout speed are listed below:

1. interval between each trigger, ttrig

2. TCP data packet retrieval method

3. data decoding

We will investigate the effect of each of these factor on the readout speed. The

rest of the tests were carried out based on the 2.8GHz Quad-core Intel i7, 8G RAM

machine running Scientific Linux 6.3.

5.3.1 Minimizing the trigger interval, ttrig

Remember that the interval between each trigger, ttrig, is controlled by the firmware.

The ttrig affects the twaiting an thus the total readout time. To see how the interval

between each trigger affects the readout speed, a simple test was performed. By

comparing the total time taken to complete several threshold tunings for just two

columns with different interval between each trigger, we can immediately conclude

that the smaller the interval, the faster the readout speed. This can be seen in

Table 5.2.

Table 5.2: Total readout time for threshold tuning scans on two columns with

different interval between each injection, ttrig.

ttrig (ms) Total time (s)

2.4 114.3

1.2 70.5

0.6 49.6

0.3 44.8

Even though a small ttrig value can provide faster readout speed, it cannot be

set to a value that is extremely small. This is because if the next trigger arrive too

early, incomplete data transfer from the FIFO will occur. This in turn cause the

DAQ program to fail. In view of this, ttrig value has to be carefully set. Currently

the ttrig value is determined by trial and error. A better solution will be discussed

in the next chapter.
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5.3.2 Data retrieval method

As mentioned in Section 5.2, we have chosen the Option 3 — take all immediate

readable data (n-bytes) per function call, as the data transfer method. When com-

bining this method with the decoder, it can give two possible algorithm varieties.

Referring to Figure 5.3, first variation is to loop back the data transfer function

call until there is no more data available in the kernel buffer for transferring. This

Trig_sent 
== # trig ?

NO

Check how much 
data is available

Write nBytes data 
into user buffer

tcopying

twaiting
Check input port 

readiness

function: select()

function: ioctl()

function: recv()

Decoding tdecode

YES

Trig_sent 
== # trig ?

NO

Check how much 
data is available

Write nBytes data 
into user buffer

tcopying

twaiting
Check input port 

readiness

function: select()

function: ioctl()

function: recv()

Decoding

tdecode

YES

Timeout?
NO

YES

(a) (b)

Figure 5.3: Two flow charts showing two variations in TCP data retrieval method.

(a) n-bytes per function call — loop back method. (b) single n-bytes per function

call method.

happens in the inner loop. After receiving all data, they are passed to the decoder.

We will refer to this method as “n-bytes per function call — loop back”. Second is

to couple the data transfer function call directly to the decoder. We call the data

transfer function only once. Then the received data is passed to the decoder for

processing. Let us call this method as “single n-bytes per function call”. In both

methods, after the decoder, we check whether we have received all data record

corresponding to the number of events we specified. If not, the whole process is
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repeated again.

We compare these two methods in order to see which gives the best result on

readout speed. For the sake of completeness, we also show the result of the Option

1 which has been mentioned in Section 5.2. In this method, the data transfer

function call is directly coupled to the decoder. Here we refer these methods as:

1. Method 1: single byte per function call

2. Method 2: n-bytes per function call — loop back

3. Method 3: single n-bytes per function call

Table 5.3: Readout time for threshold tuning using different TCP data packet

retrieval methods. The threshold tuning was performed on 76 columns on FE-

I4A. Method 3 gave the fastest speed with Ttotal ≈ 48 minutes.

Method ttrig (ms) Tconfig (s) Tother (s) Twaiting (s) Tcopying (s) Tdecoding (s) Ttotal (s)

Method 1 1.2 225.00 325.70 794.23 305.58 6837.03 8487.54

Method 2 1.2 218.82 223.48 1306.71 4.97 2210.48 3964.46

Method 3 1.2 218.25 240.28 287.05 1.50 2162.02 2909.10

Table 5.3 shows the result for each method. Trigger interval of 1.2ms was used

in all the tests. In general Tconfig stayed roughly the same for all three methods

since it has nothing to do with the readout of data from FE-I4. As expected,

method 1 recorded the longest time to complete a threshold tuning. It took 8487s

or roughly 2.4 hours. Every other time categories also registered a high value for

this method. The main reason is the excessive repetition of the operation such

as calling the select(), ioctl(), recv() and other functions in the DAQ algorithm.

Typical data size for a complete threshold tuning is around 1GB. When taking out

just one byte per function call, we have to repeat 1x109 times of data retrieval.

The overhead in each operation or in each function call alone will aggregate to a

considerable amount of time. Furthermore, the decoder algorithm matching this

method is based on a straight forward but inefficient bit shifting approach. This,

combined with the overhead of each function call contributes to the large decoding

time.

Focus should be given to method 2 and method 3. They are similar in almost

every aspect except the small difference in the data transfer method. However,
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1055s difference in total readout time arose because of this slight dissimilarity. In

method 2, we cannot know in advance how many data is being sent from SEABAS

at any given time. For that reason, we cannot know when we should exit the data

transfer loop. We use the select() function to check the input port for its readiness

for reading. This function blocks the DAQ program until there is data available for

reading out or it reaches a preset timeout period, whichever comes first. The only

breaking condition is the timeout, which means all the data sent from SEABAS

for certain cycle has been completely received. Until this timeout occurs, nothing

useful can be performed. In the end, the timeout adds up to an inordinate amount

of time of waiting for nothing.

To get rid of this wasteful operation, we modified the algorithm to directly pass

the received data to the decoder after each data receive function call. That is the

method 3. It gave the fastest time in almost all the readout time categories. We

saved around 1020s in Twaiting alone which is a saving of more than 70%. Another

50s came from the Tdecoding but it was offset by a slight increase in Tother. In effect,

we managed to reduce the total time spent in a threshold tuning down to ≈ 48

minutes.

Note that these tests were carried out on just 76 columns on a FE-I4A chip.

Four other columns are excluded from the test as they did not pass the analog

injection test. But since the total readout time is roughly scale with the number

of columns under test, we can estimate that a complete threshold tuning on 80

columns to be around 50 minutes.

From the data, we see that the decoding time makes up nearly 75% of the total

time. Obviously there is still room for speeding up the program by optimizing

the decoding algorithm. Hence, next section will be dedicated for improving the

decoder.

5.3.3 Reducing the decoding time

As discussed in previous section, the decoding time, Tdecoding can roughly be di-

vided into the T8b/10b and Tdecode alg. To estimate how much fraction of Tdecoding is

occupied by T8b/10b, we perform a threshold tuning on 2 columns of FE-I4 and ex-

tract the time consumption of 8b/10b decoder. We observed that more than 50%

of the total decoding time was taken up by the 8b/10b decoder in the software.

The large contribution of 8b/10b decoding comes from the fact that it consists
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of a large number of “if-else if” conditional statement. In total there are 255

of this statement matching the 255 possible values for a 8-bit integer. For each

10-bits symbol, the odds of getting a match in the first few statement are small.

Most of the time a 10-bit symbol needs to go through lots of this statement before

getting a match. Naively speaking, out of a typical 1GB data transfer from a

threshold tuning, the number of 10-bit symbols is an order of 108. The time spent

in matching these symbols simply sums up to an enormous amount of time.

One way to eliminate entirely this contribution from 8b/10b decoding operation

is to implement the 8b/10b decoder in the firmware. The resultant time saving

can be clearly seen in Table 5.4.

Table 5.4: Readout time for threshold tuning with implementation of 8b/10b

decoder in the firmware.

Decoder
ttrig (ms) Tconfig (s) Tother (s) Twaiting (s) Tcopying (s) Tdecoding (s) Ttotal (s)

Scheme

Software 1.2 218.25 240.28 287.05 1.50 2162.02 2909.10

Firmware 1.2 310.85 236.78 937.47 4.97 743.36 2233.40

Firmware 0.3 311.1 201.53 160.541 1.32 606.33 1280.82

The first row is essentially the same result shown as Method 3 in Table 5.3.

Comparing the first and the second row of Table 5.4, every category is basically

the same except the sharp difference in the Tdecode and Twaiting. As expected, a

time reduction of more than 60% has been achieved in Tdecode. In spite of this, a

factor of 2.3 increase in Twaiting partly negated the saving in Tdecode. This could be

explained by the fact that the implementation of 8b/10b in firmware also reduces

the total amount of data sending out. After passing through the decoder, the

10-bit data word is reduced to a 8-bit data word. This reduction in data means

the bandwidth is not fully utilized, therefore more time is spent on waiting for

next data stream to reach PC. To remedy this, we can reduce the trigger interval,

say, by a factor of ten, that is from 1.2ms to 0.12ms. The result is as shown in

the third row of Table 5.4. Accompanied this tenfold reduction in trigger interval

is approximately a tenfold decrease in the Twaiting. In effect, we have got a total

time of just under 1300s or 22 minutes, which is far lower than our initial target.
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5.3.4 Final result

As a summary, the readout speed optimization method that we have implemented

in our readout system are:

1. optimization of trigger interval, ttrig.

2. single n-byte per function call.

3. 8b/10b firmware decoder.

Previous tests were carried out on 76 columns of a FE-I4A IC. Running a

threshold tuning on all columns on a FE-I4B with all these method combined

together gave the following result as shown in Table 5.5. A complete threshold

tuning on all 80 columns took around 23 minutes.

Table 5.5: Readout time for threshold tuning with ttrig= 0.3ms, single n-byte per

function call method and 8b/10b firmware decoder.

ttrig (ms) Tconfig (s) Tother (s) Twaiting (s) Tcopying (s) Tdecoding (s) Ttotal (s)

0.3 325.28 192.34 170.73 1.50 657.83 1347.68
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Chapter 6

Future prospect

Although the readout system can perform most of the essential tasks, it is still

far from complete. Our works, albeit significant, constitute only a foundation

for grander projects. More works and improvements can still be added in many

aspects of the readout system. For one thing, the full potential of the SEABAS

DAQ system, or more specifically the SiTCP technology that SEABAS DAQ board

is outfitted with has yet to be fully realized. In other respect, one of our eventual

goals of simultaneously reading out four or more FE-I4 chips has not yet been

fulfilled. In this chapter, several propositions and plans will be presented.

On top of the list are the upgrades that could be performed on the system as

a whole, they are:

1. 4-chip readout.

As soon as the improved version of the 4-chip daughter card is made available,

our current single chip readout scheme should be extended to a four chip

readout scheme. The idea is that a single serialized data stream coming from

PC to SEABAS is branched off to each chip and vice versa. Destination of

commands to each FE-I4 must be specified correctly. When reading out the

data, data stream must be labeled with correct FE-I4 ID from which it is

originated. When data can be read out correctly, readout speed optimization

should also be carried out.

2. Upgrade to a newer SEABAS version.

Two immediate benefits that we can reap by this upgrade are the larger

memory and higher Ethernet bandwidth. The newer SEABAS (version 2)

has a 50% and 30% increase in the User FPGA’s Distributed and Block

83



RAM memory, respectively. In addition, it boosts a 1Gigabits per second

data transfer rate. These upgrades are beneficial in the case of reading out

four FE-I4s. More importantly, the larger memory allows for larger FIFOs

and thus more pixels can be read out at the same time. This reduces the mask

stages and consequently we can reduce the configuration time and waiting

time. On the other hand, the higher bandwidth is crucial for accommodating

the increase in the amount of data especially when reading out four FE-I4s.

Hence preventing the build up of a bottleneck at the PC-SEABAS interface.

The increase in readout speed may not be too significant though. As a crude

estimation, a complete Threshold Tuning generates roughly 0.75GB of data.

A 1Gbps transfer rate means we can reduce the Twaiting by roughly 56s.

3. Custom-made DAQ main board and 4-chip daughter board im-

provement.

The SEABAS DAQ main board is a general purpose DAQ board with var-

ious useful features. Nonetheless, not all are currently used in our readout

system for FE-I4. If circumstances allow and if the necessary resources are

available, it may be good to have a DAQ board that is customize to suit only

our needs. For the new DAQ main board, we may:

• Retain only the components or features that are necessary, and remove

the redundant one such as the onboard ADC, DAC, extra 64-pin connec-

tors, signal probing nodes and etc. This may result in a more compact

physical size.

• Add a power regulator which can regulate and supply voltages for both

FE-I4’s digital and analog circuits. With this option, we do not need

too many low voltage supplies.

• Add external memory such as SRAM to increase the amount of pixels

that can be readout simultaneously.

In the case of the 4-chip daughter board, rearrangement of the components

may be made to make it more compact.

We have shown in previous chapter that we managed to reduce the readout

speed considerably. To further improve the readout speed, two possible solutions

are:
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1. Implementation of frame matching, data packet unpacking and ex-

traction in firmware.

In last chapter, we see that the implementation of the 8b/10b firmware de-

coder significantly reduces the readout time consumption. But on close

inspection, the frame matching, data unpacking and the extraction of hit

information which are performed in the software still contribute to more

than 50% of the total readout time. It may be possible to implement these

routines in the firmware. If successful, it is possible to further increase the

readout speed.

2. Parallel computing

Multi-core processor has proliferated over the last few years. The possible

gain in readout performance by using parallel computing in reading out mul-

tiple front-end ICs could be huge. A naive implementation could be just to

run the same DAQ program for each of the front-end chip. In any case, the

computation time should be able to be reduced by at least a factor of four

than in the serial computation case.

For the firmware, the following improvement could be made:

1. Active trigger interval control.

As we have seen in the previous chapter, the trigger interval, ttrig has ex-

tensive effect on the readout speed. However, its value cannot be too small

as it causes an immature truncation of data transfer. Currently, the trigger

interval is fixed to a certain value which has to be specified by a user. The

default value is set at the minimum value that is thought to be suited for

all functionalities. However, the fact is that there is no one-size-fits-all value

for all the tests or scans. Instead of being such a static value, it should be a

dynamic value that changes based on the readout condition. Hence, a mech-

anism to determine the optimum trigger interval during runtime should be

implemented.

2. Dynamic reconfigurable system clock.

Clock synchronization between the User FPGA data receiver and the FE-I4

data output transmitter is very important. At present, we have no efficient

way of checking this as the digital clock manager in the firmware that gener-

ates clocks for driving certain logic block is not reconfigurable. To reconfigure
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even only the digital clock manager means we have to reload the updated

firmware onto the FPGA, which is very inconvenient. Hence, the ability to

change the digital clock manager’s attributes in order to select a different

phase shift or frequency is highly desirable.

On the other hand, some improvement that can be made to the software are:

1. User customizable software framework.

Other than the standard ready-made functionalities, there would be in-

stances where users need to device their own custom test or scan to suit

their specific needs. Hence, it is very preferable to provide a set of generic

functionalities that can be selectively changed or specialized by user code to

produce application specific software. On top of that, a universal, reusable

software framework is also vital in ensuring software extensibility. A typical

example of this type of software framework is the ROOT. To accomplish

this goal, code refactoring should first be performed to limit the interdepen-

dencies between software components, thus reducing system complexity and

increasing its robustness and maintainability.

2. More user-friendly interface.

Graphic user interface (GUI) should be provided to facilitate users’ opera-

tion. An example GUI can be a 80 x 336 matrix that represents each pixel.

This could be useful for user to select or mask any pixel they want.

Of all these possible improvements or upgrades, the extension to 4-chip readout

and the active trigger interval control are high on our list of priorities. We plan

to start developing the 4-chip readout system as soon as the new 4-chip board is

ready. At the mean time, we will work on the implementation of the active trigger

interval control in the firmware.
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Chapter 7

Conclusion

As a conclusion, we have successfully developed the firmware and software of the

readout system for the new ATLAS pixel front-end readout IC, FE-I4. Our read-

out system is intended to be used as an electronic test stand for FE-I4 as well as

a readout system for the module consisting of sensor and FE-I4. The main fea-

tures of our readout system is the SEABAS DAQ board which utilize the SiTCP

technology. It offers us the qualities of compact physical size and flexibility. Fur-

thermore, the firmware and software are designed to be versatile enough to suit

most of the users’ needs.

DAQ operation tests have been performed and we confirmed the following

points:

1. communication with FE-I4 has been successfully established.

2. configuration of specific global registers and local pixel registers can be per-

formed correctly.

3. calibration command and Level 1 trigger command can be sent to FE-I4.

4. decoding and data extraction can be carried out correctly.

On top of that, we have prepared and tested several essential functionalities

such as Injected Charge Scan, Threshold Tuning, and so on. These scan and tuning

operations have been shown to perform as designed. In the effort to improve the

readout speed, we found that the combination of the “transferring n-bytes per

function call” method, small trigger interval and the 8b/10b firmware decoder gives

a significant improvement of readout speed. The time consumption of a complete
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threshold tuning, which we used as a reference operation, has been shown to be

around 22 minutes.

All in all, we have accomplished the objectives that we set out to achieve.

Nonetheless, the readout system development is still in its infancy. Many im-

provement can still be made especially the upgrade to read out four FE-I4s simul-

taneously as well as the implementation of the active trigger interval control.
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Appendix A

FE-I4B Specification

2 SPECIFICATIONS AND RATINGS

2. Specifications and Ratings

The ratings given in this section are separated into power supply, temperature, and radiation. These
are not recognized commercial or military ratings, but rather the results of ad-hoc tests, simulations,320

or estimates carried out to validate compatibility with design goals. It is assumed that further testing
will be carried out to validate the use in each specific application, as needed.

Item Value Units
Pixel size 50×250 µm2

Bump pad opening diameter 12 µm
Input DC-coupled -ve polarity
Maximum charge 100,000 e−

DC leakage current tolerance 100 nA
Pixel array size 80×336 Col × Row
Last bump to physical chip edge on 3 sides ≤ 100 µm
Last bump to physical edge on bottom ≤ 2.0 mm
Normal pixel input capacitance range 100-500 fF
Edge pixels input capacitance range 150-700 fF
In-time threshold with 20 ns gate (400 pF)1 ≤ 4000 e−

Hit-trigger association resolution 25 ns
Same pixel two-hit discrimination (time) 400 ns
Single channel ENC sigma (400 fF) < 300 e−

Tuned threshold dispersion < 100 e−

Charge resolution 4 bits
ADC method ToT
Radiation tolerance (specs met at this dose) 300 Mrad
Operating temperature range −40 to +60 ◦C
Average hit rate with < 1% data loss 400 MHz/cm2

Readout initiation Trigger command
Max. number of consecutive triggers 16
Trigger latency (max) 6.4 µs
Maximum sustained trigger rate 200 kHz
External clock input (nominal)2 40 MHz
Single serial command input (nominal)2 40 Mb/s
Single serial data output (nominal)2 160 Mb/s
Output data encoding 8b/10b
I/O signals LVDS

1: At discriminator output. Digital hit detection in region will reduce sensitivity to time-walk.
2: Nominal operating frequencies. The design includes 20% frequency margin in general and
≈100% for the data output.

Table 1: Basic Specifications for FE-I4

v2.3 10

*FE-I4B specification, taken from Reference [31].
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Appendix B

FE-I4 Registers

Here we list down a few registers that are mentioned in this thesis. Their descrip-

tion are taken from [30, 31]. A complete list can be found in Reference [30, 31].

B.1 Global registers

1. DisableColCnfg

Size: 40-bit

40 bits that set the Double Column mask. Enable a particular bit will disable

the digital portion of the selected Double Column.

2. PlsrDAC

Size: 10-bit

It set the calibration injection voltage value (VCal).

3. PrmpVbpf

Size: 8-bit

It controls the global feedback current of the preamp that is common to all

pixels. It sets the fall time of preamp output which in turn determines the

ToT LSB scale.

4. Trig Count

Size: 4-bit

Number of consecutive triggers to send upon issue of trigger command. Since

the trigger command itself takes 5 clock cycles to issue. If there were no

multiplier, the most often we could trigger would be every 5 clock cycles.

Value 0000 means 16 consecutive triggers.
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5. Trig Lat

Size: 8-bit

8-Bit complement of trigger latency in clock cycles (true latency = 255 -

Trig Lat). 255 is an invalid value.

6. Vthin Fine and Vthin Coarse

Size: 16-bit

Together, they are known as GDAC. Each of them is a 8-bit register for the

fine and coarse threshold adjustment, respectively. The scale is non-linear

ranging from 0 to 1V.

B.2 Local pixel registers

For each pixel there is one 13-bit long register called PxStrobes. Each bit in

PxStrobes has its own function. There are shown as follows:

1. bit 0

Must be set to 1 to enable each pixel.

2. bit 1 to 5

Also known as TDAC. It adds a local voltage offset to the global threshold

in each pixel. Bit 1 is the most significant bit.

3. bit 6

Set this bit to 1 to enable charge injection through the large injection capac-

itor.

4. bit 7

Set this bit to 1 to enable charge injection through the small injection ca-

pacitor.

5. bit 8

Set this bit to 1 to monitor leakage current. Set to 0 to include pixel in hit

bus.

6. bit 9 to 12

Also know as FDAC. It adjusts the amplifier feedback current for each pixel.

Bit 12 is the most significant bit.
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7. bit 13

It is also called Shift Register. Its primary function is to act as a data input

to the other 12 bits. Apart from that, it must be set to 1 to enable digital

injection.
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