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Abstract

The J-PARC KOTO experiment studies the KL → π0νν̄ decay by observing two pho-
tons from the π0 using a CsI electromagnetic calorimeter. The calorimeter measures
the energy and position of the two photons, and the shapes of electromagnetic show-
ers made by the photons. These are important information to distinguish the signal
events from the background events. The energy and position resolutions of the CsI
calorimeter, however, had not been fully measured yet in the KOTO experimental con-
dition. The shower shapes had been studied based on a Monte Carlo simulation, but
the consistency between real data and the simulation had not been checked yet.

I measured these resolutions and shower shapes in the engineering runs conducted
in 2012, by using a spectrometer to track charged particles from KL decays. The
momentum-analyzed electrons from the KL → πeν decays were used as references
for the measurement. This was the first test of the calorimeter performance with
the actual calorimeter, and also with almost the same condition for the calorimeter
operation with the KOTO physics run.

The energy and position resolutions of the CsI calorimeter with the total energy E were
measured to be σE/E = 0.66% ⊕ 1.81%/

√
E[GeV ] and σX = 1.99 ⊕ 3.95/

√
E[GeV ]

mm for 2.5 cm × 2.5 cm crystals, and σE/E = 1.71% ⊕ 1.31%/
√

E[GeV ] and σX =

6.17⊕ 4.01/
√

E[GeV ] mm for 5 cm × 5 cm crystals.

Data – Monte Carlo inconsistencies were found in variables related to the shower
shapes. I tested several Monte Carlo conditions, and found that the consistency was
improved by modifying the bremsstrahlung model used in the Geant4 simulation.

The engineering runs were also the unique opportunity to measure both charged parti-
cles and photons. Taking this opportunity, the momentum spectrum of the KL beam
was measured with the KL → π+π− and KL → π+π−π0 decays, by using the spec-
trometer and the calorimeter cooperatively. The spectrum shape in > 4 GeV/c region
was determined for the first time in KOTO.
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Chapter 1

Introduction

Particles and antiparticles were considered to be described with the same Lagrangian.
Although quantum numbers between them are opposite each other, it seems that they
have no difference in the reaction. This symmetry is called “CP invariance” because
particles and antiparticles are related each other through CP conversion. But this
symmetry must be violated in order for our universe to exist, because our universe is
made of not antiparticles but dominantly particles. A CP violating phenomenon was
first observed in a K-meson system by Cronin and Fitch et al. in 1964 [6]. The observed
phenomenon was explained by the mixing of two CP states in the K-meson system,
and called “indirect CP violation”. The existence of another type of CP violation
which arising from decay amplitudes, called “direct CP violation”, was confirmed by
FNAL KTeV experiment and CERN NA48 experiment by using K-meson in 1999 [7,8].
In the 2000s, Belle experiment and Babar experiment made a precise measurement of
parameters of CP violation with B-meson [9,10], and their result can be fully explained
with the theory by Kobayashi and Maskawa [11]. This theory is now considered as one
of the center part of the Standard Model of particle physics. This theory is, however,
not sufficient to explain the CP asymmetry of the universe. There must be another
source of CP violation beyond the Standard Model that we do not know yet.

The rare decays of K and B mesons will play an important role to search for such
origin of CP violation beyond the Standard Model. In particular, KL → π0νν̄ decay
is one of the most sensitive probe. The branching ratio of KL → π0νν̄ is predicted
with a high degree of precision in the Standard Model. If a new physics exists, the
branching ratio could be different from this prediction.

Although several experiments have searched for KL → π0νν̄ decay, this decay has not
been observed yet. J-PARC KOTO experiment is trying to make the first observation
of this rare decay. This thesis describes several studies that we have conducted in
the engineering runs in the first half of 2012, to lead the KOTO experiment to a
success.

1
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This chapter reveals the purpose and outline of this thesis. I will start from introducing
the theory of CP violation followed by that of KL → π0νν̄ decay. I will then explain
the KOTO experiment. Finally I will describe the theme of this thesis.

1.1 CP Violation in Standard Model

1.1.1 CP Violation

“CP” represents the multiplication of operations of Charge conjugation (C) and Par-
ity inversion (P). CP can be interpreted as an operation to exchange particles and
antiparticles. If a Lagrangian is not invariant under this operation, it is said that “CP
is violated”.

In the standard model, the charged current of weak interaction, or the interaction in-
volving a W boson, can violate CP. The Lagrangian for the charged current is described
as

L = − gw

2
√

2

(
ūiγ

µ(1− γ5)VijdjW
+
µ + d̄jγ

µ(1− γ5)V ∗
ijujW

−
µ

)
, (1.1)

where ui (di) represents up(down)-type quark and subscripts i and j denote the gen-
eration of quarks. The Vij is a complex constant representing the strength of coupling
constant between ui and dj. Because there are three generations, V is interpreted as
a 3 × 3 matrix, which is called Cabibbo-Kobayashi-Maskawa matrix (CKM matrix).
Under a CP conversion, the Lagrangian changes as:

LCP ≡ (CP )L(CP )−1 = − gw

2
√

2

(
ūiγ

µ(1− γ5)V ∗
ijdjW

+
µ + d̄jγ

µ(1− γ5)VijujW
−
µ

)
.

(1.2)
If a CP violation exists, these two Lagrangian should not be equal. Comparing
Eq. (1.1) and Eq. (1.2), that condition is satisfied if V includes complex elements,
ie:

L 6= LCP ⇒ Vij 6= V ∗
ij . (1.3)

Hense, the study of CP violation in the standard model is the study of the magnitude
of an imaginary component in the CKM matrix.



1.1. CP VIOLATION IN STANDARD MODEL 3

1.1.2 Unitarity Triangle

CKM matrix can be parameterized by three mixing angles, θ12, θ23, and θ13, and a
CP-violating phase δ as

V ≡



Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb




=




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
−iδ c12c23 − s12s23s13e

−iδ s12c13

s12s23 − c12c23s13e
−iδ −c12s23 − s12c23s13e

−iδ c23c13


 (1.4)

where sij = sin θij and cij = cos θij.

Because the CKM matrix is unitary, it satisfies a unitarity condition,

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (1.5)

This condition is represented as a triangle in the complex plane, as shown in Fig. 1.1.

UnitarityTriangle (PDG web site)

Figure 1.1: The unitarity triangle

Each side of the triangle is divided by VcdV
∗
cb, so two vertices of the base are exactly

(0,0) and (1,0). The top vertex is (ρ̄, η̄), where ρ̄ and η̄ are defined as [12]:

ρ̄ = ρ

(
1− λ2

2

)
and η̄ = η

(
1− λ2

2

)
, (1.6)

where Wolfenstein parameters, ρ, η, and λ, are used for convenience [13]. The ρ, η,
and λ are related to the CKM matrix elements as

λ = s12, Aλ2 = s23, Aλ3(ρ + iη) = s13e
iδ. (1.7)

From Eq. (1.6) and Eq. (1.7),
η̄ ∝ Im(eiδ). (1.8)

Thus, the magnitude of the imaginary part in the CKM matrix is visualized as the
height of the unitarity triangle, η̄.
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1.2 KL → π0νν̄ Decay

The KL → π0νν̄ decay is one of the most sensitive probe to study the origin of CP
violation. In the standard model, we can derive the height of the unitarity triangle
η̄ directly from the branching ratio of this decay with a small theoretical uncertainty.
Also, the branching ratio has a possibility to be different from the expectation of the
standard model if a new physics beyond the standard model exists.

1.2.1 KL → π0νν̄ Decay in the Standard Model

The leading diagrams of the decay from a K0 to a π0νν̄ state are shown in Fig. 1.2.
Each of three diagrams has an electoroweak loop with a virtual top quark. Conse-

klpnnDiagram

W

t̄
Z

0

s̄

d

ν̄

ν

d̄

d

V
∗

td t̄

W
Z

0

s̄

d

ν̄

ν

d̄

d

V
∗

td t̄

W l
+ W

s̄

d

ν̄

ν

d̄

d

V
∗

td

1

Figure 1.2: Leading diagrams of K0 → π0νν̄

quently the amplitude of K0 includes a CKM matrix element VtsV
∗
td. In contrast,

the amplitude of K̄0 includes V ∗
tsVtd because the flowing direction of quarks are oppo-

site.

Because the particle KL is the mixture of K0 and K̄0 states:

|KL > ∼ 1√
2

(|K0 > −|K̄0 >
)
, (1.9)

KL decay amplitude, A(KL → π0νν̄), is also a mixture of the amplitudes of K0 and
K̄0. Due to the minus sign of Eq. (1.9), the real part of K0 and K̄0 cancel out each
other. As a result, only the imaginary part of V ∗

tsVtd remains, as:

A(KL → π0νν̄) ∝ A(K0 → π0νν̄)− A(K̄0 → π0νν̄)

∝ Im (V ∗
tsVtd)

∝ η̄, (1.10)

where Eq. (1.4), Eq. (1.6), and Eq. (1.7) were used. Thus, the branching ratio of
KL → π0νν̄ decay is directly related to the height of the unitarity triangle η̄.
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In a quantitative form, the branching ratio can be represented as [14]

Br(KL → π0νν̄) = κ

(
Im (V ∗

tsVtd)

λ5
X(xt)

)2

, (1.11)

where X(xt) is relevant to the top quark in the loop, and κ summarizes all other
contributions. The X(xt) is well studied and precisely calculated including QCD
corrections [15,16]. The κ is difficult to calculate because it includes a hadronic matrix
element, but it can be extracted from the branching ratio of KL → πeν which is a
well-known leading decay channel of KL [17,18]. The branching ratio in the Standard
Model is then estimated [19] as

Br(KL → π0νν̄) = 2.43± 0.39, (1.12)

with a small theoretical uncertainties of only 2%.

1.2.2 KL → π0νν̄ Decay beyond the Standard Model

The KL → π0νν̄ decay occurs via loop diagrams. If a new particle which is predicted
in some new physics models beyond the standard model propagates in the loop, the
branching of the KL → π0νν̄ decay will be different from the standard model predic-
tion. One of such new physics models is the Minimal Supersymmetric Standard Model
(MSSM) which is the minimal extension to the standard model including features of
supersymmetry theory. In the MSSM, the KL → π0νν̄ decay is possible to have a
new CP-violating phase. As a result, the branching ratio is possible to be a few times
10−10, that is, 10 times larger than the standard model prediction [20].

Some new physics models predict that the deviation of the branching ratio of the
KL → π0νν̄ decay from the standard model prediction will correlate with that of the
K+ → π+νν̄ decay. The predicted correlation in Minimal Flavor Violation model
and other three new physics models [1] are shown in Fig. 1.3. The branching ratio
of K+ → π+νν̄ decay was measured by BNL E949 group as Br(K+ → π+νν̄) =
1.73+1.15

−1.05 × 10−10 [21], and a further precise measurement by CERN NA62 group is
in preparation. Combining their results, the measurement of the branching ratio of
KL → π0νν̄ decay can put a strong restriction on some physics models.

1.2.3 History of KL → π0νν̄ Search

Several experiments to search for the KL → π0νν̄ decay were conducted as shown in
Fig. 1.4. The upper limit of the branching ratio is given by KEK E391a group [22],
as

Br(KL → π0νν̄) = 2.6× 10−8(90%C.L.). (1.13)
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Figure 1: Correlation between the branching ratios of KL → π
0
νν and K

+
→ π

+
νν

in MFV and three concrete NP models. The gray area is ruled out experimentally or
model-independently by the GN bound. The SM point is marked by a star.

X. The model-independent Grossman-Nir bound shown in figure 1 then simply arises
from the fact that the imaginary part of a complex number has to be smaller than or
equal to its absolute value, corrected by the lifetime differences and isospin breaking
effects.

In MFV, assuming that there is no CP violation beyond the CKM phase, the
contribution to both branching ratios is simply given by a real contribution to X,
leading to a clean correlation shown in figure 1 as an orange line‡.

In concrete NP models, spectacular deviations from the MFV prediction are pos-
sible. The coloured areas in figure 1 show the correlations arising in three models:
the Littlest Higgs model with T-parity (LHT, [6]), the Randall-Sundrum model with
custodial protection (RSc, [7]) and the Standard Model with a sequential fourth gen-
eration (SM4, [8])§. In the RSc model, there is no correlation, but the overall effects
are limited. In the LHT, mild enhancements of both branching ratios are possible,
but not simultaneously. In the SM4, the GN bound can be saturated even for large
values of BR(K+

→ π
+
νν). In the MSSM with large flavour violating trilinear terms

in the up-squark sector, large (uncorrelated) effects are possible in both decays [9].

‡It should be stressed that this correlation is simply a consequence of assuming no new sources

of CP violation, not of a flavour symmetry in the sense of strategy 2. above.
§Since parametrization choices, scan statistics etc. make the comparison between predictions in

different models quite delicate, the regions indicated figures 1 and 2 are to be undestood as merely

indicative. For the actual results, one should consult the original publications.

4

bsmmodels.pdf

Figure 1.3: Predicted correlation between the branching ratio of KL → π0νν̄ decay
and K+ → π+νν̄ decay in various new physics models. The grey area was ruled out
experimentally. The SM prediction point is marked by a star. This figure is quoted
from the reference [1].

1.3 KOTO Experiment

In this section I describe a basic strategy of KOTO experiment designed to observe
KL → π0νν̄ decay. Through that, I am going to reveal important roles of the CsI
calorimeter which is the main detector of the KOTO experiment.

1.3.1 Introduction of KOTO Experiment

The purpose of KOTO experiment is to measure the branching ratio of the KL → π0νν̄
decay. We plan to have two phases of the measurement, Step 1 and Step 2. The goal
of Step 1 is to make the first observation of the decay. In Step 2, we plan to measure
the branching ratio by accumulating more than 100 decay events. In the following, I
will concentrate on the Step 1 experiment.

The experiment is conducted in J-PARC [3] which is the accelerator facility in Tokai
village, Japan. Protons are accelerated to 30 GeV and extracted to hit a fixed target.
KL mesons generated at the target are guided to a 2 m-long vacuum decay volume.
We observe KL mesons decaying in that volume. Detailed descriptions for the beam
facilities will be given in Chapter 2.

1.3.2 Signature of KL → π0νν̄

KL → π0νν̄ decay has a unique feature, that is, the observable particles in the final
state are only two gammas from π0, and the π0 has a transverse momentum (Pt)
because of missing neutrinos. Because no other KL decay mode has such a final
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1.2.3 History of K
0
L
→ π

0
νν̄ search

There were several experiments that searched the K0
L
→ π

0
νν̄ decay, as shown in Fig. 1.3. Due

to the small value of BR(K0
L
→ π

0
νν̄), only upper limits were given.

The first study was performed by Littenberg. He extracted a limit for the K0
L
→ π

0
νν̄ decay

from the data of Cronin and Fitch for the K0
L
→ 2π

0 study [1]. The limit was [18]

BR(K0
L → π

0
νν̄) < 7.6 × 10−3(90 % C.L.). (1.10)

The following studies were carried out in two different approaches.

One approach used a π
0
→ e+e−γ decay to identify the K0

L
→ π

0
νν̄ decay. The advantage is

that the decay vertex can be reconstructed with e+e− tracks and the invariant mass of e+e−γ

can be calculated, which enables clean π
0 reconstruction. On the other hand, the disadvantage

is that the branching ratio of the decay is about 1%, which corresponds to small efficiency. The
other approach used a π

0
→ γγ decay. The advantage is that the branching ratio of the π

0
→ γγ

decay is 99%. The E391a experiment which was conducted at KEK with the latter approach
set the current best upper limit on the branching ratio [19]:

BR(K0
L → π

0
νν̄) < 2.6 × 10−8(90 % C.L.). (1.11)
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Figure 1.3: History of the K0
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νν̄ search. A green point shows the first study performed
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νν̄ decay predicted in the Standard Model.
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Figure 1.4: History of KL → π0νν̄ decay search.

state,1 this is a signature of KL → π0νν̄ decay. We search for this unique feature, 2γ
+ Pt, by the following steps.

1. Observe two gammas with a calorimeter.

Two gammas are the sole observable particles in this decay mode. They are
observed by the CsI electromagnetic calorimeter which consists of 2716 undoped
CsI crystals used in the FNAL KTeV experiment. The CsI calorimeter is located
in the downstream of the decay volume. It measures the energies and incident
positions of the two gammas.

2. Reconstruct decay vertex.

The π0 decay vertex is reconstructed to calculate its Pt, as well as to ensure
that the decay occurs within the decay volume. The vertex is calculated from
the energies and incident positions of two gammas, which are measured with
the CsI calorimeter. Assuming that observed two gammas are produced from
a π0 decay, that is, their invariant mass is equal to π0 mass, the opening angle
between the two gammas (θ) can be calculated by using the conservation law of
4-momentum as

cos θ = 1− m2
π0

2E1E2

, (1.14)

where mπ0 is a mass of π0, and E1,2 are energies of the two gammas. With
two more assumptions that the decay vertex is located on the beam axis and
is located in upstream of the CsI calorimeter, a position satisfying Eq. (1.14) is

1 KL → γγ decay also has only two gammas in its final state, but the Pt of the two gammas is
balanced.
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decided uniquely in many cases,2 as shown in Fig. 1.5(a). We require that the
Pt, calculated from the reconstructed vertex position, should be greater than
130 MeV/c.

CsI surface

 vertex candidates

!

CsI surface

incident  position of !

beam axis

This step is done in order to calculate Pt, as well as to ensure that the decay
occurs within the decay volume. The vertex is calculated from the energies and
incident positions of two gammas, which are measured by the CsI calorimeter.
Assuming that the invariant mass of observed two gammas is equal to the mass
of π

0 (m
π

0), The opening angle between the two (θ) can be calculated by using
the conservation law of 4-momentum,

cos θ = 1 −

m2

π
0

2E1E2

, (1.12) {eq:openingAngle}

where E1,2 are energy of two gammas. With two more assumptions that the
decay vertex is located on the beam axis, and is located in front of CsI, a
position satisfying eq(1.12) is decided uniquely in many case 2, as shown in
Fig1.3(a). We require that the Pt, calculated from the reconstructed vertex
position, should be greater than 130 MeV/c.

Figure 1.3: The schematic view of the decay vertex reconstruction. (a) The vertex
is found on the circle which passes through the two incident positions of gammas,
and of which circumferential angle satisfies eq1.12, We define the intersection point
of the circle and the beam axis as the decay vertex. Of course there are such points
both in front and back of CsI. We adopt the front one. (b) An example of the case
that multi-vertexs exist. We discard such events.

fig:vertexReconstruction

3. Veto the extra particles.

To be sure there are no observable particles except for two gammas, we cover
the decay volume with hermetic veto counters (Fig1.4). All detectors in the
figure but for CsI calorimeter are veto counters.

2Sometimes multi-vertexes satisfy eq(1.12) as shown in Fig1.3(b). In that case, the event is just
discarded.

16

"

satisfy eq(1.12)

reconstructed decay vertex

(a) (b)

Figure 1.5: Schematic view of the decay vertex reconstruction. (a) The vertex is found
on the circle which passes through the two incident positions of gammas, and of which
circumferential angle satisfies Eq. (1.14). We define the decay vertex as the intersection
point of the circle and the beam axis. There are such points both in upstream and
downstream of the CsI calorimeter. We adopt the upstream one. (b) An example of
the case in which multi-vertexs exist. We discard such events.

3. Veto extra particles.

To make sure that there are no observable particles except two gammas, we cover
the decay volume with hermetic veto counters as shown in Fig. 1.6. All detectors
in the figure except the CsI calorimeter are veto counters.

1.3.3 Backgrounds Suppression

The background events arise from the other KL decays or neutrons in the beam.
Although most of the other KL decays involve charged particles or extra gammas that
can be vetoed, a measurable amount of them escape detection of the veto counters due
to the finite efficiency. Those decays are misidentified as the KL → π0νν̄ decay if all
the particles to be vetoed are missed. The neutrons in the beam can be background
sources by interacting with the detector component. Although the CsI calorimeter and
the other veto detectors have beam holes to pass the core part of the beam, a small

2Sometimes multi-vertexes satisfy Eq. (1.14) as shown in Fig. 1.5(b). In that case, the event is
just discarded.
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decay region

Vacuum vessel

Figure 1.6: The KOTO detector. All detector components except for the CsI calorime-
ter are veto counters. The 2-m decay volume is also shown.

portion of the beam neutrons spreads over the sizes of the beam holes. They are called
halo neutrons. The secondary particles which are generated from the interaction of
halo neutrons with the detector component sometimes mimics KL → π0νν̄ decay and
becomes a background. Some examples of beam-neutron background are shown in
Fig. 1.7.

Those backgrounds are suppressed by kinematic cuts and shower shape cuts. The
kinematic cuts are based on the energies and incident positions measured by the CsI
calorimeter. The cuts are designed to distinguish characteristic distributions of back-
ground. The shower shape cuts compares the shape of shower observed in the CsI
calorimeter with the shape expected by Monte Carlo simulation. Because the CsI
calorimeter consists of crystals with smaller cross-section than Moliere radius, the elec-
tromagnetic shower spreads over many crystals and we can observe its shape. Some
backgrounds have a hadronic shower or a shower overlapped multi-gammas. Those
backgrounds are strongly suppressed by shower shape cuts.

The number of signal events and background events from the KL → π0π0 decay which
are expected to be the largest background are estimated with a Monte Carlo simulation
as shown in Table 1.1. The numbers in the table represent for the case of a twelve-
months data taking with designed beam intensity (2 × 1014 protons on a production
target every 3.3-sec beam cycle). The ratio of the signal and the background events
increases from 0.5 to 1.7 before and after applying these cuts. A detailed explanation
for the KL → π0π0 background and the other backgrounds is given in Appendix A.
Details for the kinematic cuts and the shower shape cuts are also given in Appendix A.
I want to emphasis here the fact that both of kinematics and shower shapes are solely
measured by the CsI calorimeter. The performance of the CsI calorimeter thus directly
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Figure 1.7: Schematic view of neutron backgrounds. Halo neutrons sometimes interact
with the detector component near the beam hole. The secondary particles make
activities in the CsI calorimeter that mimics the KL → π0νν̄ decay.

influences the signal-to-background ratio.

1.4 Engineering Runs in 2012

The CsI calorimeter is the main detector of the KOTO experiment as described in the
previous section. The construction of the CsI calorimeter started in 2008 from trans-
ferring the CsI crystals from FNAL to J-PARC. All the crystals had been stacked
in the KOTO experimental area by February 2011. Although J-PARC had a large
earthquake in March 2011, the calorimeter did not suffer a significant damage. Af-
ter waiting for restoration of accelerator facilities, we conducted engineering runs in
February and June in 2012.

These were the first tests to operate the CsI calorimeter in almost the same condition
with the physics run. In that time, we had not yet measured a basic performance of the
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Table 1.1: The number of signal events and background events from the KL → π0π0

decay expected in 12-months data taking with designed beam intensity. The number
in each column shows the number of events remaining after requiring selection cuts
which are shown in the top row. The selection cuts are applied in sequence from the
left .

2γ on CsI Pt & Z veto kinematics
shower
shape

KL → π0νν̄ 42.3 15.8 6.73 3.62 2.99

KL → π0π0 1.99× 109 3.34× 108 12.9 5.46 1.72

calorimeter such as an energy resolution and position resolution.3 We had not checked
the consistency of Monte Carlo simulation for electromagnetic shower shapes on the
calorimeter, either. Uncertainties of these issues will directly affect the effectiveness of
the kinematic cuts and the shower shape cuts which were introduced in the previous
section. One of the main purposes of the engineering runs was to study the shower
shape and the resolutions of the CsI calorimeter.

A beam test with a small number of crystals had been carried out [4] while the crystals
were still in the process of stacking. The issues listed above, however, were not studied
because a clustering process, which is a process to group CsI crystals with finite energy
deposits and reconstruct an incident gamma, was not carried out due to a limited
number of CsI crystals used in the test.

In the engineering runs, I used electrons which were generated from KL → πeν decays
as a reference to study the shower shape and the resolutions. The response of the CsI
calorimeter to gammas can be well approximated by the response to electrons, because
electrons make electromagnetic showers with almost the same mechanism as gammas.
In the engineering runs, the veto counters and the vacuum vessel were not installed
yet in the experimental area, and a space upstream of the CsI calorimeter to install
them was vacant. In that space, I installed a spectrometer which consisted of three
drift chambers and a magnet, to measure momenta and incident positions of electrons.
These runs were the last chance to use beam electrons to study the calorimeter, because
an installation of the veto counters and the vacuum vessel soon started after the
engineering runs and no trackers were available after installing them.

The engineering runs were also considered as a unique opportunity that we could
measure both charged particles and gammas. Taking this opportunity, I observed

3The KTeV experiment group had already measured those resolutions when they were using the
CsI crystals in FNAL. A beam condition, however, was different from that of KOTO experiment
and their result cannot directly adopted to KOTO. A typical energy of incident gammas in KTeV
experiment was over 10 times larger than that in our experiment. In addition, polar angles of incident
gammas in our experiment will be distribute widely up to ∼ 30 deg while they were almost ∼ 0 degree
in KTeV experiment.
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KL → π+π− and KL → π+π−π0 decays in order to measure the KL momentum
spectrum. All particles in the final states of those decays can be observed by using
the spectrometer and the CsI calorimeter cooperatively, and a momentum of parent
KL can be exclusively reconstructed. The KL momentum spectrum has been already
measured [23], but that measurement had no acceptance in the momentum region
higher than 4 GeV/c. My measurement complement the previous work.

1.5 Overview of the Thesis

In this thesis, I studied the following three issues with the data from the engineering
runs conducted in 2012.

1. A consistency check for electromagnetic shower shape between a Monte Carlo
simulation and the data.

2. A measurement for an energy and position resolution of the CsI calorimeter.

3. A measurement for KL momentum spectrum.

In this chapter, I have introduced the basic issues about CP symmetry, KL → π0νν̄
decay and KOTO experiment, and revealed the motivation of this thesis. I show the
result of the engineering runs in the rest of the thesis.

I describe an experimental apparatus and conditions of the engineering runs in Chap-
ter 2. The analysis regarding the CsI calorimeter is described in Chapter 3, while the
analysis of the spectrometer is in Chapter 4. I describe an energy calibration of the CsI
calorimeter with electrons as a separate chapter in Chapter 5, because this calibration
process involves both of the spectrometer and the CsI calorimeter analyses, and also
the electron selection criteria which is introduced in that chapter is important in the
following chapters. Chapter 6, 7, and 8 are devoted to the measurement of the main
three topics listed above, respectively. The impact that this thesis will give on the
KOTO physics run is discussed in Chapter 9. Chapter 10 concludes this thesis.



Chapter 2

Apparatus of the Engineering
Run

In this chapter, I will describe the experimental apparatus of the engineering runs
conducted in February and June of 2012. I will first explain the beam facilities fol-
lowed by the detectors. The data acquisition systems and run conditions will be also
described.

Let us define a coordinate system here. The origin is placed on the KL beam axis,
21 m downstream of the production target. The z axis is parallel to the KL beam
axis, pointing downstream. The y axis points vertically up, and the x axis points to
the direction for the system to be right-handed. Hereafter I will use this coordinate
system unless otherwise stated.

2.1 KL Beam

2.1.1 Primary Proton Beam and Production Target

The Japan Proton Accelerator Research Complex (J-PARC) is a high-intensity proton
accelerator facility in Japan. It consists of three accelerators: a linear accelerator
(Linac), a 3-GeV Rapid-Cycling Synchrotron (RCS) and a 30-GeV synchrotron (Main
Ring), as shown in Fig. 2.1. Protons are accelerated up to 30 GeV through these
accelerators before extracted toward a production target in the Hadron Experimental
Hall. The production target was a platinum rod with 60 mm in length and 6 mm in
diameter. The flux of extracted protons was almost flat for 2.6 seconds, and we took
data in this flat duration (spill). The beam was extracted every 6 seconds. Typical

13
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Fig. 1. The entire view of J-PARC.

Need to have high-power

proton beams

 MW-class proton accelerator R&D toward Transmutation at 0.6 GeV

Nuclear & Particle Physics at 50 GeV
Materials & Life Sciences at 3 GeV

Fig. 2. The goal of J-PARC.

significant this improvement is. The MR was steadily operated at 30 GeV. We achieved 145 kW to

the neutrino beamline in March 2011. Slow extraction at 5 kW to the hadron facility is still very low

compared to the anticipated level of 30 kW or more.

3. Selected results before the earthquake

Shown here are three typical scientific results obtained at each experimental facility before the

earthquake in 2011, to provide a flavor of the scientific output.

3.1. Neutrinos

Muon neutrinos are produced for the neutrino program at J-PARC. While traveling from J-PARC

to the Super-Kamiokande detector, located 295 km away, a muon neutrino may transform into an

electron neutrino. This depends on the mixing angle between the 1st and 3rd neutrinos, θ13. This is

a brand-new approach to determining this parameter θ13 to understand the neutrino masses. Strong
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Figure 2.1: Overall view of J-PARC. The KOTO experiment is held in the hadron
experimental hall located in the “Hadron Beam Facility”. Though the energy of the
Main Ring is described as 50 GeV in the figure, protons are currently accelerated up
to 30 GeV. This figure is quoted from the reference [2]

beam intensity at the target was 4× 1012 protons per spill 1.

The experimental hall was designed to deliver the secondary particles from the target
to several experiments simultaneously through different beam lines. The layout of the
hall in 2012 is shown in Fig. 2.2. The engineering runs were conducted on the KL
beam line which is located in the south area of the hall.

2.1.2 KL Beam Line

The KL beam line is directed at 16 degrees from the primary proton beam axis. The
beam line consists of a gamma absorber, a 2-tesla dipole magnet and two collimators
as shown in Fig. 2.3.

Almost all neutral particles generated at the production target decay while passing
through the beam line, except gammas, neutrons and KLs. The gamma absorber,

1With the design value, J-PARC will provide 2 × 1014 protons every 3.3-second beam cycles. In
that condition, the target will be a water-cooled nickel disk which is designed to be easy for cooling.
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Figure 2.2: Layout of the hadron experimental hall in the engineering runs. This
figure is given by the J-PARC Center [3].

which is a 7-cm-thick lead block, reduces the gamma flux in the beam. The dipole
magnet swept out charged particles either from the decays in flight or from the tar-
get. Thus, the beam includes dominantly neutrons and KLs at the exit of the beam
line.

The beam profile is shaped into a narrow square by the collimators which are made of
iron, and partly embedded tungsten alloys. The collimators are designed carefully to
reduce the beam neutrons scattering on its surface, because such scattering produces
the halo neutrons which are the background sources of KOTO experiment as already
discussed in Section 1.3. The detail design of the collimators is described in [24]. The
beam profile after shaping by the collimators is shown in Fig. 2.4, which is simulated
by using Geant3. The ratio of halo neutrons to beam core neutrons is well suppressed
to the order of 10−5.

The KL flux after passing through the beam line was already measured in 2010 [23].
The number of KLs at the exit of beam line was estimated as 4.19 × 107 KLs per
2× 1014 protons on the target.
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Figure 2.3: Schematic view of KL beam line. The ruler shows the distance from the
production target

2.2 Detectors

The layout of detectors in the engineering runs is shown in Fig. 2.5. There were two
detectors: the spectrometer and the CsI calorimeter.

2.2.1 Spectrometer

The spectrometer was used to measure momenta and track paths of charged particles.
It consisted of a dipole magnet, three drift chambers and trigger scintillators.

Magnet

A view of the spectrometer magnet is shown in Fig. 2.6. The center position of the
magnet was located at z=1600 mm. The iron return yoke of the magnet had a window-
frame structure, and the gap between the two poles was 1400 mm in x, 800 mm in
y and 800 mm in z directions. Coils were placed in the gap. They were bent up or
down at the entrance and exit of the gap, in order not to obstruct paths of incident
charged particles. In order to suppress fringe field, 10-cm-thick iron plates, called end
guards, were placed on each side of the yoke. The end guard on the upstream side had
a 600 × 300-mm2 hole, while the one on the downstream side had a 1100 × 702-mm2

hole. The magnet was operated with 2400 A of current. The field strength at the
center of the magnet was 0.7 Tesla, and its direction was downward.

The magnetic field was measured before installing the magnet in the experimental
area. The measured points were arranged in a grid-like pattern. The interval of the
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Figure 2.4: Beam profile at Z=0 m simulated using Geant3.

grid points were 60 mm (20, 30 mm) in the x (y, z) direction. The gap between points
were interpolated linearly. The measurement was done only for the first quadrant,
that is, x > 0 and y > 0 region. For other quadrant regions, the measured field was
appropriately inverted and used. The measurement covered from -1000 mm to +970
mm in the z direction with respect to the center of the magnet. For the field outside
of the measured range, I calculated it using ANSYS [25] which is a software for a
numerical calculation with a finite element method. The calculated values are shown
in Fig. 2.7.

The whole field was scaled by a factor 0.98 to match the KL mass (= 497.614 MeV/c2

[26]) measured with KL → π+π− analysis, which will be described later in Chap-
ter 8.

Drift chambers

Three drift chambers were used in the spectrometer. We will call them “1st chamber”,
“2nd chamber” and “3rd chamber”, respectively, in the order from the upstream.
The 1st chamber was located between the magnet poles, and the other two were
placed just downstream of the downstream end-guard. The center positions of the
1st, 2nd, and 3rd chambers were located at z=1576.5 mm, 2640 mm, and 2909 mm,
respectively.

All the chambers had four sense-wire planes, y, y’, x, and x’. The number and the
spacing of the sense wires are summarized in Table 2.1. The y and y’ (or x and
x’) wires were parallel, and staggered by a half of the wire spacing. The y’ wires of
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Figure 2.5: Layout of detectors in the engineering runs. The top (bottom) figure
shows the view in the x-z (y-z) plane. The CsI calorimeter and the trigger scintillators
were placed inside a dry room. The position of the trigger scintillators was different
between the February run and the June run.

the 2nd chamber were not active because the readout electronics for them were not
functioning.

Field wires were placed around each sense wire to form a hexagonal cell. They were
applied negative high voltage in order to form an electric field to drift ionization
electrons, which were produced by charged particles passing through the cells, toward
the sense wires. Guard wires were placed at the outermost side of the chambers in
order to shape the electric field and to reject the electrons produced outside the cells.
As for the 1st chamber, the guard wires were also placed at the center of the chamber.
The layout of the wires are illustrated in Fig. 2.8. Materials, diameters and applied
voltage of the wires are summarized in Table 2.2.
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Figure 2.6: (a) Components of the spectrometer magnet. In order from the left, they
are the upstream end guard, electric coils, the return yoke, and the downstream end
guard. (b) Overview of the magnet unifying the components.

The front and back of each chambers were covered by 25µm polyethylene-terephthalate
sheets. The mixture of 50% argon and 50% ethane at atmospheric pressure were used
for the chamber gas.

Trigger scintillators

Trigger scintillators were placed just upstream of the CsI calorimeter, at z=535 cm in
the February run and at z=519 cm in the June run. The role of the trigger scintillators
was to make trigger signals for a data acquisition system and start-signals for TDC
modules for drift chambers.

The trigger scintillators consisted of plastic scintillator bars which were 1-cm thick,
5-cm wide and 112-cm long (some bars were 120-cm length) as shown in Fig. 2.9(a).
The surface of the bar was coated with TiO2 reflective paint. Each bar had a 2 × 4
mm hole along the longer direction. Two wave-length-shifting fibers, Kuraray Y11,
were inserted in each hole to transmit the scintillation light out of the bar.
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Figure 2.7: The y component of the magnetic field as a function of the z position at
(a) x=0 and y=0, and (b) x=300mm and y=300mm. The black histogram shows the
measured values while the red histogram shows the values calculated using ANSYS.
The area filled with blue color is inside the end guard. The range between purple
vertical lines show the measured area.

A group of four, five or six scintillator bars were combined as a module. The fibers
in each module were connected to a photomultiplier tube (PMT) with optical cement
(Fig. 2.9(b)). Each module was covered by black sheet for light shielding. Twelve
modules were stacked as shown in Fig. 2.9(c). Modules with ID=10 and 11 in the
figure were not installed in the February run.

We used 2-inch Hamamatsu R329 PMTs for modules with ID=5, 6, 10 and 11, and
2-inch Hamamatsu R329-EGP PMTs [27] for the rest.

Table 2.1: The numbers and spacing of sense wires.
spacing # of wires note

1st chamber 10 mm (x, x’) 70
(y, y’) 40

2nd chamber 9 mm (x, x’) 128
(y, y’) 96 The y’ wires were not active

3rd chamber 9 mm (x, x’) 128
(y, y’) 128 Only 96 wires were active
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Table 2.2: Materials, diameters and applied voltages of the chamber wires.
wire type materials diameter applied voltage

1st sense Au-plated W φ 30µm -
chamber field Au-plated BeCu φ 50µm 2700 V

guard Au-plated BeCu φ 50µm 0 V
2nd sense Au-plated W φ 20µm -

chamber field Au-plated Al φ 100µm 2100 V
guard Au-plated Al φ 100µm 1800 V

3rd sense Au-plated W φ 20µm -
chamber field Au-plated Al φ 100µm 2100 V

guard Au-plated Al φ 100µm 1500 V

2.2.2 CsI Calorimeter

CsI crystals

The CsI electromagnetic calorimeter was placed downstream of the spectrometer. Its
upstream surface was located at z=573 cm. The calorimeter had a cylindrical shape
with a diameter of 1.9 m and consisted of 2716 pure CsI crystal as illustrated in
Fig. 2.10. The inner 1.2 × 1.2 m2 region of the calorimeter consisted of 2240 crystals
whose size was 2.5×2.5×50 cm3, while the outer region consisted of 476 larger crystals
whose size was 5.0× 5.0× 50 cm3. A square 20× 20 cm2 beam hole was made at the
center of the calorimeter. Each crystal was separately wrapped with 13-µm-thick
mylar to optically isolate each other. Some sections of the mylar were aluminized and
other sections were painted with black ink. The allocation of these aluminized and
black sections had been adjusted individually for each crystal by the KTeV experiment
group so that the light yield became uniform along the z direction. The uniformities
of light yield along the z direction was within ±5%.

Scintillation light produced in the CsI crystal was detected by a PMT mounted on
the downstream surface of each crystal. The small crystals were viewed by 3/4-inch
Hamamatsu R5364 PMTs, while the large crystals were viewed by 1.5-inch Hamamatsu
R5330 PMTs. An UV transmitting filter was placed on the surface of the PMT to
reduce the slow component of scintillation light from the CsI crystal. Each CsI crystal
and PMT was optically connected through a transparent silicone called a “cookie”.
We will not be able to use air cooling for the PMTs in the physics run because the
calorimeter will be operated in vacuum. In order to suppress the heat produced in the
PMTs, we developed a custom Cockcroft-Walton bases to supply HV to PMTs with
small power (60 mW in the CW circuit [28]).

Because readout equipments for the CsI calorimeter was still under preparation, crys-
tals located above y=600 mm and below y=-600 mm were not readout. The silicone
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cookies of the crystals in the south side had been damaged by outgas from cables
around the calorimeter in a vacuum test which was conducted before the engineering
runs. In the February run, those crystals with damaged cookies were read out though
the light transmission of their cookies was about a half of usual one. Such crystals
were not read out in the June run. The location of active crystals is also shown in
Fig. 2.10.

Equipment for monitoring and conditioning

There were several equipments for monitoring or conditioning the CsI calorimeter.

• thermocouples

Light output from CsI crystal decreases about 1.5% if its temperature increases
by 1 Kelvin. The temperatures at the upstream and downstream surfaces of
the CsI calorimeter were monitored with 40 thermocouples through the runs.
The correction of light output for the temperature shift will be described in
Chapter 3.

• cosmic-ray scintillators

Five plastic scintillators were placed above and below the CsI calorimeter each,
to collect cosmic-ray muons to be used for energy calibration of the calorimeter.
The five scintillators were arranged along the z direction as shown in Fig. 2.11
to find trajectories of the muons in the y-z view.

• dry room

The CsI calorimeter was placed in a dry room where the humidity was controlled
to be less than 20%, in order to prevent the crystals from deliquescence. The
walls of the room were made of steel and heat insulator. A small section of the
downstream wall near the beam axis and a 2×2 m2 section of the upstream wall
were removed not to obstruct the paths of incident particles. Those areas were
covered with 100-µm-thick black sheets and 7.2×103 g/cm2 moisture prevention
sheets.

• CsI cover for earthquake

The northeast area of Japan suffered a large earthquake in 2011. The CsI
calorimeter, which was already installed in the experimental area, was not sig-
nificantly damaged by the earthquake but the CsI crystals moved at most 5 mm
away from its support structure. From that experience, we prepared a cover
in front of the calorimeter so that the crystals will not fly out of the support
structure even if an earthquake gives them 1G acceleration in the z direction.
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The cover is illustrated in Fig. 2.12. The cover was made of two cloths of Teijin
Technora MF1500 whose total mass thickness was 0.044 g/cm2, with a structure
made of 3-mm-thick polyvinyl-chloride pipes to form the cover in a parabolic
shape. In addition, there were two plates of 2-mm-thick polyethylene on the
upstream and downstream side of the pipes to protect the surface of CsI crystals,
and the cloths from the edges of the pipes. The center parts of the pipe structure
and polyethylene plates were removed in a circular shape with a 200-mm radius
to avoid interactions with beam particles.2

2.2.3 Other materials

There were some materials in the experimental area which were not directly related
to my studies.

• Beam shutter

A beam shutter made of steel and tungsten was placed around z = 0 m to allow
access to the experimental area during the accelerator operation. Its size was
200, 150, and 750 mm in x, y, and z directions, respectively. It was movable
along x direction, and opened when the data was taken.

• Charged Veto (CV)

In the June run, an operation test of plastic scintillator modules, which is called
“Charged Veto” or “CV” and will be used as a veto detector for charged particles
in KOTO physics run, was conducted in parallel with my measurement. The CV
consisted of 3-mm-thick plastic scintillator plate and and a 0.8-mm-thick carbon
fiber reinforced plastic (CFRP) plate. Two CV was placed in the dry room,
upstream of the trigger scintillators, at z = 477 and 502 cm. In my measurement,
these modules were treated as dead materials.

2.3 Data Acquisition System

2.3.1 Readout Electronics

Spectrometer

A signal from each sense wire of drift chambers was amplified by a pre-amplifier (FU-
JITSU MB43468). The signal was subsequently transmitted through a 4-m twisted
pair cable to an Amp-Discri module which had an amplifier (PLESSEY SL560C) and a

2In the physics run, another cover made of CFRP is used instead of the cover described here.
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comparator (LeCroy MVL407). A differential ECL-level output from the Amp-Discri
module was sent to a Time-to-Digital converter modules (TDC) through a 40-m long
twisted pair cable. I used two types of TDCs, Repic 32-channel Dr.T for the 1st
chamber and GND 64-channel HRTDC for the 2nd and 3rd chambers. Both TDCs
were based on TKO-standard [29]. The Dr.T operated as a common stop TDC while
HRTDC was a common start TDC. Both the common start and stop signals were made
from trigger scintillators. The Dr.T generate information that each channel had a hit
or not, as a TTL-level signal. This information was used for trigger decisions.

Raw signals from each trigger scintillator module were amplified by a NIM-standard
amplifier module and transmitted through 12-m BNC cables to a discriminator in the
module rack where the TDCs for chambers were also placed. The discriminated output
was divided into two paths. One was sent to the trigger logic to make the timing of
start and stop signals for the TDCs. Another one was sent to the HRTDC input, to
later identify which trigger module determines the trigger timing.

If a DAQ trigger, which will be described later in this section, was made, the TDC
data was transferred to a buffer on a VME memory module (SMP). The data in the
SMP buffer was sent to a Linux PC between spills.

CsI calorimeter

Raw signals from each PMT of the CsI calorimeter were amplified by a pre-amplifier
and transmitted to a custom made flash analog-to-digital converter module (FADC).

The FADC modules had filters for shaping input pulses, and ADC chips. The type of
the filter was called 10-pole Bessel filter and it was designed to shape the waveform
of CsI output to a Gaussian shape with σ ∼ 30 nsec as shown in Fig. 2.13. The
ADC chip had the dynamic range of 14 bit to cover up to 1500 MeV, and digitized
the input waveform every 8 nsec. With the shaping filter, we can obtain a larger
number of sampling points for a signal pulse to increase the accuracy of fitting the
waveform.

The digitized data was stored onto its buffer for 4 µsec. If a DAQ trigger, described
later in this section, was generated, the digitized data for 512 nsec (= 64 sampling
points) was transferred to a memory module 3. The data on the memory module was
sent to a Linux PC farm every spill during a beam interval. This system basically did
not have a dead time.

3In the physics run, this memory module will provide several selection methods to distinguish
KL → π0νν̄ decay from backgrounds and suppress the amount of data to store. In the engineering
runs, however, we did not use that function.
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2.3.2 Trigger

I analyzed KL → π+π−, KL → π+π−π0 and KL → πeν decays for this thesis. All
these decays have two charged particles in their final states. I designed a trigger to
select such final states.

On the trigger scintillators, I allocated four regions, Right-up, Right-down, Left-up,
and Left-down, as shown in Fig. 2.14. I required at least two hits on the trigger
scintillators, and the two hits located on a diagonal areas each other. Namely, a pair
of hits on Right-up and Left-down or a pair of hits on Right-down and Left-up were
accepted. I also required at least two hits on y-wire plane of the 1st chamber to ensure
that the KL decayed upstream of the 1st chamber.

The trigger logic diagram is shown in Fig. 2.15. If the trigger scintillators had hits
with a diagonal pattern, start and stop signals for the TDC modules were produced
as long as the following conditions were satisfied.

• A memory module for the CsI system was not full.

• A “spill gate”, which was open during the spill, was on.

• “DAQ ready” flag was on.

The “DAQ ready” flag was turned off when the “TDC start” signals were produced
so that the next event will not be accepted until the trigger decision for this event was
made. After distributing TDC stop signals, the TDC modules for the 1st chamber
returned information of hit channels as TTL signal. The DAQ trigger was requested
if there were more than two hits on the y plane of the 1st chamber. Subsequently,
TDC data of the spectrometer was transferred to a memory module (named SMP)
after waiting for the TDC conversion time (200µsec). The transfer to the SMP took
several hundred µsec and dominated the dead time of the DAQ system. The FADC
data of the CsI calorimeter was also transferred to the memory module for the CsI
system. This process had no dead time. After data was transferred to the SMP, the
TDC modules were cleared and “DAQ ready” flag was turned on to accept the next
event. If the number of hits on the y plane of the 1st chamber was less than two, the
TDC modules were cleared and “DAQ ready” flag was turned on immediately.

2.4 Run

The February run was carried out for about 3 weeks from January to February in
2012, while the June run was carried out for about 3 weeks from June to July of 2012.
Because we used the beam for several studies, the data taking for studies described in
this thesis was carried out only a half of each beam time.
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Table 2.3: Beam Intensity thorough the engineering runs and the number of triggers
collected in each period. The term “POT” in the table means the number of protons
on target.

POT / spill # triggers accepted
Feb. 1 ∼ Feb. 9 1.3× 1012 7.2× 105

Feb. 10 ∼ Feb. 22 3.8× 1012 11.5× 105

June 9 ∼ June 21 4.1× 1012 21.4× 105

The beam intensity gradually changed because the accelerator was still under com-
missioning. The beam intensity during the runs are written in Table 2.3. I also took
the data with the magnet turned off in addition to the normal run, to collect straight
charged tracks to align the detectors. Before and after each beam time, we collected
cosmic ray muons for several days for an energy calibration of the CsI calorimeter.
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Figure 2.8: Schematic view of wire cells of (a) the 1st chamber and (b) the 2nd and
3rd chambers.
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1.4. PURPOSE AND OUTLINE OF THIS THESIS 7

���OT
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Figure 1.6: A conceptual view of our waveform readout with a Bessel filter. Figure on the left

shows a signal from CsI crystal recorded by an oscilloscope. The black dots show an example

of a 125 MHz sampling. Figure on the right shows a recorded pulse shape by FADC with the

filter.

1.4 Purpose and outline of this thesis

Purposes of this thesis are the following:

1. Reveal and understand the performance of the upgraded calorimeter obtained with the

waveform readout.

2. Fully utilize the upgraded calorimeter for suppressing backgrounds.

3. Estimate the realistic number of signal and background events, and evaluate the sensitivity

of the KOTO experiment.

The KL → γγ decay, in particular, was not considered as a background source in the proposal

of the KOTO experiment. Because the KL → γγ decay has no extra photons in the final state

except two photons in the calorimeter, the decay in the beam halo can be a serious background

source and only rejected by the calorimeter. We developed a new method to suppress the

KL → γγ background, and estimated the number of the background events.

The outline of this thesis is the following. We first describe the apparatus of the KOTO

experiment in Chapter 2. Next, we describe a beam test that we held to evaluate the performance

of the calorimeter in Chapter 3. In Chapter 4, we then describe a study about the estimation

method of the performance obtained with the waveform readout, and compare the estimation

with the results obtained with data in the beam test. Next, we describe some new analysis

methods for the upgraded calorimeter in Chapter 5. We estimate the expected number of signal

and background events based on the new studies, and reestimate the sensitivity of the KOTO

experiment in Chapter 6. We describe discussions on the improvement on the timing resolution

and the experimental sensitivity in Chapter 7. At the end, we will conclude this thesis in Chapter

8.

7

Figure 2.13: A conceptual view of a role of a shaping filter. A raw signal from CsI
crystal (a blue line in the left figure) was shaped to approximately Gaussian with a
larger width (a red line in the right figure). Black dots shows FADC sampling points.
We can obtain more sampling points a pulse due to the shaping filter.
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Figure 2.14: Four regions allocated on the trigger scintillators. If Right-up and Left-
down regions had hits, or Left-down and Right-up regions had hits, stop and start
signals were distributed to TDC modules.
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Chapter 3

The CsI Calorimeter Analysis

In this chapter, I will describe how to reconstruct the energies and positions of gammas
(or electrons) hitting the CsI calorimeter based on the waveforms recorded with the
FADC modules. This process consisted of the following steps.

1. Integrate the waveform.

2. Convert the integral to an energy deposit.

3. Group the energy deposits of an incident gamma (or electron).

4. Apply corrections for a temporal shift of energy scale.

3.1 Waveform Fitting

The first step of the calorimeter analysis is to calculate the integral of the waveform.
A simple method for that is just summing ADC values of the 64 sampling points
in the waveform. The summing method, however, is affected by ground noises on
every sampling points. In addition, the summation method cannot recognize strange
waveforms like two overlapped pulses. For these reasons, I adopted a fitting method
to calculate the integral. This method is based on a previous work [4], but slightly
modified according to the run condition.

3.1.1 Fitting Function

Because the waveforms were difficult to be parameterized with any given formula, I
used an averaged waveform, which was derived from the data, as the fitting func-
tion. The averaging of waveforms was separately done for each CsI crystals because

33



34 CHAPTER 3. THE CSI CALORIMETER ANALYSIS

the waveforms were slightly different between CsI crystals. Because the waveforms
depended on its height, I prepared averaged waveforms for 11 pulse height sections
separately.

There were not many waveforms with large heights in the data, as shown in Fig. 3.1.
To collect statistics even in a larger height region, the height sections were arranged
at logarithmically equal intervals, as also shown in Fig. 3.1. Namely, the boundaries
of the height sections were located at

10 to the power of

(
log10(10000)− log10(20)

10
× (i− 0.5) + log10(20)

)
[counts],

where i = {0, 1, 2, ..., 10}. The smallest boundary was located at 14.6 counts, while the
largest boundary was located at 13600 counts. These roughly correspond to energy
deposits of 1.3 MeV and 1.2 GeV, respectively.
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Figure 3.1: Distribution of the maximum ADC value of 64 sampling points. Here,
pedestals were subtracted.

The averaging process took the following four steps.

1. A custom asymmetric gaussian fagaus(t) was fitted to each waveform as shown
in Fig. 3.2(a), to obtain a rough peak height and peak timing. The fagaus(t) is
defined as

fagaus(t) ≡ A×Gaussian(t, µ, σ(t)) + C, (3.1)
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where A, µ, and C represent a peak height, a peak timing, and a pedestal,
respectively. The σ(t) was defined as

σ(t) = a(t− µ)4 + b(t− µ)3 + c(t− µ)2 + d(t− µ) + σ0.

The C was fixed as the average value of the first nine FADC samples in the
fitting. Other parameters were free. The fitting range was restricted within -5 ∼
5 sampling points around the point with the maximum ADC count. A ground
noise fluctuation (=2.04 counts) was added as an error to each sampling point.

2. After subtracting the pedestal, the height of the waveform was normalized by
the peak height derived at the step 1, as shown in Fig. 3.2(b). In addition, the
timing of the waveform was shifted to align the peak timing to be zero.

3. The normalized waveform was interpolated with a cubic spline curve as shown
in Fig. 3.2(c). The values on the curve were then sampled every 1 nsec from -176
nsec to 200 nsec.

4. The mean value of many sample waveforms were taken for the each 1-nsec point.
A curve interpolating those mean values, shown in Fig. 3.2(d), was the averaged
waveform that we wanted to derive. The RMSs of the 1-nsec-sampled values
were also calculated to be used later as errors in the fitting process. The average
waveform of the i-th height section denotes fwf

i (t) as a function of timing.

The fitting function, F , was obtained by summing two averaged waveforms with log-
arithmic weights, i.e.:

F (t, h, µ, c) = h×
(
(1−W )fwf

i (t− µ) + Wfwf
i+1(t− µ)

)
+ c, (3.2)

where h, µ, and c represent a peak height, a peak timing, and a pedestal, respectively.
The i-th and i + 1-th sections are the two nearest height sections to h. The W is the
weight defined as

W =
log(h)− log 20

log 10000− log 20
× 10− i. (3.3)

3.1.2 Integral of the Waveform

The function in Eq. (3.2) was fitted to each waveform with the free parameters, h, µ,
and c. The fitting process was iterated twice. In the first iteration, the fit range
was restricted to within -160 ∼ 40 nsec around the sampling point with the maximum
ADC count. The ground noise level, 2.04 counts, was used as an error of each sampling
point. In the second iteration, the fit range was updated to -160 ∼ 40 nsec around
the µ which was obtained from the first iteration. Errors of sampling points were set
as the RMSs derived in the step 4 of the averaging process described in the previous
subsection.
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Instead of numerically integrating the fitting function, look-up tables were used to
determine the integral of the waveform. Figure 3.3 shows a ratio of a summation of
64 ADC values to the height which was derived from the fitting. The same plots were
made for every CsI crystal, and the mean value in each height (dots in the figure) was
stored. After fitting and obtaining a waveform height, we could obtain the integral
corresponding to the height by referring these stored values.

3.2 Energy Calibration

An integral of waveform was converted to an energy deposit, by simply multiplying
a calibration constant. The calibration constant was derived for each CsI crystal by
using cosmic rays.1

Cosmic rays were triggered by using cosmic-ray scintillators described in Section 2.2.
There were 5 scintillators each above and below the calorimeter as shown in Fig. 2.11.
We required that the most upstream counters on the both sides had hits. This re-
quirement limited the paths of cosmic rays to the upstream part of CsI crystals, and
suppressed the fluctuation of CsI light output due to a light yield non-uniformity along
the z direction.

Figure 3.4 shows a distribution of the waveform integrals of one of the CsI crystals
in the cosmic-ray events. Considering the angle dependence of the path length, the
integral was multiplied by the cosine of the incident angle. The peak position in the
distribution was determined by fitting Landau function. The calibration constant was
calculated as the ratio of an expected energy deposit ( = 5.63 MeV/cm × the crystal
size) to the peak position.

3.3 γ / Electron Reconstruction

3.3.1 Clustering

Electromagnetic showers on the calorimeter tend to spread over multiple CsI crystals
because the Morier radius of CsI is larger than the size of the CsI crystals. We
should group energy deposits located close to each other to reconstruct the energy
and position of the incident particle. The group is called “cluster”, and the grouping
process is called “clustering”.

1There was another method using electrons tracked by the spectrometer, that I will introduce
later in Chapter 5



3.3. γ / ELECTRON RECONSTRUCTION 37

The clustering process is illustrated in Fig. 3.5. We picked CsI crystals with more
than 3-MeV energy deposits as cluster seeds. We then focused on a cluster seed with
the maximum energy deposit. If there were other cluster seeds within a square of
14 × 14 cm2 centered on the focused seed, such seeds were linked with the focused
seed. The focus was then moved to one of the linked seeds. The other seeds around
the focused seed were again searched for and linked with. The process to move the
focus and link was iterated until no more seed was linked with. A group of the linked
seeds was defined as a cluster. After a cluster was found, we tried to find another
cluster from the remaining seeds. The cluster finding was iterated until all the seeds
were used.

A cluster energy Eclus was defined as the sum of energy deposits of seeds in the cluster.
A cluster timing tclus was defined as the mean of the seed timings weighted by their
timing resolution. Cluster positions, Xclus and Yclus, were calculated as the mean of
the positions of the seed weighted by energy deposits. Namely,

Eclus ≡
seeds∑

i

ei

tclus ≡
(

seeds∑
i

ti
σ2

t

)
/

(
seeds∑

i

1

σ2
t

)

xclus ≡
(

seeds∑
i

xi × ei

)
/Eclus

yclus ≡
(

seeds∑
i

yi × ei

)
/Eclus (3.4)

where ei, ti, xi and yi represent the energy deposit, timing, x and y components of
the center position of the i-th seed, respectively. The σt is the timing resolution of a
crystal measured in a past beam test [4] which is defined as

σt[ns] = 5/ei[MeV ]⊕ 3.63/
√

ei[MeV]⊕ 0.13. (3.5)

Due to a fluctuation of electromagnetic shower development, a part of seeds were
sometimes not included in a proper cluster and were observed as a separate cluster. In
order to reject such clusters, I required that clusters should have energies more than
20 MeV and more than 1 seed.

Cluster information in Eq. (3.4) are still different from the information of the incident
photon. Several corrections are applied as described in the following subsections.
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3.3.2 Accidental Hit Rejection

The cluster might include accidental hits. Those hits are excluded by using their
timing information, with reference to the method in [30]. A 2-dimensional histogram
in Fig. 3.6 shows the timing difference observed in the data between the cluster and
the crystals in it, as a function of energy deposits in the crystals. The red lines in
the figure represent 5 × RMS of each x bin. I then calculated the ratio of the timing
difference to the 5× RMS for each crystal, i.e.:

Rtime
i ≡ |ti − tclus|

5× RMS
, (3.6)

where ti means the timing of the i-th crystal in the cluster. To reject accidental hits,
the ratio, Rtime

i , was required to be less than 1 for every crystal in the cluster. If
there were crystals with the Rtime

i > 1, the crystal with the largest Ri was eliminated
from the cluster. The clustering process was then repeated again with the remaining
crystals, the tclus was newly calculated, and the Rtime

i was re-calculated with the
renewed tclus. This elimination process was iterated until all the crystals in the cluster
satisfied Rtime

i < 1.

3.3.3 Energy Reconstruction

The cluster energy defined in Eq. (3.4) was generally smaller than the energy of incident
particle. This is because energy deposits in crystals less than 3 MeV were ignored in
the clustering process. In order to obtain the incident energy of photon, Einc, we
applied an energy correction as

Einc =
1

fEcor(Einc, θ)
× Eclus, (3.7)

where fEcor is a correction function described below. The θ represents the incident
angle of the photon or the electrons. For electrons, the θ could be measured directly
with the spectrometer. In case of photons from KL → π+π−π0 decays, the θ was
calculated from the cluster position and the decay vertex which was reconstructed
from π+π− tracks measured with the spectrometer.

Correction function

The form of fEcor in Eq. (3.7) was studied by using Geant4 simulation. The simulation
was run for photons with several energies and incident angles, because fEcor depends
on such kinematics. The simulation was also run for a region of small CsI crystals and
for a region of large CsI crystals, separately.
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Table 3.1: The values of parameters a, b, c, and d, in Eq. (3.8). They were derived
from Monte Carlo simulation.

for small CsI for large CsI
sinθ a b c d a b c d√

3/20× 0 0.992 -0.0573 -0.00366 -117.349 0.988 -0.0205 -0.00525 -10.724√
3/20× 1 0.996 -0.0613 -0.00223 -122.288 0.988 -0.0206 -0.00507 -8.705√
3/20× 2 0.968 -0.0319 -0.0129 -50.329 0.989 -0.0215 -0.00474 -13.915√
3/20× 3 0.987 -0.0523 -0.00530 -96.304 0.987 -0.0204 -0.00542 -4.780√
3/20× 4 0.988 -0.0539 -0.00534 -100.387 0.987 -0.0203 -0.00576 -7.560√
3/20× 5 0.967 -0.0324 -0.0136 -38.456 0.987 -0.0206 -0.00580 -1.673√
3/20× 6 0.966 -0.0329 -0.0138 -34.263 0.988 -0.0228 -0.00520 -4.093√
3/20× 7 0.965 -0.0334 -0.0142 -28.306 0.989 -0.0245 -0.00477 0.205√
3/20× 8 0.986 -0.0580 -0.00546 -70.594 1.003 -0.0401 0.00102 -44.58√
3/20× 9 0.963 -0.0371 -0.0147 -23.422 0.989 -0.0282 -0.00435 -0.225√
3/20× 10 0.962 -0.0415 -0.0135 -19.867 0.984 -0.0294 -0.00525 0.291

The Eclus/Einc distribution for Einc = 400 MeV and θ = 15 deg is shown in Fig. 3.7(a)
as an example. The mean values of the similar histograms for various Einc and θ are
plotted in Fig. 3.7(b).

The fEcor was derived by fitting the mean values with

fEcor(Einc, θ) = a(θ) +
b(θ)√

(E[MeV ]− d(θ)) /1000
+ c(θ) log((E[MeV ]− d(θ)) /1000).

(3.8)
The values of parameters a, b, c, and d, are summarized in Table 3.1. The fEcor for a
given θ was derived by linearly interpolating the fEcors for the two nearest angles in
the table.

The fEcor was prepared for small CsI crystals and for large CsI crystals separately.
As for a cluster including both kinds of crystals, the weighted sum of fEcor for small
crystals, fS

Ecor, and fEcor for large crystals, fL
Ecor, were combined as:

fEcor(Einc, θ) = (1−W )× fS
Ecor(Einc, θ) + W × fL

Ecor(Einc, θ). (3.9)

The form of the weight W was studied by using Geant4 simulation. As shown in
Fig. 3.8, I found that the W can be represented by:

W =

{
g(Eclus,θ)

− log(1.5MeV/Eclus)−log 2
log(0.5

Elarge

Eclus
) + g(Eclus, θ) for

Elarge

Eclus
≤ 0.5

g(Eclus,θ)−1
− log(1.5MeV/Eclus)+log 2

log(0.5(1− Elarge

Eclus
)) + g(Eclus, θ) for

Elarge

Eclus
> 0.5

,

(3.10)
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where g(Eclus, θ) was derived for several Eclus and θ.

The fEcor was designed as a function of Einc so far. The Einc is, however, what we want
to derive. The observable quantity is Eclus. To obtain a proper fEcor value, an iterative
process was used. At first I calculated fEcor value with assuming Einc = Eclus and
applied the correction shown by Eq. (3.7). I calculated fEcor again with the corrected
cluster energy in the second iteration. Namely, fEcor in Eq. (3.7) was approximated
as

fEcor(Einc, θ) → f

(
Eclus

fEcor(Eclus, θ)
, θ

)
. (3.11)

3.3.4 Incident Position Reconstruction

The cluster position defined in Eq. (3.4) tends to locate farther away from the beam
center than the true incident position of the photon. This difference is due to the finite
length of electromagnetic shower, as illustrated in Fig. 3.9. We applied a correction
as

xinc = xclus − L sin θ cos φ

yinc = yclus − L sin θ sin φ, (3.12)

where θ and φ are the incident angle and the azimuthal angle of the incident photon.
The L is the length from the incident position to the shower maximum. The L was
estimated with a Geant4 simulation as

Lγ(Einc)[cm] = X0 × (6.37 + 1.11 log(Einc[GeV ])) (3.13)

for photons, and

Le(Einc)[cm] = Lγ(Einc)−X0 × (0.796− 0.091 log(Einc[GeV ])) (3.14)

for electrons, where X0 denotes the radiation length of CsI (1.85 cm).

3.3.5 Alternative Method for Position Reconstruction

An alternative method to reconstruct the incident position using the cluster shape
information was proposed by E. Iwai [4]. In that method, we calculate the sum of
energy deposit in each column (or row) of crystal arrays, as shown in Fig. 3.10. This
column (row) energies is regarded as the projected cluster shape to x (y) direction.
The x (y) projected shapes are fitted with a fitting function, to determine the incident
x (y) position. The fitting function is the expected shape of the projected cluster based
on Monte Carlo simulation, as shown in Fig. 3.11. The fitting function is prepared for
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every 9 energy sections, 25 polar angle sections and 15 azimuthal angle sections. More
details for this method were found in [4]. Hereafter, I will call this method “shape”
method.

From the Monte Carlo study, the shape method is expected to have a better position
resolution compared to the current “COE” method defined in Eq. (3.4) and Eq. (3.12).
In Chapter 7, I will evaluate position resolutions using the shape method as well as
the COE method.

3.4 Correction for Temporal Change

Minimum ionization particles (MIPs) in the beam were used to check the drifting of
energy scale of the calorimeter with time. They made a peak in a cluster energy
distribution even without any selection cuts, as shown in Fig. 3.12.

The position of the MIP peak changed about 2% during the runs as shown in Fig. 3.13.
This drift could be explained by the temperature change of the CsI blocks which was
monitored by the thermocouples described in Section 2.2. I found a negative correla-
tion between the MIP peak position and the temperature of the upstream surface of
the calorimeter, as shown in Fig. 3.14. I corrected energy deposits in each crystal by
−1.4% per Kelvin temperature shift.
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Figure 3.2: Process to derive the average waveform. (a) The function in Eq. (3.1)
was fitted to each waveform recorded on the FADC. Black dots show the ADC values
and the red line shows the fitting result. (b) Based on the fitting result, the height
of the waveform was normalized to 1 and its peak timing was shifted to 0. (c) The
normalized waveform was interpolated with a cubic spline curve as drawn by a black
line. (d) Values on the spline curve at every 1 nsec filled in a 2-dimentional histogram.
Their mean values were calculated, as shown by a black line.



3.4. CORRECTION FOR TEMPORAL CHANGE 43

0

200

400

600

800

1000

1200

1400

1600

1800

2000

height [count]

0 5 10

 I
n

te
g

ra
l 
/ 
h

e
ig

h
t

0

2

4

6

8

10

12

14

16

18 h528

Entries  438805
Mean x   1.208
Mean y    9.27

RMS x   2.393
RMS y   1.726

Figure 3.3: The ratio of a summation of 64 ADC values in a waveform divided by
the height of the waveform is shown as a function of the height. Black dots represent
mean values of the ratio.

�

�

43

Entries  2451
Mean    12.88!   1534 
RMS     9.105!    625 

 / ndf 2r  90.82 / 51
Constant  15.1! 427.8 
MPV       7.7!  1444 
Sigma     4.2! 128.4 

sum of FADC count

-1000 0 1000 2000 3000 4000

#
 o

f 
e

v
e

n
t

0

10

20

30

40

50

60

70

80

90 Entries  2451
Mean    12.88!   1534 
RMS     9.105!    625 

 / ndf 2r  90.82 / 51
Constant  15.1! 427.8 
MPV       7.7!  1444 
Sigma     4.2! 128.4 

X[mm]

Y
[m
m
]

Figure 3.4: The histogram shows the distribution of the integral of waveform for the
cosmic-ray events. The peak position was determined by fitting Landau function as
shown in the red line.
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Figure 3.5: Illustration of the clustering process. (a) The CsI crystals with energy
deposits more than 3 MeV are shown in red. They are defined as cluster seeds. The
black block represents the seed with the maximum energy deposit. First we focused
on the black block. (b) The 14×14 cm2 square, drawn with blue line, is placed around
the focused block. The seeds which were located in the square are linked with the
focused seed. The linked crystals are filled with green. (c) We then move the focus
to one of the linked crystals and seek the seed in the square centered on the focused
block. (d) The process in (c) is iterated until no more seeds can be linked. The group
of the linked crystals is defined as “cluster”. (e) The processes (a)∼(d) are iterated
for the remaining seeds. (f) In this example, three clusters are finally found (Each of
them are shown in magenta, purple and blue, respectively).
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a function of energy deposits in the crystals. A 2-dimensional histogram shows the
data, and red lines show the 5× RMS of each x bin.
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Figure 3.7: (a) Distribution of Eclus/Einc in the case of Einc = 400 MeV and θ =
15 deg. (b) The fEcor for several θs are shown as a function of Einc.
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Figure 5.8: A schematic view of the po-
sition correction. Taking the shower length
(L) into account, the incident position (Pinc)
was calculated from the reconstructed posi-
tion (Prec) and the incident angle.

position. We calculated the incident position of the photon at the upstream surface of the CsI
calorimeter, Pinc = (xin, yin, zin), where zin is the position of the CsI calorimeter, zin = 614.8
cm. As shown in Fig. 5.8, the incident position was calculated as a function of the shower
length(L):

xin = xr − L · sin θ · cos φ , (5.5)

yin = yr − L · sin θ · sin φ , (5.6)

where θ is the polar angle of the photon from the z-axis and φ is the azimuth angle of the
photon around the z-axis. In order to estimate the incident angle of the photon, we temporar-
ily reconstructed a π0 decay vertex from a combination of two photons according to the π0

reconstruction as will be described in Section 5.2. For this purpose, we used the position of
the photon, Prec. Once we obtained the direction of the photon, from the decay vertex to the
photon position Prec, we calculated the θ and φ. The shower length L is expressed as:

L(cm/X0) ≡

|Pinc − Prec|

X0

= p1 + p2 · ln(E(GeV)) (5.7)

where X0 is the radiation length of the CsI (1.85 cm), E is the incident energy, and p1, p2 are
free parameters. Using MC, we estimated p1 and p2 to be 6.22 and 0.98, respectively (Fig. 5.9).
After applying the position correction, the hit position of the photon was reconstructed cor-
rectly within 0.5 cm in a standard deviation as shown in Fig. 5.10.

Performance of photon reconstruction

We checked the performance of the photon reconstruction by using the data collected in the
π0 run with an Al plate inserted in the beam. The invariant mass of the two photons from the
π0 decay was calculated with the known vertex and the reconstructed energy and position of
the photons.

The peak position of the invariant mass, Mγγ , is correctly on the π0 mass after applying
both the energy and position corrections as shown in Fig. 5.11. Also as shown in Fig. 5.12, the
peak position of Mγγ does not depend on the minimum photon’s energy after the energy and
position corrections. These facts indicate that the energies and the positions were correctly
reconstructed.

Xclus

Xinc

x

z

Figure 3.9: Schematic view of the correction for cluster position. Due to the finite
length of shower, the center-of-energy position (xclus) is different from the incident
position of photon (xinc).
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5.2. INCIDENT ANGLE DISCRIMINATION 71
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Figure 5.4: A schematic view of the dynamical generation of templates as a function of the
distance between the center of the band and the incident position. The black line shows the
mean energy fraction in a 25 mm-wide band as a function of the distance. A 25mm-wide bar
shows the mean energy fraction of the column/row at each position. The green bar is the row
of interest. Figure on the left shows a template generated for the case where the distance from
the center of the row to the incident position was 25 mm. Figure on the right shows another
template generated for the distance of 12.5 mm.
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Figure 5.5: An example of shower shape fitting. The bin width corresponds to the width of a
crystal. The black histogram shows the energy fraction of a single photon in each row. The red
line shows the fitted template.

71

ro
w

 e
n
er

gy
 /

 t
o
ta

l 
en

er
gy

x [mm]

Figure 3.10: An example of the shape
method. The black histogram shows the
projected cluster shape to the x direction,
and the red line shows the fitting func-
tion. This figure is quoted from the ref-
erence [4].
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Figure 5.3: The mean fraction of energy in a
25 mm-wide band is shown as a function of the
distance between the center of the band and
the incident position. The black, red and blue
lines show the fraction for the incident angle
of 10◦, 20◦, and 30◦, respectively.

tector, and interactions between the beam and materials in the beam line. We fitted the central
part (±2σ) of the distribution with Asymmetric Gaussian (Equation 3.17) and used the typical
width, σ0, to compare the position resolutions. Figure 5.8 shows the obtained position resolu-
tions for various incident angles for data and Monte-Carlo simulations. The position resolutions
obtained with the new method are consistent between the beam test data and Monte-Carlo
simulation.

5.2 Incident angle discrimination

As described in Section 1.3.1, if we can discriminate the incident angles of photons, we can
suppress backgrounds caused by halo kaons and neutrons.

The incident angles can be discriminated with a likelihood ratio method. The basic idea of
this method is the following. We first reconstruct the KL → π0νν̄ decay from two photons with
the assumption that the two photons came from a π0 decay on the z-axis, and calculate the
incident angle of each photon. We next reconstruct the incident angle again assuming a certain
background. For each photon, we then have two incident angles for the two assumptions, signal
and background. We can then calculate the likelihood of the observed shower shape in the
calorimeter for each assumption. By comparing the likelihoods for the two assumptions, we can
distinguish signal from backgrounds.

The likelihood was calculated for the projection of the energy deposits on the x and y axes.
The likelihood of the i-th assumption is:

Li =
∏

j;γ

∏

x,y

∏

k;row

P (ek|Ej , dk, θij , φij) , (5.2)

where j is an index of the reconstructed two photons, k is an index of CsI crystal column, ek is
the energy deposit in the k-th column, dk is the distance between the center of the column and
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shape method. The fitting functions are
prepared for various photon kinematics.
The functions in the figure are for the
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gree incident angle. This figure is quoted
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Figure 3.12: Cluster energy distribution in a data file (corresponding to ∼20-minute
data taking). The MIP peak was located around 300 MeV. The peak position was
determined by fitting a Gaussian + a straight line as shown by the red line.



48 CHAPTER 3. THE CSI CALORIMETER ANALYSIS

day/month
09/02 16/02

M
IP

 p
ea

k 
po

si
tio

n 
[M

eV
]

280

285

290

295

300

305

310

315

320

325

330

the February run

day/month
14/06 15/06 16/06 17/06 18/06 19/06

M
IP

 p
ea

k 
po

si
tio

n 
[M

eV
]

280

285

290

295

300

305

310

315

320

325

330
the June run

Figure 3.13: Drifting of MIP peak position with time observed in the February run
(top) and in the June run (bottom).
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Chapter 4

The Spectrometer Analysis

The KL → πeν decays will be used to study the performance of the CsI calorimeter in
Chapter 6 and Chapter 7. The KL → π+π− and KL → π+π−π0 decays will be used
to measure the KL momentum spectrum in Chapter 8. In the final state of any of the
three decays, there are two charged particles, and both of them are reconstructed by
using the spectrometer.

In this chapter, I will first describe the analysis of the spectrometer to reconstruct the
two charged tracks. Subsequently, I will explain some corrections to increase the track-
ing accuracy. In the final section, I will estimate the spectrometer performance.

Alignment for the drift chambers and the trigger scintillators was important, because
a large systematic errors will arise if the alignment is inadequate. I will explain that
in Appendix C.

4.1 Reconstruction of Two Charged Tracks

4.1.1 Drift Chamber Analysis

I reconstructed the hit positions on the drift chambers from their TDC data.

TDC calibration

TDC data T [count] of each wire of the drift chambers was converted to a drift time
tdrift[nsec] assuming a simple linear correlation:

tdrift = a× T − t0, (4.1)

49
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where a [nsec /count] represents a conversion factor and t0 [nsec] represents an offset.
The a for each TDC channel was measured with a clock generator before the runs
started. It was typically 0.7 [nsec/count] for Repic-Dr.T, and 0.05 [nsec/count] for
GND-HRTDC.

The t0 for each wire was determined from the data. To select events which did not
include accidental hits or noises, I defined “hit cluster”. A particle could pass through
2 ∼ 4 successive wire cells in x and x’ (or y and y’) planes, as illustrated in Fig. 4.1.
Such successive hits were grouped as a “hit cluster” and considered to be made by one
incident particle. If there were 5∼8 successive hit wires, those were divided into two
hit clusters with 4 hit wires as shown in Fig. 4.2. If there were more than 8 successive
hit wires, those hits were ignored. As for the y plane of the 2nd chamber, where the y’
plane was not active due to a shortage of readout electronics, a single hit was treated
as a hit cluster. In order to derive the t0s, I required that there were only two hit
clusters in every wire plane. Figure 4.3 shows a typical tdrift distribution assuming
t0 = 0. I fitted a linear function to the rising edge of the distribution, and sought for
a timing where a value on the linear function was equal to be a half of the maximum
height of the distribution. The timing was set as t0.

34

(a) (b) (c)

Figure 4.1: Hit patterns that a charged particle can make. The arrow represents a
track of a charged particle and the circles represent hit sense wires. The 2∼4 hit
wires with the patterns in the figures and their flipped patterns were grouped as a hit
cluster.

X-T function

The drift time was converted to a drift length by using an X-T function fXT (tdrift).
The fXT was derived from the data. I selected events in which each wire plane had
just two hit clusters. The fXT was derived by integrating the drift time distribution,
g(tdrift), as

fXT (tdrift) =
h

2

∫ tdrift

min
g(t)dt∫ max

min
g(t)dt

, (4.2)
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35

+

Figure 4.2: More than 4 successive hit cells was divided into two hit clusters.

where h is the spacing of the sense wires. The fXT was prepared for each wire plane
separately. An example of fXT is shown in Fig. 4.4.

4.1.2 Track Candidate Selection

Because every chamber had multiple hits, many combinations of such hits were con-
ceivable. We had to select one of the combinations corresponding to the two charged
particles.

First of all, I picked a hit cluster in xx’ (or yy’) planes from each of three chambers.
These three hit clusters were a candidate to form a track in the x (or y) direction. For
y-track candidates, I required that the three hit clusters were located on a straight
line, as

|y2 − {y3 − y1

z3 − z1

(z2 − z1) + y1}| < 3σ, (4.3)

where yi and zi represent y and z positions of the hit cluster on the i-th chamber,
which was defined as an average position of the hit wires in the hit cluster. The σ
was calculated according to the error propagation by assuming that errors on the y-
positions were h/

√
12, where h is the gap of sense wires, and the z-position error was

zero.

Next, I made a combination of 2 x-track candidates and 2 y-track candidates as a
candidate of two charged tracks. I required some conditions for angles of those track
candidates. Before explaining the conditions, let me introduce the notation to denote
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Figure 4.3: Drift time distribution of a given wire. The rising edge was fitted with a
linear function as shown in solid line.

the angle,

θ
xR(L)
ij = arctan

x
R(L)
j − x

R(L)
i

z
R(L)
j − z

R(L)
i

θ
yD(U)
ij = arctan

y
D(U)
j − y

D(U)
i

z
D(U)
j − z

D(U)
i

, (4.4)

where xi and yi mean x and y positons of hit clusters on the i-th chamber. The
superscript R (or L) represent that, on the 1st chamber, the hit cluster of the track
was located right (left) of the other track . Similarly, the superscripts for y direction, D
and U, represent Down and Up, respectively. This notation is illustrated in Fig. 4.5. I
rejected the two-track candidates which satisfied any of the following conditions.

1. The two tracks had the same curvature directions.

(
θxR
12 − θxR

23

)× (
θxL
12 − θxL

23

)
> 3σ.

2. The two tracks could not intersect at upstream of the 1st chamber.

θxR
12 − θxR

23 > 3σ and θxR
12 − θxL

12 > 3σ
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Figure 4.4: (a) Drift time distribution g(t) of x-wire plane of the 1st chamber. (b)
The XT function, fXT . It was obtained by integrating g(t).

for x hit clusters, or,

θyD
12 − θyU

12 > 3σ

for y hit clusters.

In each of the conditions, the error σ was calculated from errors of the positions of hit
clusters by using the error propagation.

4.1.3 Track Path Reconstruction

Track paths were reconstructed for every remaining candidate of two charged tracks.

Tracking method

I used the tracking method based on [31, 32]. I will introduce only the essence of the
method here.

In general, x and y positions of any curved track path, xpath and ypath, can be described
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Figure 4.5: Schematic view of θ
xR(L)
ij , θ

yU(D)
ij defined in Eq. (4.4). White and black

circles represent the positions of hit clusters.

as a function of z position, as

xpath(z) = xpath(0) + x′path(0)z +

z∫

0

dz

z′∫

0

dz x′′path(z)

ypath(z) = ypath(0) + y′path(0)z +

z∫

0

dz

z′∫

0

dz y′′path(z), (4.5)

where the prime (′) indicates the differential to z. We cannot derive the track path from
these equations, because x′′path(z) and y′′path(z) in the right-hand side are unknown.

In this tracking method, the equations are modified as

xpath(z) = xpath(0) + x′path(0)z +
1

p

z∫

0

dz

z′∫

0

dz px′′path(z)

ypath(z) = ypath(0) + y′path(0)z +
1

p

z∫

0

dz

z′∫

0

dz py′′path(z), (4.6)

where the p is the momentum of the charged particle. Because now we consider
the charged particles moving in the magnetic field, the p is a constant. Although
the px′′path(z) and py′′path(z) are still unknown, they can be estimated by using the
known magnetic field and the roughly-estimated x′path(z) and y′path(z), as described
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in Appendix D.1. On the assumption that those double-integrals were given, the five
unknown parameters, xpath(0), ypath(0), x′path(0), y′path(0) and p−1, were determined
by fitting xpath(z) and ypath(z) to the positions measured with drift chambers. The
estimation of the double-integrals were then updated with the fit result, and the fitting
was repeated again. The parameters and the double integrals converged after iterating
this process 6 times.

In each iteration of the fitting, the parameters were determined to minimize the χ2

which was defined as

χ2 ≡
x wire plane∑

i

(Xi − xpath(Zi))
2

σ2
di

+

y wire plane∑
i

(Yi − ypath(Zi))
2

σ2
di

, (4.7)

where Xi (Yi, Zi) represents x (y, z) position of a hit on the i-th wire plane, and σdi is
the resolution of the drift length for the hit.1 The σd was set to 300 µm in all hits in
the beginning, and updated later after evaluating the position resolutions of the wire
planes which will be described later in Section 4.3.1. The Xi (or Yi) was calculated
using fXT of Eq. (4.2), as

X( or Y ) = s× fXT (tdrift)

cos θ
+ wire position, (4.8)

where the θ is the track angle projected to the x-z (or y-z) plane. In the first iteration
of the fitting, the cos θ was tentatively set to ∞, or the first term was ignored. From
the second iteration, the θ was set to the value obtained from the previous iteration.
The s is +1 or −1, to represent the side of the wire that the track passed through. If
the track passed through the left (above) side of x (y) wire, s = +1, otherwise s = −1.
In order to recognize the passed side, I used “sum of distances” which is described in
the following subsection.

In the case that a hit cluster included 3 or 4 hit wires, I used only two of them for the
fitting. I also used the “sum of distances” for selecting the two wires.

To reject tracks with bad combinations, I required that the χ2 defined in Eq. (4.7)
should be less than 10. This cut value was determined based on a Monte Carlo
simulation so that the efficiency for correct track candidates were 99%.

Sum of distance

Although the drift chamber can measure the distance between a wire and a track path,
it cannot tell which side of the wire the track passed through. If each of x and x’ sense
wire has a hit, there are four possible paths as shown in Fig. 4.6.

1The parameters to minimize the χ2 can be solved without any numerical solution, as described
in Appendix D.1.2. Thus, this tracking method generally takes less computing time than methods
with numerical calculation.
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d1

d2

x xÕ

Figure 4.6: Schematic view of the ambiguity. White circles represent x and x’ sense
wires. For drift lengths of x and x’ wires d1 and d2, there are four possible track paths
which correspond to common tangent lines as shown in red solid lines.

In order to solve this ambiguity, I calculated the “sum of distances (SOD)”. Defining
the drift length of x (or x’) wire as d (d′), the SODobs was defined as

SODobs ≡ −s× d + s′ × d′, (4.9)

where s (and s′) is +1 or −1 as used in Eq. (4.8)2. There are 4 combinations of s and
s′ which correspond to the 4 common tangent lines in Fig. 4.6.

As illustrated in Fig. 4.7, the expected value of the sum of distances, SODexp, can be
calculated from the track angle as

SODexp = h sin (θ + swire × 30◦) (4.10)

where h is the space of sense wires3 and θ is the incident angle projected on the x-z (or
y-z ) plane. The swire is +1 or −1. If the x (y) wire is located on the left (or upper)
side of the x’ (y’) wire, swire is positive, and vice versa.

In order to determine s and s′ in the fitting of the tracking process, I used ∆SOD
which was defined as

∆SOD ≡ SODobs − SODexp. (4.11)

In the first iteration of the fitting, s and s′ are assumed as 0. From the second iteration,
SODexp was calculated with the θ obtained in the previous iteration. The combination

2 Equation (4.9) becomes SODobs = d+ d′ if s = −1 and s = +1. That is why I call this quantity
“sum of distances”.

3It is equal to the distance between the closest x and x’ wire.
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Figure 4.7: Schematic view of SOD.. Because s = s′ = 1 and swire = −1 in this
example, SODobs in Eq. (4.9) becomes d′ − d and SODexp in Eq. (4.10) becomes
h sin (θ − 30◦). Both are consistent with “SOD” in the figure.

of s and s′ which made |∆SOD| minimum was adopted. As for the y plane of the 2nd
chamber where y’ plane was nonactive and SODobs could not be calculated, I selected
the s which made the hit position defined in Eq. (4.8) closer to the track path which
was derived from the previous iteration.

If a hit cluster included more than two wires, only two wires were used for the fitting in
the tracking process. In that case, the SODs were calculated for every combination of x
and x’ (or y and y’) wires, and the one with the minimum |∆SOD| was adopted.

Determination of two track paths

After the track path reconstruction, the matching with trigger scintillators was checked
for each candidate. I extrapolated two reconstructed tracks to the surface of the trigger
scintillators, and required that both of the extrapolated positions were located within
one of the hit scintillators or within 2 cm from the edge of them. In case that two
hit scintillators were channel 2 and channel 7, the event was discarded because both
of the scintillators were located at y=0 and we cannot match tracks in the x and y
views.

To select the most appropriate candidate, I used the minimum distance of the two
tracks, Lmin, to evaluate the goodness of the candidate. If two tracks were produced
from a KL decay, the two tracks should intersect at the decay vertex and Lmin should
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be nearly equal to zero. The candidate which made the Lmin minimum was adopted as
the correct two tracks in the event. Figure 4.8 shows the distribution of minimum Lmin.
To ensure the quality of the two tracks, I required that the minimum Lmin was less than
50 mm. This requirement reduced the acceptance by 4.3 % for the data, and 2.7 % for
Monte Carlo simulation. I also required that the two track paths are more than 5 mm
away from the massive materials in the experimental area, such as frame structures
of the drift chambers, the components of the magnet, and components of the beam
shutter. The events which did not satisfy these requirements were discarded.

[mm]minL

0 20 40 60 80 100

ar
bi

tra
ry

 u
ni

t

210

310

410

510
Data(best)
Data(2nd)
MC

Figure 4.8: The Lmin distribution. The black dots and the dashed line show the Lmins
of the best candidate and the second best candidate for the data, respectively, and the
red line shows the best candidate for the Monte Carlo simulation.

4.2 Improvements on Tracking Quality

In this section, I will introduce some updates and corrections to improve the tracking
quality.

4.2.1 X-T Function

The X-T function fXT which was defined as Eq. (4.2), was updated using the tracking
result. The updated function was determined to minimize the ∆SOD which was
defined in Eq. (4.11). I defined a χ2 as

χ2 ≡
∑
event

(∆SOD)2 . (4.12)



4.2. IMPROVEMENTS ON TRACKING QUALITY 59

where the summation was taken over events. With Eq. (4.9) and Eq. (4.11), it can be
written as

χ2 =
∑
event

(−s× fXT (t) + s′ × f ′XT (t′)− SODexp)
2
, (4.13)

where prime (′) indicates the value for x’ plane.

The shape of the old X-T function, f old
XT (Eq. (4.2)), was well expressed with a poly-

nomial function except the regions near the sense wire and near the edge of the wire
cell. I therefore parameterized the updated X-T function as

fXT (t; t5% < t < t95%) = fpol5(t)

fXT (t; t < t5%) =
fpol5(t5%)

f old
XT (t5%)

× f old
XT (t)

fXT (t; t > t95%) =
(
f old

XT (t)− f old
XT (t95%)

) h/2− fpol5(t95%)

h/2− f old
XT (t95%)

+ fpol5(t95%),

(4.14)

where h is the spacing of sense wires, and the t5% and t95% are the timings where the
fXT value becomes 5% and 95% of h/2, respectively. The fpol5(t) represents polynomial
function of fifth degree, i.e.:

fpol5(t) ≡
5∑

i=1

(ai(t− a0))
i . (4.15)

In other words, I used an old X-T function with appropriately scaling at the re-
gions where fXT ∼ 0 and fXT ∼ h/2, and used a fifth polynomial function in other
ranges.

The 10 parameters of fXT and f ′XT , ai(i = 0 ∼ 5) in Eq. (4.15), were determined by
minimizing the χ2 in Eq. (4.13) for each xx’ or yy’ wire plane pair of each chamber.
The ∆SODs and the fXT before and after the minimization are shown in Fig. 4.9.

As for the y plane of the 2nd chamber, where we cannot calculate the SOD because
the y’ plane was inactive, the X-T function was updated with another method. I
reconstructed the tracks without using the y plane of the 2nd chamber. The distance
between the tracks and hit wires at the y plane of the 2nd chamber is shown in Fig. 4.10
as a function of the TDC times of the hit wires. The X-T function was determined by
fitting the function in Eq. (4.14) to this plot.

4.2.2 Drift Time

I applyed two corrections to the drift time of the chambers.
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Figure 4.9: (a) The ∆SOD distribution of the x plane of the 2nd chamber calculated
with old fXT (black histogram) and with updated fXT (red histogram). (b) The old
fXT (t) (black line) and the updated fXT (t) (red line) of the x plane of the 2nd chamber.
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Figure 4.10: Histogram showing the distance of positions between the tracks and hit
wires at the y plane of the 2nd chamber. The black line shows the updated X-T
function.
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Table 4.1: Propagation velocities in sense wires.
propagation velocity[mm/nsec]

1st chamber 313± 15
2nd chamber 225± 4
3rd chamber 208± 3

• Propagation time in sense wire

It took a finite time to transmit signal pulses through the sense wires to the
PreAmps mounted on one side of the chambers. Consequently, the observed
drift time was different from the true value due to the propagation time in the
wire. By approximating that the drift velocity is constant in the wire cell, the
drift length differed due to this effect as

d → dmodif ≡ d + δd = d +
Lwire

Vwire

× Vdrift, (4.16)

where δd denotes the difference due to the propagation time in wire, Lwire and
Vwire represent the propagation length and velocity, respectively. The Vdrift

represents the average drift velocity and was estimated to be 50 µm/nsec. In
order to study this difference, I used ∆SOD defined in Eq. (4.11). Modifying
the drift length as Eq. (4.16), the ∆SOD was also modified as

∆SOD → ∆SODmodif ≡ −s× (dmodif ) + s′ × (d′modif )− SODexp

= ∆SOD + (s′ − s)
Lwire

Vwire

× Vdrift. (4.17)

By requiring s′ 6= s,

(−s)×∆SODmodif = (−s)×∆SOD + 2
Lwire

Vwire

× Vdrift. (4.18)

Thus, the (−s) × ∆SOD observed in the data should include the component
proportional to the propagation length Lwire. The dependence of ∆SOD upon
the Lwire is shown in Fig. 4.11 (The kink in the plot of yy’ wire plane is due
to a propagation time in a trigger scintillator which is described in a following
subsection). The propagation velocities of each chamber were then derived from
the slopes of the plots for x-planes which corresponded to 2Vdrift/Vwire. They
were estimated by linear fitting as summarized in Table 4.1.

The drift time, tdrift, was corrected as

tdrift → tdrift − Lwire/Vwire. (4.19)
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Figure 4.11: Dependence of ∆SOD multiplied (−s) upon the propagation length in
wire, Lwire. Here I required s 6= s′. The left and the right plots show the dependence
in x plane and y plane of the 3rd chamber, respectively. The red line in the left plot
shows a fit result with a linear function.

• Propagation time in the trigger scintillator

A scintillation light generated in a trigger scintillator took a finite propagation
time to reach a PMT. Similarly to the propagation time in wire, this effect was
also observed as the dependence of the ∆SOD with s 6= s′ upon the propagation
length, as shown in Fig. 4.12. I determined the propagation velocity of the
scintillation light as 23.3± 0.1 cm/nsec, by linear fitting with the plots for the y
planes. The drift time was then corrected as

tdrift → tdrift + Lscinti/Vscinti, (4.20)

where Vscinti and Lscinti represent the propagation velocity and length in the
scintillator, respectively.

After these corrections were applied, TDC offsets of each wire which were determined
in Section 4.1.1 were derived again with the corrected drift time.

Stability of trigger timing

The mean value of the ∆SOD drifted through the run time as shown in Fig. 4.13(a).
Because the shift was common to all the chambers, this shift should be caused by the
trigger signal. I set an offset for trigger timing for each data file corresponding to
about 20 minutes data taking so that the mean value of the ∆SOD of all the wire
planes became zero as shown in Fig. 4.13(b).
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Figure 4.12: Dependence of ∆SOD multiplied (−s) upon the propagation length in
the trigger scintillator. Here I required s 6= s′. The left and the right plots show the
dependence observed in the x plane and y plane of the 3rd chamber, respectively. The
red line in the right plot shows a fit result with a linear function.
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Figure 4.13: (a) Temporal shift of the ∆SOD multiplied (−s) with requiring s 6= s′.
The 2-dimensional histogram shows the (−s) × ∆SOD observed in the x wire plane
of the 2nd chamber, and the black line shows its mean value. The blue line shows a
mean value of the (−s)×∆SOD in the y wire plane of the 3rd chamber. (b) Plots in
(a) after applying the correction for the shift.
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4.3 Performance Evaluation

The performance of the spectrometer is evaluated in this section. First, the fluctuation
of the drift lengths measured with the drift chambers will be derived from the data.
Subsequently, the momentum resolution and the incident position resolution of the
spectrometer will be evaluated from the Monte Carlo simulation, by using the drift-
length fluctuation as the Monte Carlo input.

4.3.1 Fluctuation of Drift Length

The drift lengths measured with the drift chambers were fluctuated by several sources,
for example, the diffusion of the drift electrons. The difference of the measured drift
length from its true value was described as δd. I used the ∆SOD defined in Eq. (4.11)
to derive the distribution of δd. By assuming that the error on the SODexp is negligible,
the ∆SOD is related to the δd as

∆SOD = −sδd + s′δd′, (4.21)

where s is +1 or −1 as in Eq. (4.8), and a quantity with a prime mark (’) indicates
that it is a value related to the x’ wire plane. By requiring s 6= s′, we obtain

(−s)×∆SOD = δd + δd′. (4.22)

Figure 4.14(a) shows this (−s)×∆SOD observed in the data. Because the distribution
was not a Gaussian, the distribution of δd is not expected to be a Gaussian either.
Besides, a correlation was found between two ∆SODs of different wire planes, as
shown in Fig. 4.14(b).

To reproduce these features of the ∆SOD, I assumed that the δd had two component
as

δd = δdint + δdcom. (4.23)

The first component, δdint, describes a fluctuation intrinsic to each wire plane, such
as the diffusion of drift electrons or an inaccuracy of the X-T function. The second
component, δdcom, describes a fluctuation common to all wire planes, such as the timing
fluctuation of the trigger signal. The δdcom explains the correlation in Fig. 4.14(b).
The distribution of δd is then expressed as

f(δd) = [fint ∗ fcom](δd), (4.24)

where fint and fcom represent the distributions of δdint and δdcom respectively, and the
operator “*” means a convolution, i.e.:

[fint ∗ fcom](x) =

∫ ∞

−∞
fint(x

′)fcom(x− x′)dx′. (4.25)
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Figure 4.14: (a)The distributions of (−s)×∆SOD observed in the data, which corre-
sponded to δd+ δd′ as described in Eq. (4.22). Here I required s× s′ = −1. The black
and the red histograms show the distributions observed in x wire planes of the 2nd
and 3rd chambers, respectively. (b) Correlation of the ∆SODs between the different
wire planes.

I reconstructed the forms of fint and fcom separately with following steps. First, I
took the difference between two ∆SODs to eliminate the contribution from the dcom.
Because there were two charged tracks in each event, there were two ∆SODs in each
wire plane. By subtracting one of the two ∆SODs from the other and requiring s 6= s′,
the common fluctuation was canceled and we could obtain the contribution from the
δdint only, as

∆(∆SOD) ≡ s(1)∆SOD(1) − s(2)∆SOD(2)

= −
(
δd

(1)
int + δd

(1)′
int + 2δdcom

)
+

(
δd

(2)
int + δd

(2)′
int − 2δdcom

)

= −δd
(1)
int − δd

(1)′
int + δd

(2)
int + δd

(2)′
int , (4.26)

where superscripts (1) and (2) represent the track ID. Describing the convolution of
two fint as

Fint(x) = [fint ∗ fint](x), (4.27)

the distribution of ∆(∆SOD) is expressed as the convolution of Fint(x) and Fint(−x).
The ∆(∆SOD) observed in the data is shown in Fig. 4.15(a). It was fitted well with
a triple Gaussian ftgaus which is defined as

ftgaus(x) =
1− A2 − A3√

2πσ1

exp

(
−(x− µ)2

2σ2
1

)

+
A2√
2πσ2

exp

(
−(x− µ)2

2σ2
2

)
+

A3√
2πσ3

exp

(
−(x− µ)2

2σ2
3

)
. (4.28)
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I assumed that the fint(x) also could be expressed with the triple Gaussian. The Fint

is then expressed as
Fint(x) = [ftgaus ∗ ftgaus](x), (4.29)

and the ∆(∆SOD) distribution is expressed as

f∆∆(x) ≡ N × [Fint ∗ Fint] (x), (4.30)

where N is a normalization factor. The f∆∆(x) is calculable numerically. The f∆∆(x)
was fitted to the observed ∆(∆SOD) distribution to determine the parameter set
(N, A2, A3, µ, σ1, σ2 and σ3). The fit result and the obtained fint(x) are shown in
Fig. 4.15(a) and (b).
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Figure 4.15: (a) The ∆(∆SOD) distribution defined in Eq. (4.26). The black his-
togram shows the data of x-plane of the 2nd chamber. The red line shows the best fit
of f∆∆(x) which was defined in Eq. (4.30). (b) The fint derived from the fitting.

Next I derived the fcom. Requiring s 6= s′, Eq. (4.21) was rewritten as

(−s)×∆SOD = δdint + δd′int + 2δdcom. (4.31)

Therefore, the distribution of the (−s) × ∆SOD was expressed with the following
function,

f∆(x) =

∫
dx′[fint ∗ fint](x

′)fcom(
x− x′

2
). (4.32)

The fint was already derived as the triple Gaussian, and consequently [fint ∗ fint] is
calculable. The fcom was derived by unfolding the contribution of the [fint ∗ fint] from
the measured (−s) × ∆SOD distribution, by using TUnfold in ROOT library [33,34]
which provides a function to solve unfolding problems.An example of the distributions
of (−s) × ∆SOD was already shown in Fig. 4.14(a). The [fint ∗ fint] and the derived
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fcom(x) are shown in Fig. 4.16(a). The average of the derived fcoms of all wire planes
is shown in Fig. 4.16(b). It was parameterized with three Gaussians, i.e.:

fcom(x) =
2∑

i=0

Ai exp

(
(x− µi)

2

2σ2
i

)
. (4.33)
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Figure 4.16: (a) The [fint ∗ fint](x) (green) and fcom(x/2) (red), which appeared in
Eq. (4.32), for an x wire plane of the 2nd chamber. (b) An average of the fcoms derived
from all wire planes (black) and its fit result with three Gaussians (red).

The RMS of the derived fcom was 0.165 mm in the February run and 0.222 mm in the
June run, and those of the derived fint are summarized in Table 4.2. The performance
of the 1st chamber in the February run was worse than that in the June run because
the voltage supplied to the preAmps of the 1st chamber was set lower than usual to
suppress observed noises in the February run. A quadratic sum of the fint RMS for
each wire plane and the fcom RMS is also shown in Table 4.2 and 4.3. It corresponded
to the position resolution of the wire plane, and used as the σd in Eq. (4.7) to calculate
the χ2 of the track in the tracking process.

4.3.2 Momentum Resolution and Incident Position Resolu-
tion

The track position resolution at the CsI calorimeter z position and the momentum
resolution of the spectrometer were derived from the Monte Carlo simulation. Hit
positions on the chambers were fluctuated with the fint and fcom derived above. Details
of the Monte Carlo simulation are described in Appendix B.
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Table 4.2: An RMS of the fint and σd (= (RMS of fint) ⊕ (RMS of fcom)) for each
wire plane in the February run.

(The February Run)
chamber wire plane RMS of fint[mm] σd[mm]

1st x 0.467 0.495
y 0.462 0.490

2nd x 0.248 0.298
y - -

3rd x 0.292 0.335
y 0.265 0.312

Table 4.3: An RMS of the fint and σd (= (RMS of fint) ⊕ (RMS of fcom)) for each
wire plane in the June run.

(The June Run)
chamber wire plane RMS of fint[mm] σd[mm]

1st x 0.179 0.285
y 0.182 0.287

2nd x 0.218 0.311
y - -

3rd x 0.207 0.303
y 0.208 0.304
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In the simulation, charged tracks were reconstructed with the same procedure as the
data. The reconstructed momentum and incident positions to the calorimeter were
compared to the Monte Carlo true values, as shown in Fig. 4.17. The resolutions
were evaluated from the width of these distributions. The momentum resolution σp is
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Figure 4.17: Residuals between the reconstructed value and the Monte Carlo true
value for the momentum (a) and the incident position (b).

expressed as

σp(p)

p
≡ ap ⊕ bp × p[GeV/c]

= (1.347± 0.011+0.101
−0.038)%⊕ (2.618± 0.007+0.039

−0.017)%× p[GeV/c] (4.34)

for the February run and

σp(p)

p
= (1.286± 0.010+0.101

−0.038)%⊕ (1.981± 0.007+0.039
−0.017)%× p[GeV/c] (4.35)

for the June run, where p represents a momentum. The first error of each parameter
was derived from Monte Carlo statistics, while the second error shows the systematic
uncertainty which is described in the next section. The incident position resolutions
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for x direction, σx, and for y direction, σy, were expressed as

σx(p)[mm] ≡ ax ⊕ bx

p[GeV/c]

= (3.089± 0.009+0.297
−0.036)⊕

(2.009± 0.013+0.175
−0.049)

p[GeV/c]

σy(p)[mm] ≡ ay ⊕ by

p[GeV/c]

= (1.056± 0.008+0.143
−0.064)⊕

(2.377± 0.007+0.090
−0.060)

p[GeV ]
(4.36)

for the February run and

σx(p)[mm] = (2.368± 0.011+0.297
−0.036)⊕

(2.017± 0.011+0.175
−0.049)

p[GeV/c]

σy(p)[mm] = (0.6604± 0.025+0.143
−0.064)⊕

(2.02± 0.01+0.090
−0.060)

p[GeV ]
(4.37)

for the June run. Due to the worse position resolutions of the chambers, the spectrom-
eter resolutions in the February run were worse than those in the June run. These
functions for the June run are shown in Fig. 4.18.
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Figure 4.18: Resolution functions of the momentum (a) and the incident position (b)
described in Eq. (4.35) and Eq. (4.37).
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Table 4.4: Systematic uncertainty of the momentum resolution (σp/p) and the x and
y position resolutions (σx and σy) of the spectrometer. The parameters, ap (x,y) and
bp (x,y), are defined in Eq. (4.35) for σp/p, in Eq. (4.37) for σx and σy.

σp/p[%] σx[mm] σy[mm]
ap bp ax bx ay by

magnet
resolution +0.005 0 +0.002 0 +0.003 -0.001

0 -0.006 0 -0.003 -0.001 -0.001
direction +0.004 +0.002 +0.001 0 0 0.008

-0 -0.006 -0.001 0 -0.004 0
offset +0.018 +0.004 +0.001 +0.009 0.002 0.018

0 -0.014 -0.002 0 -0.005 0
asymmetry +0.101 0 +0 +0.137 0 0.002

-0 -0.007 -0.041 -0 -0.003 0
ANSYS +0.004 0 +0.004 +0.012 0.001 0

0 -0.004 -0.004 0 -0.001 -0.001

multi. scat. model +0 +0.020 +0.037 +0.041 +0.034 +0
-0.004 -0.003 -0.007 -0.048 -0.063 -0.057

chamber alignment

1st chamber +0.013 0 +0.028 +0.028 +0.181 +0.014
0 -0.014 -0.015 -0.008 -0.003 -0.006

2nd chamber +0.013 0 +0.005 +0.002 +0.001 0
0 -0.014 0 -0.009 0 -0.001

3rd chamber +0.014 0 +0.009 +0.009 +0.004 +0.002
0 -0.015 -0.004 -0.009 -0.003 -0.002

total +0.105 +0.020 +0.048 +0.146 +0.184 +0.024
-0.004 -0.031 -0.045 -0.050 -0.064 -0.057

4.3.3 Uncertainties of the Resolutions

Table 4.4 shows the systematic uncertainties of the parameters (a and b) of the mo-
mentum resolution and the position resolution of the spectrometer. All items in the
table were quadratically summed. In the following, I will explain the source of each
uncertainty.
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Accuracy of magnetic field measurement

As described in Section 2.2.1, I measured the magnetic field of the spectrometer magnet
in the X > 0 and Y > 0 region. In addition, the field was measured for several points
at X = 0 and Y < 0, and also at Y = 0 and X < 0, to study the systematic uncertainty
related to the measurement. The measured region is illustrated in Fig 4.19.
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Figure 4.19: Points where the magentic field was measured are illustrated. Some red
points shows points where the measurement was done twice. Some points near the
dent of the upstream end guard around X = −300 mm were measured in addition,
which are illustrated as blue points.

• Resolution of the measuring instrument

The field measurement was done twice for some points shown in red in Fig 4.19.
Figure 4.20 shows the difference of those two measurements. The resolution of
the measuring instrument was estimated as 4.7 Gauss, from the RMS of the
difference divided by

√
2.

To study the effect of this uncertainty on the spectrometer resolution, the mag-
netic field of every measured points was fluctuated randomly in the simulation
with a Gaussian with σ = 4.7 Gauss. I tested 9 patterns of the fluctuations.
The parameters of the resolution, a and b, were estimated for each pattern. The
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Figure 4.20: Differences of the magnetic field between two measurements. The red,
green, and blue histograms show the differences of x, y, and z components of the field,
and the black histogram shows the sum of those 3 histograms.

mean ± RMS of the 9 trials was adopted as the systematic error of the parameter
which is shown in the “resolution” items in Table 4.4.

• Direction of the measured field.

Because the magnet had almost symmetric configuration in both vertical and
horizontal directions, it was expected that the x and z component of the magnetic
field on the z axis should be zero. The measured values, however, were not
zero and they had correlation with the y component of the field, as shown in
Fig. 4.21(a, b). This indicates that the direction of the measured field was
misaligned. Assuming that the direction misalignment was small enough, the
real field, B′

x, B
′
y and B′

z, can be expressed with the measured field, Bx, By and
Bz, as 


B′

x

B′
y

B′
z


 =




1 −θz θy

θz 1 −θx

−θy θx 1







Bx

By

Bz


 (4.38)

where θx, θy, and θz represent the rotation angles around x, y, and z axis.

By fitting a linear function to the scattered plots in Fig. 4.21(a, b), θx and θz
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were derived from the slope of the linear function as 0.022 and -0.0016 rad,
respectively. The θy was determined by using the measurement points at x = 0
and y 6= 0 where B′

x should be zero. The θy corresponded to the slope of
(Bx − θzBy) vs Bz plot which is shown in Fig. 4.21(c). It was estimated as
θy = −0.00308. The measured field was corrected with these rotational angles.

The scattered plots in Fig. 4.21 have parabola shapes. As described in the next
topic, this shape is related to the offset of the magnetic field. An ambiguity to
determine the θx(y,z) arose due to this parabola shape. To evaluate the effect
of this ambiguity on the estimation of the spectrometer resolutions, I did linear
fittings separately for the one side and the other side of the parabola, as shown
in the blue lines in Fig. 4.21. The rotational angles derived from the fittings
denote θU

x(y,z) and θD
x(y,z). I ran the simulation with using θU

x(y,z) or θD
x(y,z) for a

correction instead of θx(y,z). As a result, the parameters of the resolution formula
were changed as shown in the “direction” items in Table 4.4. I adopted these
changes as the systematic errors.

(a) Bx VS By

[Gauss]y B

4000 5000 6000 7000

[G
au

ss
]

xB

-18

-16

-14

-12

-10
 / ndf 2χ   67.6 / 31

p0        1.811± -7.471 
p1        0.0002908± -0.0016 

 / ndf 2χ   67.6 / 31
p0        1.811± -7.471 
p1        0.0002908± -0.0016 

(b) Bz VS By

[Gauss]y B

4000 5000 6000 7000

[G
au

ss
]

zB

80

100

120

140

160

180

200
 / ndf 2χ  1.067e+04 / 31

p0        22.75±  22.5 
p1        0.003653± 0.02188 

 / ndf 2χ  1.067e+04 / 31
p0        22.75±  22.5 
p1        0.003653± 0.02188 

(c)(Bx − θzBy) VS Bz

[Gauss]z B

-4000 -2000 0 2000 4000

[G
au

ss
]

yB Zθ- xB

-20

-15

-10

-5

0

5

10

15

 / ndf 2χ   4018 / 896
p0        0.0714± -7.104 
p1        5.927e-05± -0.003082 

 / ndf 2χ   4018 / 896
p0        0.0714± -7.104 
p1        5.927e-05± -0.003082 

Figure 4.21: Correlations between the components of the magnetic field. (a) The x
vs y components on the z axis. (b) The z vs y components on the z axis. (c) The x
vs z component at x=0. The red line in each plot shows the result of linear fit with
using all points. Blue lines are also linear fit results, but using only the points above
or below the red line.

• Offset of the measured field.

As shown in Fig. 4.22, the Bx values and the Bz values on the z-axis had non-zero
values which depended on z position, although they were expected to be zero
from the symmetrical shape of the magnet. This was a source of the parabola
shape which was described in the previous topic. Each side of the parabola
corresponded to values in z > 0 and z < 0 region.

The source of this dependence is still unknown. I assumed that the field had a
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Figure 4.22: The x component (a) and z component (b) of the magnetic field on the
z-axis. They had unknown dependence on z position.

z-depended offset, and estimated the uncertainty of the spectrometer resolutions
due to such offset. I assumed three types of the offset forms:

1. The z-depended offset. The Bx and Bz values shown in Fig. 4.22 were used
as the offset for each z position.

2. A constant offset of -7.5 Gauss for x component, and 22.5 Gauss for z
component. These values are corresponding to the components at the center
of the magnet.

3. No offset.

With these offsets, the parameters of the resolution changed as shown in the
“offset” items in Table 4.4. I adopted these changes as systematic uncertainties.

• Asymmetry along vertical and horizontal directions.

I measured the magnetic field only in the first quadrant, that is, X > 0 and
Y > 0 region. For other quadrant region, the measured field was appropriately
inverted assuming the symmetry along both in vertical and horizontal directions.

I checked the symmetry along the vertical direction by comparing the y compo-
nents of the field, By, at Y > 0 and X = 0 with those at Y < 0 and X = 0.
Similarly, the symmetry along horizontal direction was checked by comparing By

at X < 0 and Y = 0 with those at X > 0 and Y = 0 . As shown in Fig. 4.23,
the asymmetry of the field was less than 2% around the center of the magnet
and tended to be larger around the end guards. A region surrounded by the
magenta line in the figure had a relatively large asymmetry because there was
a 10 × 10-cm dent on the upstream end guard. Instead of inverting the filed of
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1st quadrant, the field was additionally measured for a region around the dent
which is shown in Fig. 4.19 with blue points.
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Figure 4.23: (a) Horizontal asymmetry of the y component of the magnetic field, or,
(By(−x, 0, z)−By(x, 0, z))/By(x, 0, z). (b) Horizontal asymmetry, or, (By(0,−y, z)−
By(0, y, z))/By(0, y, z). The region surrounded by the black line had no measured
data because of the end guard. The field was additionally measured around the region
surrounded by the magenta line

To evaluate the uncertainty due to this asymmetry, I assumed that a magnetic
field at all points in X < 0 (or Y < 0) region had the same rate of the asymmetry
in Fig. 4.23(a) (or (b)). With and without such assumption, the parameters of
the resolution changed as shown in the “asymmetry” items in Table 4.4. I
adopted those changes as systematic uncertainties. This is the largest source of
uncertainty for the parameter a in σp/p: +0.099%, and also for the parameter b
in σx: +0.126 mm.

Consistency of ANSYS simulation for magnetic field

As described in Section 2.2.1, the field value calculated with ANSYS was used in the
range outside the measurement. The consistency between the ANSYS calculation and
the measurement was checked by comparing the values around the center of the magnet
where the calculated value and the measured value both existed. The comparison
was executed for points within −200 < x < 200 mm, −200 < y < 200 mm, and
−400 < z < 400 mm with respect to the center position of the magnet. The RMS of
the difference between the ANSYS calculation and the measurement was less than 4
%.
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I changed the scale of the values calculated by ANSYS by this difference, ±4%, in
the simulation. The parameters of the resolution changed as shown in the “ANSYS”
items in Table 4.4. I adopted those changes as systematic uncertainties.

Uncertainty of multiple scattering models

I used the G4UrbanMscModel95 model to simulate multiple scattering. Geant4 9.5
supports other models, G4GoudsmitSaundersonMscModel and G4WentzelVIModel. I
ran the simulation with these two models. The parameters of the resolutions changed
as shown in the “multi. scat. model” items in Table 4.4. I adopted those changes as
the systematic uncertainties.

Drift chamber alignment

As described in Appendix C, the position displacements of the drift chambers were
represented with the parallel translation δia and the rotation θia ( where the subscript
i = 1, 2, 3 represents the 1st, 2nd and 3rd chamber in order, and the subscript a =
x, y, z represents the direction to translate or the axis to rotate around). Their values
and errors were estimated as shown in Table C.1.

To estimate the effect of the chamber displacement on the spectrometer resolutions,
the translations and rotations in the simulation were fluctuated randomly within their
errors. When the values of the 1st chamber were fluctuated, the corresponding val-
ues of the 2nd and 3rd chambers were also modified, because the displacement of the
2nd and 3rd chambers were derived with assuming that the position of the 1st cham-
ber was correct. Similarly, when the values of the 3rd chamber were fluctuated the
corresponding values of the 2nd chamber were modified.

I prepared 9 patterns of the fluctuation for each component. The parameters of the
resolution were estimated for each pattern, and the mean ± RMS of the 9 trials was
calculated. The square sum of the mean ± RMS of all the component was adopted as
the systematic error of the parameter. They are shown in the “chamber alignment”
items in Table 4.4. These are dominant uncertainties for the parameters of σx and
σy.



Chapter 5

CsI Energy Calibration with
Electrons

The energy calibration of the CsI calorimeter was performed by using cosmic rays, as
described in Section 3.2. A calibration with using electromagnetic showers is, however,
preferable because there is nonuniformity of light output along the z direction of CsI
crystal and consequently CsI outputs made by cosmic rays are different from those
made by electromagnetic showers.

In this chapter, I will derive calibration factors again with electrons which were tracked
by the spectrometer. I will explain the selection criteria for electrons in the first section.
The method to determine the calibration factors is given next. If a nonlinearity of the
FADC exists, the calibration performance will become worse. The nonlinearity was
checked and corrected for in the third section. The accuracy of the calibration factors
is estimated in the last section.

5.1 Electron Selection

Electrons were identified by using both the CsI calorimeter information and the spec-
trometer information cooperatively.

5.1.1 Matching Tracks and Clusters

The tracks which were reconstructed with the spectrometer were related to the clusters
observed in the CsI calorimeter according to their positions. If the track position
extrapolated to the calorimeter was located within 100 mm of a cluster position, the
track was associated with the cluster. To avoid mis-associating, I required that there

78
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were no other clusters within 100 mm of the track position. The distributions of the
distances to the nearest and the second nearest clusters from the track position are
shown in Fig. 5.1.
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Figure 5.1: Distance between the incident position of charged particles tracked with
the spectrometer and the cluster position. The black line shows the distance to the
nearest cluster, and the red line shows that to the second nearest. The blue line shows
the distance to the nearest cluster after applying the electron selection cuts described
in the following section.

5.1.2 ECsI/E
vis
spec Ratio

Because electrons made electromagnetic showers and deposited almost all of their en-
ergies on the CsI calorimeter, the ratio of the energy measured by the CsI calorimeter,
ECsI , to the momentum measured with the spectrometer, pspec, had a clear peak cen-
tered at 1. This was a signature of electrons. To be more precise, the ECsI differed
from pspec by energy deposits in materials in front of the CsI calorimeter such as the
trigger scintillators, the CsI covers, and air. The total amount of such energy deposits,
Ematerial

dep , was 8.0 MeV based on the Monte Carlo simulation. As for positrons, the
energy deposits also differed by the positron mass because the energy equivalent to
their mass was deposited in the calorimeter through annihilation. I defined the visible
energy measured with the spectrometer, Evis

spec, as

Evis
spec =

√
m2

e + p2
spec + Q×me − Ematerial

dep , (5.1)

where me denotes the electron mass and Q represents a sign of the charge of the track.
The ECsI/E

vis
spec ratio is shown in Fig. 5.2. A clear peak made by electrons was found



80 CHAPTER 5. CSI ENERGY CALIBRATION WITH ELECTRONS

around ECsI/E
vis
spec = 1. The events with the ECsI/E

vis
spec < 0.8 in the figure were

considered to be made dominantly by pions and muons from KL decays. We need
further selection cuts to suppress their contamination to the electron peak.
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Figure 5.2: Ratio of the ECsI to the Evis
spec. The black dots shows the measured

data, while the histograms shows the expectation from the Monte Carlo simulation.
The colors represent kinds of incident particles. The red, light blue, and magenta
show electrons, pions, and muons generated from KL decays, respectively. The yellow
shows particles generated from KL hadronic interactions or from decays of KL daughter
particles. The green shows particles generated from neutron interactions.

5.1.3 Selection Cuts

I applied selection cuts as follows, to identify the electrons and to guarantee the data
quality.

1. FADC range cut.

To avoid an overflow from the range of the FADC (14-bits), I required the maxi-
mum FADC count of every waveforms in the cluster to be less than 15000 counts.

2. CsI fiducial region cut.

To ensure that electromagnetic showers did not leak from the effective area of the
calorimeter, I allocated an edge region and a fiducial region on the calorimeter
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as shown in Fig. 5.3. I required that the both positions measured with the
calorimeter and the spectrometer were located within the fiducial region.
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Figure 5.3: Region allocation of the CsI calorimeter. The condition in the February
run and the June run are shown in (a) and (b), separately. The white area shows the
fiducial region, while the red shows the edge region. The blue filled blocks are inactive
crystals.

3. The k+−0 cut.

To suppress the contamination from KL → π+π−π0 decays, I introduced a pa-
rameter called k+−0 which was used in the KTeV experiment [35]. It was defined
as

k+−0 =

(
m2

KL
−m2

+− −m2
π0

)2 − 4m0
+−m2

π0 − 4m2
KL

p2
t

4 (m2
+− + p2

t )
, (5.2)

where mKL
and mπ0 are the masses of KL and π0, respectively. The m+− and

the pt represent the invariant mass and the transverse momentum of the system
of two charged particles, respectively.

The physical meaning of the k+−0 is that the square of the longitudinal mo-
mentum of the π0 from the KL → π+π−π0 decay along KL flight direction in a
frame where the π+π− pair has no longitudinal momentum. If the two charged
particles did not come from the KL → π+π−π0 decay, k+−0 tend to be negative
as shown in Fig. 5.4(a). I required that the k+−0 was less than −9000 MeV2.

4. Shape χ2 cut.

To evaluate a cluster shape on the calorimeter, the KOTO experiment uses a
variable called “shape χ2”. This value is calculated by comparing the observed
energy deposit in each crystal with its expectation derived from a Monte Carlo
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simulation. If the cluster is made from a normal electromagnetic shower, the
shape χ2 becomes∼1. The details of the shape χ2 is described in Appendix A.1.2.

The distribution of the shape χ2 is shown in Fig. 5.4(b). Clusters made by
electrons tend to have smaller shape χ2 values than the clusters made by other
particles. I required the shape χ2 to be less than 2.5.

5. Cluster size cut.

The pions and muons often passed through the calorimeter as MIPs. In such
a case, energy deposits were made on only a few CsI crystals, as shown in
Fig. 5.4(c). I required the number of crystals in the cluster to be > 5.

6. ECsI/E
vis
spec cut.

The distribution of the ECsI/E
vis
spec ratio after applying all the cuts above is shown

in Fig. 5.4(d). I required 0.8 < ECsI/E
vis
spec < 1.2.

The number of electron candidates passing through all the selection cuts was 2.2×105.
The energy distribution is shown in Fig. 5.5.

5.2 Calibration Using Electrons

Energies of electrons incident on the CsI calorimeter, Einc, were reconstructed as shown
in Eq. (3.4) and Eq. (3.7). By making the calibration constants visible, the Einc was
rewritten as

Einc =
1

fEcor

∑
i

ci × Ii, (5.3)

where ci and Ii represent the calibration constant and the waveform integral of the
i-th crystal respectively, and fEcor is the correction function defined in Eq. (3.8).

To determine the calibration constants, I defined χ2 as

χ2 =
∑

events

(
Einc − Evis

spec

σspec ⊕ σCsI

)2

, (5.4)

where σspec and σCsI represent the momentum resolution of the spectrometer and the
energy resolution of the calorimeter, respectively. The summation was taken over all
electron events. The σspec was derived as Eq. (4.35) in Section 4.3. The σCsI was
assumed to be the KOTO design value,

σCsI

E
= 1%⊕ 2%√

E[GeV ]
. (5.5)
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The set {ci} was determined to make the χ2 minimum. In such case, a partial differ-
entiation of the χ2 to a given cj should be zero, i.e.:

∂χ2

∂cj

=
∑

events

2Ij

fEcor ×
(
σ2

spec + σ2
CsI

)
(

1

fEcor

∑
i

ci × Ii − Evis
spec

)

=
∑

i

ci ×
( ∑

events

2IjIi

f 2
Ecor ×

(
σ2

spec + σ2
CsI

)
)
−

∑
events

2IjE
vis
spec

fEcor

(
σ2

spec + σ2
CsI

)

= 0. (5.6)

This equation exists for all the active CsI crystals. All these equations are linear
combinations of the set of {ci}. I solved them by using Gaussian elimination, and
obtained optimal values of {ci}.
The width of ECsI/E

vis
spec distribution became narrower after the χ2 minimization as

shown in Fig. 5.6. The difference of the new calibration constants from the old cali-
bration constants derived from the cosmic-ray analysis is shown in Fig. 5.7. The new
constants of crystals in the edge region defined in Fig. 5.3 were largely different from
the old constants. This difference was due to shower leaking out of the CsI calorimeter.
For the crystals in the edge region, I kept using old calibration constants.

5.3 Nonlinearity Correction

I found that the mean value of the ECsI/E
vis
spec of electrons depended on the maximum

waveform height of all crystals in the cluster, as shown in Fig. 5.8. This suggested
that there was nonlinearity of the FADC, that is, waveform integrals recorded with
the FADC did not keep a linear correlation with energy deposits in crystals.

An existence of the nonlinearity was also confirmed with a laboratorial test where
known pulses generated by a function generator were injected to the FADC. The
saturation of waveform heights recorded on the FADC were found in the test as shown
in Fig. 5.9(a). The ratio of waveform integrals on the FADC to input also changed
according to the pulse height as shown in Fig. 5.9(b).

Because the nonlinearity depends on the pulse shape, we do not use the result of the
laboratorial test for the correction for the nonlinearity effect. Instead, I made the
correction function from the observed data shown in Fig. 5.8. The mean value was
calculated for every x-bin of the 2-dimensional histograms in the figure, and a line
interpolating those mean values linearly was used as the tentative correction function
denoting f tmp

nonL. Here, the events was divided into two data sets. In one data set, the
maximum energy deposit was located on a small crystal, and in the other set it was
located on a large crystal. The tentative correction function was derived separately for
each data set, to use for the correction for small crystals and for large crystals.
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The energy in each crystal was corrected by using the correction function as

e → e′ = e× (
1− f tmp

nonL(h)
)
, (5.7)

where e and h represent the energy and the waveform height of the crystal. The plots
like Fig. 5.8 were drawn again with corrected energies, and the mean value for each
x-bin was calculated. The f tmp

nonL was modified by the mean values. This process was
iterated 4 times, and the f tmp

nonL was converged as shown in the black line in Fig. 5.10.
Finally, the tentative function f tmp

nonL were parameterized as a smooth function fnonL

which is defined as

fnonL(h; h < µ) = 0

fnonL(h; h >= µ) = A×
(

exp[−(h− µ)2

2σ2
]− 1

)
, (5.8)

where the h denotes the maximum waveform height in the cluster. The parameters
A, µ and σ were estimated as

A = 0.134,

µ = 3.33× 103[counts],

σ = 5.6× 103[counts],

for small crystals, and

A = 0.058,

µ = 3.4× 103[counts],

σ = 5.3× 103[counts],

for large crystals. The function form is shown in the red lines in Fig. 5.10.

The dependence on the maximum height disappeared after the nonlinearity was cor-
rected with the fnonLs, as shown in Fig. 5.11. The calibration process explained in
the previous section was executed before and after this derivation of the correction
function.

5.4 Accuracy

To check the accuracy of the calibration, I divided the data into two parts, events with
n < 5 and n ≥ 5 where n represents the lowest digit of the serial event number. I did
the calibration for each data set, and compared the derived calibration constants each
other as shown in Fig. 5.12. Evaluating the difference of the calibration constants
between the two data sets with Gaussian fit and dividing by

√
2, the accuracy of

calibration constants was estimated as 0.669±0.016 %.
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Figure 5.4: (a) The k+−0 distribution. (b) The shape χ2 distribution. (c) Distribution
of number of crystals in each cluster. (d)The ECsI/E

vis
spec distribution. The black dots

show the data, while the filled histograms show the estimation from the Monte Carlo
simulation. The color difference in (a) represents the decay mode. The red, light blue,
and magenta show KL → πeν, KL → π+π−π0, and KL → πµν decay, respectively.
The yellow and green show the hadronic interaction of KL’s and neutrons, respectively.
In other plots, colors represent types of incident particles. the red, light blue, and
magenta show electrons, pions, and muons generated from KL decays. The yellow
show particles generated from KL hadronic interactions or decays of KL daughter
particles. The green shows particles generated from hadronic interactions of neutrons.
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Figure 5.5: The Evis
spec distribution after applying all the selection cuts. The black

dots shows the measured data with statistic errors. Colors represent types of incident
particles. the red, light blue, and magenta show electrons, pions, and muons generated
from KL decays. The yellow show particles generated from KL hadronic interactions
or decays of KL daughter particles. The green shows particles generated from hadronic
interactions of neutrons.



5.4. ACCURACY 87

vis
spec/ECsIE

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

#
 o

f 
e

v
e

n
t

0

2

4

6

8

10

3
10!

hEOverP_itr2

Entries  184691
Mean   0.9961

RMS    0.04619

Figure 5.6: The ECsI/E
vis
spec distribution before the χ2 minimization (black) and after

the χ2 minimization (red).
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Figure 5.8: (a) Dependence of the ECsI/E
vis
spec − 1 on the maximum height of the

waveforms in the cluster. The left (right) plot shows the events in which the maximum
energy deposit was located on the small (large) crystal. (b) Nonlinearity after applying
the correction.

58

time[ns]

-100 0 100 200

F
A

D
C

 c
o

u
n

t 
/ 
in

p
u

t 
c
h

a
rg

e
 (

n
o

rm
a

ri
z
e
d

)

0

0.2

0.4

0.6

0.8

1

(a)

pulse height [FADC count]

0 5 10 15

3
10!

o
u

tp
u

t 
/ 
in

p
u

t 
(n

o
rm

a
liz

e
d

)

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

(b)

Figure 5.9: (a) Waveform shapes recorded on the FADC in the laboratorial test. The
black dots show the waveform when a height of input pulse was 50 mV (corresponding
to ∼ 125 MeV energy deposit), while the red dots show the waveform with 280 mV
input (corresponding to ∼ 700 MeV). (b) Ratio between output and input charge as
a function of the output pulse height.
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Figure 5.10: The correction function for nonlinearity. The red line shows fnonL
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Chapter 6

The Shower Shape Study

In this chapter, I will describe the study for the shower shape made in the CsI calorime-
ter. The importance of this study will be explained in the first section. The data
selection used for the study will be described in the second section. A consistency
between the data and the Monte Carlo will be checked for variables related to the
shower shape in Section 6.3. Several conditions for the Monte Carlo will be tested in
Section 6.4. The studies in this chapter will be summarized in the last section.

6.1 Motivation

The crystals used in the KOTO CsI calorimeter have smaller sizes than Moliere radius.
It enables us to obtain the information of shower shapes which is useful to suppress
some background events. In particular, the suppression of the “fusion” KL → π0π0

background, whose details are described in Appendix A.2.1, is important. In this
background, two of four photons generated from the π0s hit the CsI calorimeter close
to each other and their showers overlap so that they are recognized as one cluster.
Without the shower shape information, the expectation of this background is 1.4 times
larger than that of the signal events even after applying all the other cuts. By applying
selection cuts for the shower shape information, the number of this background is
reduced to 1/5 of the signal events.

To reject such backgrounds with strange shower shapes, a shape χ2 method was devel-
oped in the KOTO experiment which was already introduced in Section 5.1 and whose
detail is described in Appendix A.1.2. This method compares the observed energy
deposit in each crystal in the cluster with its expectation derived from a Monte Carlo
simulation. The difference is quantified as “shape χ2”. The number of crystals in the
cluster and a cluster RMS which is defined in Eq. (A.4) are also useful to distinguish
such backgrounds.
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The effectiveness of the selection cuts for the shape χ2, the number of crystals, and
the cluster RMS were estimated based on the Monte Carlo studies. The consistency of
shower shape between the data and the Monte Carlo is, however, not fully studied yet.
In this chapter, I compare these variables observed in the data with those expected
from the Monte Carlo simulation, and study the source of the differences between
them.

6.2 Data Selection

To study the shower shape, I used electrons from the KL → πeν decays. Because the
fundamental processes of electron interaction in the calorimeter is the same as photons,
the property of the shower shape is expected to be the same between electrons and
photons.

I used the June data because the spectrometer performance was better in the June
run than in the February run as described in Section 4.3.

Electron events were selected with the selection cuts listed below.

1. FADC range cut,

2. CsI fidutial region cut,

3. k+−0 < -9000 MeV2,

4. the number of crystals in the cluster > 5,

5. shape χ2 < 5.

These cuts were almost the same as those used in the calibration process described in
Chapter 5, except that the shape χ2 cut was loosened. In addition, the cluster energy
Eclus was required to be 600 < Eclus < 1800 MeV whose lower limit was set to reject
the events from MIPs. The ECsI/E

vis
spec was required to be 0.8 < ECsI/E

vis
spec < 1.2.

The cluster was rejected if it included any large crystal.

6.3 Data/MC Difference

The shape χ2 distributions observed in the data and the Monte Carlo are shown in
Fig. 6.1. The peak position in the data was lower than the position in the Monte Carlo
simulation.

Finite differences were also found in the distribution of the number of crystals in the
cluster, and the distribution of the cluster RMS, as shown in Fig. 6.2(a) and (b),
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Figure 6.1: (Top) Shape χ2 distribution obtained from the data (black dots) and from
the Monte Carlo simulation (red histogram). (Bottom) The ratio of the data to the
Monte Carlo expectation.

respectively. Mean values of the both distributions observed in the data were larger
than those in the Monte Carlo. These differences indicate that the electromagnetic
shower spread more widely in the data than in the Monte Carlo. To see the spread
of the shower more directly, I grouped the crystals as follows. At first I calculated
the total energy deposit in each row and each column of crystal arrays. The “center
crystal” is then defined as the crystal at the intersection of the row and column with the
maximum energy deposit.1 The crystals were then grouped according to the distance
from the center crystal as shown in Fig. 6.3(a). Figure 6.3(b) shows the total energy
deposit in each group. Energy deposit in the center crystal observed in the data was
about 3% lower than the Monte Carlo expectation, while energy deposits in the outer
region in the data were ∼ 5% larger than the Monte Carlo expectation.

6.4 Monte Carlo Conditions

In the default Monte Carlo, the shower in the calorimeter was simulated by using the
QGSP BERT physics list in Geant4 9.5-patch01, where the electromagnetic process is
defined in the G4EmStandardPhysics class [36]. In the simulation, there were inaccu-
racies for the reproducibiliy of the CsI configurations, and also there were uncertainties
for models for the electromagnetic processes used in Geant4. I estimated the effects
of such inaccuracies and uncertainties on the shower shapes, by changing the Monte
Carlo conditions. To study these effects efficiently, the showers in the simulation were

1This “center crystal” is the same one defined in the explanation for the shape χ2 method in
Appendix A.1.2.
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Figure 6.2: (Top) The distribution of the number of crystals in the cluster (a), and
the cluster RMS (b). The black dots show the data, while the red histogram shows
the Monte Carlo estimation. (Bottom) The ratio of the data to the Monte Carlo
estimation.
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Figure 6.3: (a) Allocation of region ID. The red block represents the “center crystal”
defined in the body text, and is allocated ID=0. (Top of (b)) The energy deposit in each
region defined in (a) with normalized by the total energy deposit in the cluster. The
black and red dots in the top figure show the data and the Monte Carlo expectation,
respectively. (Bottom of (b)) Ratio of the data to the Monte Carlo expectation.
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produced by generating positrons at the CsI surface with the energies and the incident
angles according to the observed distribution in the data. To quantify the differences
of the shower shapes, I monitored the average number of crystals in the cluster, the
peak position of the shape χ2 distribution, and the mean value of the cluster RMS.
The ratio of each value observed in the data to the simulated estimation was calcu-
lated. I also monitored the χ2 of the distribution between the data and the Monte
Carlo simulation, for the distribution of the number of crystals, the shape χ2, and
the cluster RMS. The definition of the χ2 between two distributions is based on the
reference [37], which is implemented in the ROOT library.

6.4.1 Calorimeter Configuration

The CsI calorimeter used in the simulation, which was prepared in the KOTO shared
library, has partly inaccurate configurations as listed below. I tested the effects of these
inaccuracies on the shower shape, by changing the Monte Carlo conditions.

1. The gap between the crystals are assumed as 50 µm for small crystals and 100 µm
for large crystals in the default simulation. The real gaps are unknown although
they are guaranteed to be less than 200 µm.

The shower was simulated by assuming the gaps as 0 µm, and also assuming as
200 µm. The results are shown in Fig. 6.5. The effect of the gaps is too small
to explain the data – Monte Carlo inconsistency.

2. The cross-sectional sizes are assumed as 2.5-cm square for small crystals and
5.0-cm square for large crystals in the simulation. The sizes of the real crystals
were measured by the KTeV experiment group. The sizes of the small crystals
are distributed from 2.49 to 2.52 cm and its average is 2.51 cm, as shown in
Fig. 6.4.

I simulated the showers by assuming that the small crystal size is 24.7, 24.85,
and 25.1 mm, and also by assuming that the sizes were randomly distributed as
shown in Fig. 6.4. The results are shown in Fig. 6.6. The shower shape did not
change.

3. All the crystal lengths are assumed as 50 cm in the simulation. The lengths
of the real crystals are not identical. Because we stacked the crystals so that
their downstream surface became even, the upstream surface of the crystals were
uneven and there were at most 4 mm bumps.

To reproduce such irregularity of the upstream surface, I fluctuated the z posi-
tions of crystals with a Gaussian with σ = 2 mm in the simulation. The result
is shown in Fig. 6.7 in green dots. Almost no differences were observed.
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Figure 6.4: Distribution of the width of the small CsI crystals measured by the KTeV
group.

4. Mylar sheet covering the surface of every crystal is ignored in the simulation. I
set a 20-µm-thick Mylar around each crystal, which is about 1.3 times thicker
than the real ones. The result is shown in Fig. 6.7 in blue dots. Almost no
differences were observed.

In summary, none of the CsI configuration inaccuracies tested above has a large effect
on the shower shape to explain the data – Monte Carlo inconsistency.

6.4.2 Model for Physics Process in Geant4

I tested several models to calculate electromagnetic processes in Geant4 package.

• Electromagnetic physics constructor

Several sets of models for electromagnetic processes are prepared in Geant4 as
electromagnetic physics constructor classes. The default class used in QGSP BERT
is “G4EmStandardPhysics”. Instead of the default class, I simulated the showers
with using the “G4EmStandardPhysics option3” (denoting STD3), “G4EmLivermorePhysics”
(LM), “G4EmLivermorePolarizedPhysics” (LMP), and “G4EmPenelopePhysics”
(PEN). The results are shown in Fig. 6.8. Although the consistency of the shape
χ2 between the data and the Monte Carlo slightly improved with these construc-
tors, there was still a finite difference.

• Multiple scattering model

A “G4UrbanMscModel95” model is used to calculate multiple scatterings for
electrons in all the electromagnetic constructors tested above. Besides this
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model, Geant4 provides “G4GoudsmitSaundersonMscModel”, and also “G4WentzelVIModel”
which is used for multiple scatterings of muons or hadrons. I simulated the
shower shapes with using these multiple scattering models. The results are
shown in Fig. 6.9. The inconsistency of shape χ2 peak value was improved by
using G4GoudsmitSaundersonMscModel, but inconsistencies of the number of
crystals in the cluster or the cluster RMS were rather large. No models for
multiple scattering explained the inconsistency between the data and the Monte
Carlo.

• Geant4 version

I used the Geant4 of version 4 9.5-patch01 (denoted by G951) for the simulation
as a default. I also simulated with the Geant4 9.4-patch04 (G944) and Geant4
9.6-patch02 (G962). The results are shown in Fig. 6.10. The data - Monte Carlo
consistency of all variables improved with using G944.

The improvement by changing the Geant4 version from G951 to G944 was the largest
among all of the effects tested in this section.

Difference of the Geant4 versions

One of the difference of electromagnetic processes between G944 and the later versions
is a model for the bremsstrahlung. The “G4eBremsstrahlungModel” is used in G944
for the bremsstrahlung from electrons, while the “G4SeltzerBergerModel” is used in
G951 and the later version [38]. If the “G4eBremsstrahlungModel” is used in G951,
the data – Monte Carlo consistency also improved, as also shown in Fig. 6.10 with
orange dots.

The difference of the cross-section of the bremsstrahlung process between the two
models is shown in Fig. 6.11. The cross-section in the “G4eBremsstrahlungModel” for
electrons with < 10 MeV energy is larger than that in the “G4SeltzerBergerModel”.
Consequently, the larger number of low energy photons are produced in an electromag-
netic shower with the “G4eBremsstrahlungModel”, as shown in Fig. 6.12(a). Such low
energy photons tend to have large angles from the direction of the incident particle as
shown in Fig. 6.12(b), and make the shower shape wider, as observed in the data.

6.5 Summary of Studies in This Chapter

The distributions of variables related to the shower shape information, that is, the
shape χ2, the number of crystals in the cluster, and the cluster RMS, were inconsis-
tent between the data and the Monte Carlo simulation. The electromagnetic shower
observed in the data spread more widely than the Monte Carlo expectation.
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Figure 6.5: Results of the shower shape simulation with the different crystal gaps.
The red, green, and blue dots show the default gap (=50 µm), 200 µm, and no gap,
respectively. (a) The ratios of the data to the simulation for the mean number of
crystals, the peak position of the shape χ2, and the mean of the cluster RMS. (b) The
χ2/NDF between the data and the Monte Carlo for the distributions of the number of
crystals, the shape χ2, and the cluster RMS.
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Figure 6.8: Results of the shower shape simulation with five different electromagnetic
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Figure 6.9: Results of the shower shape simulation with three differenct multiple
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for Fig. 6.5. The red, green, blue dots show the defult model (G4UrbanMscModel95),
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(a) Ratio of mean values

#Crystals 2χshape cluster RMS

D
at

a/
M

C
 o

f m
ea

n 
va

lu
es

0.95

1

1.05

1.1

1.15

[ Geant4 Version ]
default(G951)
G944
G962
modified G951

(b) χ2/NDF

#Crystals 2χshape cluster RMS

 b
et

w
ee

n 
D

at
a 

an
d 

M
C

2 χ

-110

1

10

210

310

[ Geant4 Version ]
default(G951)
G944
G962
modified G951

Figure 6.10: Results of the shower shape simulation with the different Geant4 ver-
sions. The meanings of the x and y axes in (a) and (b) are the same as for Fig. 6.5.
The red, green, blue dots show the G951, G944, G962 versions, respectively. The
orange dots show the G951 but the bremsstrahlung model for electrons was changed
to “G4eBremsstrahlungModel”.



6.5. SUMMARY OF STUDIES IN THIS CHAPTER 101

E[MeV]

-210 -110 1 10 210 310

cr
os

s 
se

c.
 / 

vo
lu

m
e 

[G
4 

in
te

rn
al

 u
ni

t]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 6.11: Cross-section of the bremsstrahlung process used in the Geant4 based
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I searched for the source of the inconsistency. I tested several CsI configurations in
the simulation, and also tested several models for the physics processes prepared in
Geant4. Relatively large improvement was shown when changing Geant4 version from
G4 9.5 to G4 9.4, and I found that the improvement mainly arose due to a model used
to simulate the bremsstrahlung process for electrons.

Figure 6.13(a)∼(c) show the distributions of the shape χ2, the number of crystals
in the cluster, and the cluster RMS simulated by using a Monte Carlo which was
based on G4 9.5 although the bremsstrahlung process was simulated by using the
“G4eBremsstrahlungModel” which is the model used in G4 9.4. The other electromag-
netic processes were calculated by using the “G4EmLivermorePhysics” electromagnetic
constructor, and the Mylar sheet around the CsI crystals and the irregularity of the
CsI upstream surface were included in the simulation. Energy deposit in each of the
crystal groups which were defined in Fig. 6.3(a) was also shown in Fig. 6.13(d). Even
though the consistency between the data and the Monte Carlo were improved in all
the plots, there were still finite differences. The effect of the difference on the KOTO
physics run will be discussed in Chapter 9.
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Figure 6.13: (a) Shape χ2. (b) The number of crystals. (c) Cluster RMS. (d) Energy
deposit in each crystal region (the region allocation is defined in Fig. 6.4(a)). The
black dots show the data and the red and green histograms show the default and the
modified Monte Carlo simulation. The ratio of the data to the Monte Carlo are also
shown.



Chapter 7

Resolutions of CsI Calorimeter

The energy resolution and position resolution of the CsI calorimeter directly influence
the efficiency of the kinematic cuts in the KOTO physics run. This chapter presents
a measurement of the energy and position resolutions of the CsI calorimeter with
momentum-analyzed electrons.

7.1 Data Selection

7.1.1 Data Set

I used the June data to derive the energy and position resolutions of the CsI calorime-
ter, because the spectroemter performance was better in the June run than in the
February run as described in Section 4.3.

In order to study the effect of the crystal size on the resolutions, I calculated the ratio
of energy deposits in small crystals to the total deposit in the cluster, and divided the
data into two subsets according to the ratio. The data with the ratio greater than
0.9 was named small-crystal data subset, while the data with the ratio less than 0.1
was named large-crystal data subset. The resolutions were derived for each subsets
individually.

7.1.2 Event Selection

Electron events were selected with the same selection cut set as the calibration process
described in Chapter 5, that is,

1. FADC range cut,

104
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2. CsI fidutial region cut,

3. k+−0 < -9000 MeV2,

4. shape χ2 < 2.5,

5. the number of crystals in the cluster > 5.

To avoid a part of the shower leaking out of the active CsI region, I required an
additional cut. If the cluster includes crystals in the edge region which was defined in
Fig. 5.7, I required the total energy deposits in such crystals to be less than 1% of the
cluster energy.

7.2 Resolutions

The energy resolution and the position resolution were derived using the electron
events selected in the previous section.

7.2.1 Energy Resolution

The energy resolution of the calorimeter was determined from the width of the ECsI/E
vis
spec.

The width was evaluated with a Gaussian fit for every 50 MeV Evis
spec region, as shown

in Fig. 7.1(a). The width of ECsI/E
vis
spec is shown in Fig. 7.1(b) as a function of en-

ergy.

Fluctuations from other sources

The ECsI/E
vis
spec width is determined by the energy resolution of the CsI calorimeter,

the momentum resolution of the spectrometer, and the fluctuation of energy deposits
in the materials upstream of the CsI calorimeter.

The momentum resolution of the spectrometer was already estimated in Chapter 4.3
as Eq. (4.35). The energy deposits in the materials were estimated with Monte Calro
simulation as shown in Fig. 7.2(a). The RMS of the energy deposit distribution was
parameterized as a function of the momentum of the incident electrons pe as

σmat/pe =
(0.335± 0.003) %√

pe[GeV ]
⊕ (0.559± 0.002) %

pe[GeV ]
. (7.1)

The function was shown in Fig. 7.2(b).
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Figure 7.1: (a) Distribution of the ECsI/E
vis
spec. The colors represent different energy

region: 500∼550 MeV (black), 1000∼1050 MeV (red) and 1500∼1550 MeV (green).
(b) Width of the ECsI/E

vis
spec as a function of electron energy. The momentum resolu-

tion of the spectrometer (green line) and the energy fluctuation due to the materials
upstream of the CsI calorimeter (red line) are also shown.

Energy resolution of the CsI calorimeter

The contributions from the spectrometer and the material were quadratically sub-
tracted from the ECsI/E

vis
spec width. The remaining width was fitted with a function of

general expression of energy resolution, i.e.:

σE

E
= p1 ⊕ p2√

E[GeV]
⊕ p3

E[GeV]
. (7.2)

The fitted parameters are

p1 = (0.66± 0.12± 0.51)%, p2 = (1.81± 0.04± 0.02)%, p3 = (0± 0.15± 0.00)%

(7.3)

for the small-crystal data subset, and

p1 = (1.71± 0.11± 0.13)%, p2 = (1.31± 0.10± 0.01)%, p3 = (0± 0.44± 0.00)%

(7.4)

for the large-crystal data subset, where the first error of each parameter is a statistic
error, and the second error is a systematic error of which derivation is described in
the next section. The covariances between the parameters are shown in Table 7.1.
The fitting result for the small-crystal data subset and for large-crystal data subset
are shown in Fig. 7.3(a) and (b), respectively. The fitting error of the function, shown
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Figure 7.2: (a) Energy deposits by the electrons in the materials located upstream
of the CsI calorimeter, estimated with the Monte Carlo simulation. Colors represent
different Evis

spec regions: 500 ∼ 550 MeV (black), 1000 ∼ 1050 MeV (red) and 1500 ∼
1550 MeV(green). (b) RMS of the energy deposit as a function of momentum. The
black dots show the measured data, and the red line shows the function defined in
Eq. (7.1).

Table 7.1: Covariance between the parameters of energy resolution function.
cov(p1, p2) cov(p1, p3) cov(p2, p3)

for small subset −6.53× 10−9 2.03× 10−12 −3.31× 10−11

for large subset −1.51× 10−5 1.31× 10−5 −3.23× 10−5

in the green area in the plot, was calculated from the fitting errors of the parameters
and the covariances, as described in Appendix D.2.

The result of the small-crystal data subset was consistent with the Monte Calro esti-
mation within its error. As for the result of the large-crystal data subset, the constant
term was 1.4% larger than the Monte Calro estimation. The effect of this difference
on the KOTO physics run will be discussed in Chapter 9.

Consistency of energy correction

A cluster energy was corrected to an incident energy of electron with the correction
function fEcor defined in Eq. (3.7). To confirm the consistency of this correction, a
difference of the center value of the ECsI/E

vis
spec distribution from 1 was checked. In

this study I used whole data set, without separating the data into the small- and
large-crystal data subsets. The difference are shown in Fig. 7.4 as a function of the
incident energy or a function of the incident angle, which are the parameters of the
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Figure 7.3: Energy resolutions of the CsI calorimeter obtained from the small-crystal
data subset (a) and the large-crystal data subset (b). The black dots show the mea-
sured data, and the black line shows the best fit with the resolution function defined
in Eq. (7.2). The green-filled (light blue-filled) area shows ±1σ deviation of fitting
(systematic) error. The red line shows the expectation from the Monte Carlo simula-
tion.

correction function. The difference was smaller than 1/5 of the energy resolution given
in Eq. (7.3) at any energies or angles, and it was considered to have no significant effect
on the physics run.

7.2.2 Position Resolution

The data set used to determine the position resolution had an additional electron
selection cut:

|ECsI/E
vis
spec − 1| < 3

σEvis
spec

Evis
spec

, (7.5)

where σE/E was derived in the previous subsection.

The x and y position resolutions were determined from the difference of the incident
position measured with the CsI calorimeter from that measured with the spectrometer.
The distribution of those differences, ∆x and ∆y, in some energy regions are shown in
Fig. 7.5(a). The width of ∆x(∆y) distribution was evaluated with a Gaussian fit for
every 50 MeV Evis

spec region. The evaluated width is shown in Fig. 7.5(b) as a function
of energy.
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Figure 7.4: Dependence of ECsI/E
vis
spec on energy (a) and incident angle (b). Each

black (red) dot shows the center values of each x bin, observed in the data (simulation).
The magenta lines in (a) represent ±1σ deviation of the energy resolution for the small
crystals given in Eq. (7.3).
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Figure 7.5: (a) Distribution of the difference between x positions measured with the
CsI calorimeter and the spectrometer (= ∆x). The colors show different Evis

spec ranges:
500 ∼ 550 MeV (black), 1000 ∼ 1050 MeV (red), and 1500 ∼ 1550 MeV (green).
(b) Width of ∆x as a function of electron energy. The position resolution of the
spectrometer (green line) and the position fluctuation due to the materials upstream
of the CsI calorimeter (red line) are also shown.
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Fluctuations from other sources

The position resolution of the spectrometer was already estimated in Chapter 4.3 as
Eq. (4.37). The position fluctuation due to multiple scattering in the materials were
estimated with Monte Calro simulation as shown in Fig. 7.6(a). The RMS of the
position displacement was parameterized as a function of the electron momentum pe

as

σmat[mm] =
2.012± 0.002

pe[GeV ]
, (7.6)

as shown in Fig. 7.6(b).
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Figure 7.6: (a) Position displacement due to the materials located upstream of the CsI
calorimeter, estimated with the Monte Carlo simulation. Colors represent different
Evis

spec regions: 500 ∼ 550MeV (black), 1000 ∼ 1050MeV (red) and 1500 ∼ 1550
MeV(green). (b) RMS of the position displacement as a function of momentum. The
black dots show the measured data, and the red line shows the function defined in
Eq. (7.6).

Position resolution of the CsI calorimeter

The contributions from the spectrometer and the material were quadratically sub-
tracted from the ∆x (or ∆y) width. The remaining width was fitted with a position
resolution function which was defined as

σ[mm] = p1 ⊕ p2√
E[GeV]

. (7.7)

The fitting result is shown in Fig. 7.7. The fitted parameters are

p1 = 1.52± 0.14± 0.39, p2 = 4.18± 0.06± 0.35 for ∆ x
p1 = 2.37± 0.08± 0.27, p2 = 3.72± 0.06± 0.61 for ∆ y

(7.8)
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Table 7.2: Covariances between the parameters of the position resolution function.
direction cov(p1, p2)

for small-crystal X −7.52× 10−3

Y −4.21× 10−3

for large-crystal X −4.04× 10−2

Y −4.41× 10−2

for the small crystals, and

p1 = 5.39± 0.18± 0.12, p2 = 4.09± 0.24± 0.41 for ∆x
p1 = 6.87± 0.17± 0.06, p2 = 3.93± 0.29± 0.68 for ∆y

(7.9)

for the large crystals, where the first error of each parameter represents statistic error,
and the second error is the systematic error of which derivation is described in the
next section. The covariances of the parameters were estimated as shown in Table 7.2.
These parameter errors and the covariances were used to calculate the error of the
fitting function, as described in Appendix D.2.

For the large crystals, the y resolution was ∼1.5 mm larger than the x resolution.
This difference was reproduced in the Monte Calro simulation, and is explained by
the dependence of the position resolution on the azimuthal angle. If the direction of
incident electron has a finite polar angle, the numbers of rows and columns of crystals
that its electromagnetic shower spread over changes due to the azimuthal angle of
the electron direction. Because the cluster position was reconstructed with the COE
method defined in Eq. (3.4), the x (or y) position resolution depended on the number of
rows (columns) of crystals. When the azimuthal angle is near zero or π (π/2 or 3π/2),
the number of rows (columns) became minimum and the x (y) resolution became
worst. Because only the large crystals on the north side of the CsI calorimeter were
read out in the June run, the azimuthal angle of incident electrons were peaked at 0
degree. Subsequently the x resolution were better than the y resolution.

This explanation was confirmed with a Monte Carlo simulation. In the simulation,
photons with a flat E distribution (1.1 < E < 1.8GeV ), a flat azimuthal angle distri-
bution, and a fixed polar angle (10 degree) were injected to a large crystal area of the
CsI calorimeter. The resolution of reconstructed cluster position had a dependence on
the azimuthal angle as shown in Fig. 7.8. The measured x and y resolutions are also
shown in the figure.

Position Reconstruction Method with Cluster Shape Information

Besides the current “COE” method for a position reconstruction, an alternative method
using cluster shape information (called “shape” method) was proposed, as described
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(d) σy for large-crystal
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Figure 7.7: Position resolutions of the CsI calorimeter. Plots (a) and (b) show the x
and y resolutions obtained from the small-crystal data subset, and plots (c) and (d)
show those obtained from the large-crystal data subset, respectively. The black line
shows the best fit with the resolution function defined in Eq. (7.7). The green-filled
(light blue-filled) area shows ±1σ deviation of fitting (systematic) error. The red line
shows the expectation of the Monte Carlo simulation.
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Figure 7.8: Azimuthal angle (φ) dependence of the position resolution of the CsI
calorimeter. The black dots show the measured σX as a function of φ. The red dots
show the measured σY , but φ was calculated as the angle from not x-axis but y-axis.
The green dots show the expectation from a Monte Carlo simulation.

in Section 3.3.5. I evaluated the x and y position resolution with the shape method as
shown in Fig. 7.9, with the same procedure described so far. The difference of x and y
resolutions, or, the dependence on azimuthal angle discussed above, was reduced with
this method. Also, the constant term of the resolution was improved.

The improvement of the constant term was explained by resolving the localization of
cluster position. A cluster position derived with the current COE method tended to be
localized at the center position of the crystal with the maximum energy deposit. The
∆x(∆y) strongly correlated with the incident x (y) position in the crystal as the result,
as shown in Fig. 7.10(a). This correlation was one of the main sources of the constant
term, in particular for large crystals. The shape method resolved this localization as
shown in Fig. 7.10(b), and improved the position resolution.

Consistency of Position Correction

The cluster position was corrected to the electron incident position with the function
defined in Eq. (3.12). The consistency of the correction was tested by checking the
discrepancy of the mean value of the ∆x (or ∆y) from zero. In this study I used
whole data set, without separating the data into the small- and large-crystal data
subsets.

The dependence of the mean value of the ∆x on the electron energy is plotted in
Fig. 7.11(a). The difference of ∆x from zero was smaller than 1/5 of the position
resolution in any energy range.



114 CHAPTER 7. RESOLUTIONS OF CSI CALORIMETER

(a) small-crystal data subset
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Figure 7.9: Position resolution with the shape position reconstruction method ob-
tained from the small-crystal data subset (a) and from the large-crystal data subset
(b). The black (red) dots show the measured data for x (y) resolution, and the black
(red) line shows the best fit of the resolution function. Resolutions for x (or y) obtained
by the current method are also shown in the green (blue) line.
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Figure 7.10: Dependence of the ∆x on the x incident position in the crystal. The
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subset.
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Figure 7.11: Dependence of ∆X on energy (a) and incident angle (b). The black (red)
dots show the center values of every x bin observed in the data (simulation). The
magenta lines in (a) represent ±1σ deviation of the position resolution for the small
crystals given in Eq. (7.7)

The dependence on the incident angle θ is plotted in Fig. 7.11(b). There was about
a 1 mm difference around θ = 0.15 rad. This difference was reproduced in the Monte
Calro estimation. Based on the Monte Calro study, this discrepancy was considered to
occur at the boundary of the small and large crystals. This could be seen more clearly
as the x position dependence of the ∆x, as shown in Fig. 7.12. The discrepancy of
the ∆x from zero was about 4 mm at 500 mm ∼ the boundary(= 600 mm).1 This
discrepancy arose from calculating the cluster position by using the COE method, and
was resolved by using the shape method as shown in Fig. 7.12 in red.

7.3 Systematic Uncertainties

I separately estimated the systematic uncertainties related to three contributions: the
spectrometer resolution, the materials located upstream of the CsI calorimeter, and
the width of ECsI/E

vis
spec or ∆X.

1The zigzag structure found in outside the boundary was due to the localization of the cluster
position shown in Fig. 7.10



116 CHAPTER 7. RESOLUTIONS OF CSI CALORIMETER

X [mm]

0 200 400 600 800

X
 [m

m
]

∆

-10

-8

-6

-4

-2

0

2

4

6

8

10

Figure 7.12: Dependence of ∆X on x
incident position. The black (red) dots
were derived with using the COE (shape)
method for position reconstruction.

7.3.1 Uncertainties of Spectrometer Resolution

The uncertainties of the spectrometer resolutions were already estimated in Chap-
ter 4.3, as shown in Eq. (4.35) and Eq. (4.37). The error due to Monte Calro statistics,
which was separately described in Eq. (4.35) or Eq. (4.37), was treated as a part of
the systematic errors for the calorimeter resolutions.

7.3.2 Uncertainties due to Materials

The fluctuation of electron energies and incident positions due to the materials located
upstream of the calorimeter was estimated with Monte Calro simulation. I considered
two kinds of sources for the systematic uncertainties: the amount of the materials,
and the physics models of electromagnetic process in Geant4.

Amount of materials

Table 7.3 shows the materials, expected energy deposits in them, and energy and po-
sition fluctuations due to them estimated from the Monte Carlo simulation. The CsI
cover occupied about a half of the total amount of materials, and it was a dominant
source of the energy fluctuation. The CsI cover was considered to have the worst
reproducibility of the configuration in the simulation, because its structure was rela-
tively complicated than other materials. The inaccuracy of the amount of material of
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Table 7.3: Materials upstream of the CsI calorimeter. The average energy deposits
in them, and energy and position fluctuations due to them estimated from the Monte
Carlo are also shown.

name ene. dep. [MeV] ene. fluc. [%] pos. fluc. [mm]
air 0.35 0.03 1.02

window of dry room 0.06 0.01 0.94
CV 1.83 0.18 2.05

trigger scinti. 2.24 0.21 1.64
CsI cover 3.36 0.69 0.92

the CsI cover in the simulation is conservatively estimated to be less than 10 %.

I increased and decreased 10% of the amount of material of the CsI cover in the
simulation. To be conservative, I also changed the amount of materials of the CV
and the trigger scintillators at the same rate. With these changes, the fluctuations of
energies and incident positions varied as shown in Fig. 7.13. I summed the variations
of the fluctuations quadratically, and assigned the systematic uncertainties based on
the summed variation as shown with black lines in the figure.

79

(a) (b)

[MeV]
vis
specE

0 500 1000 1500 2000

d
if
f.
 o

f 
E

 d
e

p
o

s
it
 (

ra
ti
o

)

-1.5

-1

-0.5

0

0.5

1

1.5
-3

10!

E dep. diff. due to amounts of materials

 / ndf 2r  4.648e-07 / 67
p0        8.608e-05" 0.0001369 
p1        0.000218" 0.0001241 
p2        5.476e-05" 0.0001697 

 / ndf 2r  4.648e-07 / 67
p0        8.608e-05" 0.0001369 
p1        0.000218" 0.0001241 
p2        5.476e-05" 0.0001697 

[MeV]
vis
specE

0 500 1000 1500 2000

d
if
f.

 o
f 

in
c
. 

p
o

s
. 

[m
m

]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

inc. pos. diff. due to amounts of materials

 / ndf 2r  0.0277 / 67
p0        0.01018! 4.246e-05 
p1        0.00815! 0.07027 
p2        0.003313! 0.1166 

 / ndf 2r  0.0277 / 67
p0        0.01018! 4.246e-05 
p1        0.00815! 0.07027 
p2        0.003313! 0.1166 

sysErrorOfAmountOfMaterial

Figure 7.13: Differences of energy fluctuation (a) and incident position fluctuation
(b) from default value by changing the amount of materials upstream of the CsI
calorimeter. The red, green, and blue dots show the differences by changing the
amount of materials of the CV, the trigger scintillators, and the CsI cover by 10 %,
respectively. The black dots show the quadratic sum of the differences of the three
cases. The black line shows the systematic uncertainty I adopted.
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Dependence on physics models

There are several physics models for electromagnetic processes in Geant4 [36]. I simu-
lated interactions in the materials by using those models individually. The differences
between the models were less than 0.05% for the energy resolution and 0.02 mm for the
position resolution in all energy range, as shown in Fig. 7.14. I assigned the systematic
uncertainty as shown with black lines in the figures.
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Figure 7.14: Differences of energy fluctuation (a) and incident position fluctua-
tion (b) from the default value when the different physics models of electromag-
netic process were used in the simulation. The colors show the different models:
G4EmStandardPhysicsModel Option3 (red), G4EmLivermorePhysicsModel (green),
G4EmLivermorePolarPhysicsModel (blue), and G4EmPenelopePhysicsModel (ma-
genta). The default model was G4EmStandardPhysicsModel. The black lines show
the systematic uncertainties I adopted.

7.3.3 Uncertainties for the Widths of ECsI/E
vis
spec and ∆X Dis-

tributions

There remained some non-electron events even after applying the electron selection
cuts. Those backgrounds events could distort the estimation for the widths of ECsI/E

vis
spec

and ∆X.

To evaluate the effect of those backgrounds, I estimated the widths using the Monte
Calro simulation with and without the backgrounds. The differences of the widths
between the two cases are shown in Fig. 7.15. Finite differences were found in the
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ECsI/E
vis
spec width and the ∆X width. Here I iterated the Monte Calro simulation by

20 times by changing its random seed. The mean value and RMS value of the 20 trials
are shown in red circles and their error bars in the figure. I assigned the mean ± RMS
as the systematic uncertainties.
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Figure 7.15: Difference of ECsI/E
vis
spec width (a) and ∆X width (b) with and without

background events. The simulation was iterated 20 times. The 20 black points in each
x value correspond to the 20 iterations, and the red circles show the average of them.
The black lines represent the systematic errors I adopted.

The background level in the ECsI/E
vis
spec plot was different between the data and the

Monte Calro simulation. To make the background level comparable between the data
and the Monte Calro, I loosened the shape χ2 cut value from 2.5 to 4.05 in the Monte
Calro simulation as shown in Fig. 7.16. The differences of the estimated widths before
and after changing the cut value were evaluated as shown in Fig. 7.17. The both
widths became slightly wider after loosening the cut value. Here I iterated the Monte
Calro simulation by 20 times by changing its random seed. The mean value and RMS
value of the 20 trials are shown in red circles and their error bars in the figure. I
assigned the mean ± RMS as the systematic uncertainties.

7.3.4 Uncertainty in Total

I will explain how the systematic errors for the energy and position resolution were
calculated from the uncertainties for the three contributions estimated so far.

I describe the case of the energy resolution obtained from the small-crystal data subset,
as an example. Figure 7.18 shows the three contributions to the energy resolution,
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Figure 7.16: The ECsI/E
vis
spec distribution. The black dots show the data and the red

solid-lined histogram shows the default Monte Calro simulation. The red dashed-lined
histogram shows the Monte Calro simulation with a loose cut value for shape χ2. The
histograms are scaled so that their peak heights are consistent with that of the data.

i.e: the spectrometer resolution (shown in the solid lines), the energy fluctuation due
to materials (the dashed lines), and the measured width of ECsI/E

vis
spec (the circles),

with their systematic errors. The black circles and lines in the figure include no
systematic uncertainties, while the red (green) colored circles and lines in the figure
include systematic uncertainties which make the estimation for the energy resolution
larger (smaller).

As described in the previous section, I derived the energy resolution by quadratically
subtracting the contributions of the spectrometer and the materials from the width of
ECsI/E

vis
spec. In other words, the widths shown by the black solid line and dashed line

in Fig. 7.18 were quadratically subtracted from the width shown by black circles in the
same figure. I did the subtraction process for two more cases: subtraction of the widths
shown by the two red lines from the width shown by the red circles, or subtraction of
the widths shown by the two green lines from the width shown by the green circles in
the figure. We then obtained three estimations for the resolution as shown in the dots
in Fig. 7.19. These dots were individually fitted with the energy resolution function
(Eq. (7.2)). The fit results were shown in the lines in the figure. The differences of
the estimation shown by the red and green lines from the estimation shown by the
black line were considered as the systematic errors of the energy resolution of the CsI



7.3. SYSTEMATIC UNCERTAINTIES 121

82

(a) (b)

[MeV]
vis
specE

500 1000 1500 2000

 w
id

th
v
is

s
p

e
c

/E
C

s
I

d
if
fe

re
n

c
e

 o
f 
E

-3

-2

-1

0

1

2

3

-3
10!

 widthvis
spec/E

CsI
difference of E  widthvis

spec/E
CsI

difference of E

[MeV]
vis
specE

500 1000 1500 2000

x
 w

id
th

[m
m

]
6

d
if
fe

re
n

c
e

 o
f 

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

x width6difference of x width6difference of 

looseShapeChi2Sys

Figure 7.17: Differences of ECsI/E
vis
spec width (a) and ∆X width (b) before and after

loosening shape χ2 cut value. The simulation was iterated 20 times. The 20 black
points in each x value correspond to the 20 iterations, and the red circles show the
average of them. The black lines represent the systematic errors I adopted.

calorimeter. The fitted parameters are shown in Table 7.4.

Similarly I estimated the systematic uncertainties for the other resolutions: the energy
resolution for large-crystal data set (described in Eq. (7.3)) and the position resolutions
for small-crystal and large-crystal data set (described in Eq. (7.8, 7.9)). The results
are summarized in Table 7.4.
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vis
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the dashed line, and the circles, respectively. The circles and lines colored in black
include no systematic uncertainties, while the red (green) plots include the systematic
uncertainties which make the estimation for energy resolution larger (smaller).



7.3. SYSTEMATIC UNCERTAINTIES 123

[MeV]vis
specE

0 500 1000 1500 2000

/E
Eσ

0

0.02

0.04

0.06
E resolution

 / ndf 2χ  59.53 / 31
p0        0.001219± 0.006574 
p1        0.0003519± 0.01811 
p2        0.001467± 2.366e-07 

 / ndf 2χ  59.53 / 31
p0        0.001219± 0.006574 
p1        0.0003519± 0.01811 
p2        0.001467± 2.366e-07 

 / ndf 2χ  50.43 / 32
p0        0.0008997± 0.008694 
p1        0.0003448± 0.01817 
p2        0.001821± -3.857e-09 

 / ndf 2χ  50.43 / 32
p0        0.0008997± 0.008694 
p1        0.0003448± 0.01817 
p2        0.001821± -3.857e-09 

 / ndf 2χ   67.4 / 31
p0        0.005603± 0.001505 
p1        0.0003691± 0.01798 
p2        0.001347± -4.495e-10 

 / ndf 2χ   67.4 / 31
p0        0.005603± 0.001505 
p1        0.0003691± 0.01798 
p2        0.001347± -4.495e-10 

E resolution

Figure 7.19: Energy resolution of the calorimeter. The black, red, and green dots were
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results with the function in Eq. (7.2).
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Table 7.4: Systematic errors for parameters of the resolution functions. The “de-
fault” column shows the estimation without the systematic uncertainties, while the
“larger” (“smaller”) column shows the estimation with the systematic uncertainties
which makes the estimation larger (smaller).
• Parameters for the energy resolution function defined in Eq. (7.2)

defulat larger smaller
p1 p2 p3 p1 p2 p3 p1 p2 p3

for small-crystal 0.66 1.81 0 0.87 1.82 0 0.15 1.79 0
for large-crystal 1.71 1.31 0 1.80 1.32 0 1.58 1.30 0

• Parameters for the x position resolution function defined in Eq. (7.7)
defulat larger smaller

p1 p2 p1 p2 p1 p2

for small-crystal 1.52 4.18 1.13 4.51 1.81 3.83
for large-crystal 5.39 4.09 5.28 4.47 5.51 3.68

• Parameters for the y position resolution function defined in Eq. (7.7)
defulat larger smaller

p1 p2 p1 p2 p1 p2

for small-crystal 2.37 3.72 2.10 4.33 2.41 3.32
for large-crystal 6.87 3.93 6.81 4.61 6.86 3.47



Chapter 8

Measurement of KL Momentum
Spectrum

In this chapter, I will describe the measurement the KL momentum spectrum by using
KL → π+π− and KL → π+π−π0 decays. Both decays can be reconstructed exclusively
using the CsI calorimeter and the spectrometer.

First I will introduce the previous measurement of the KL momentum spectrum and
reveal its problems. Next, I will explain the event reconstruction for each decay.
The momentum distribution of the reconstructed KL should be deformed from the
momentum spectrum of the beam, because of detection efficiencies of the decays and a
smearing effect due to detector resolutions. I will describe corrections for these effects
in the third section. In the last section, the systematic errors will be estimated.

8.1 Previous Work

The momentum spectrum of the KL beam was already measured in 2010 [5]. The
spectrum is shown in Fig. 8.1(a). The measurement, however, did not have a sensitivity
to the KL with momentum higher than 4 GeV/c (Fig. 8.1(b)). The tail shape of the
spectrum had a relatively large uncertainty as the result. In addition, the specific
function form of KL momentum spectrum was assumed to derive the spectrum from
the observed KL momentum distribution. Due to such an assumption, there was some
bias in the result.

The measurement described in this chapter is a cross check for the previous measure-
ment. It has a higher acceptance in the higher momentum region and it does not
assume any function form for the momentum spectrum.

125
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Figure 6.2: Signal acceptance as a function of K0

L
momentum.

to the proton intensity. The proportionality constant, denoted by GSEC , was determined by
comparing the SEC count with the measured intensity by a current transformer (CT) in the
MR, provided by the accelerator group. Figure 7.3 shows an example of the GSEC calibration
data. The beam loss at the slow extraction was monitored continuously by beam loss monitors,
and was 1.4% during the data taking period. Taking the beam loss into account, the number of
POT (NPOT ) was calculated by:

N
POT = GSEC × N

SEC
× (1 − δ) (6.7)

where NSEC is the total SEC counts during the runs, GSEC an average gain factor obtained by
the calibration data , and δ is the beam loss at the extraction, respectively. Table 7.4 summarizes
the accumulated numbers of POT in the runs for the Ni and the Pt targets, as well as the gain
factors, SEC counts, and beam losses.

Target GSEC NSEC Beam loss NPOT

Ni Target 2.30 × 109 1.26 × 107 1.4 % 2.86 × 1016

Pt Target 2.30 × 109 6.79 × 106 1.4 % 1.54 × 1016

Table 6.4: Summary of the accumulated number of POT in the runs for the Ni and the Pt
targets. The parameters used in the calculation were also listed.

6.1.6 Calculation of the K
0

L
flux

Table 7.5 summarizes the parameters for the flux calculation, obtained in subsections above.
By substituting these values into Eqs. 7.1 and 7.2, the K0

L
fluxes for the Ni and the Pt targets

were obtained as listed in Table 7.6. Expectations by MC simulations are also summarized in
the table.

63

 momentum (GeV/c)
L

Reconstructed K

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

E
v

e
n

ts
 (

/0
.2

5
 G

e
V

/c
)

0

50

100

150

200

250

300

350

400

450

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

50

100

150

200

250

300

350

400

450

Data
0!-!+!"

L
K

 decay
L

other K

core particle

 momentum (GeV/c)
L

Reconstructed K

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

E
v

e
n

ts
 (

/0
.2

5
 G

e
V

/c
)

0

100

200

300

400

500

600

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

100

200

300

400

500

600
Data

0!-!+!"
L

K

 decayLother K

core particle

Figure 6.5: Reconstructed K
0

L
momentum distributions after imposing all the kinematic selec-

tions and comparison with the simulation with the resultant K
0

L
spectrum, for the Ni (left) and

the Pt (right) targets, respectively. Dots with bars indicate the data. Histograms show the
distributions obtained from the simulation after tuning the parameters in the K

0

L
generator in

the simulation to fit to data points.
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Figure 6.6: K
0

L
momentum spectrum at the exit of the beam line for the Ni (left) and for the Pt

(right) targets, respectively. Points indicate the resultant spectrum with one standard-deviation
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Figure 8.1: (a) Momentum spectrum previously measured (black dots) and the Monte
Carlo estimations with different simulator (colored histograms). (b) Signal acceptance
in the measurement. Both plots are from reference [5].

8.2 KL Reconstruction

In this section I will describe the identification of the KL → π+π− and KL → π+π−π0

decays and the reconstruction of the KL momentum. I used the June data for the
analysis of the KL → π+π− decay while the February data was used for the analysis
of the KL → π+π−π0 decay.

8.2.1 KL → π+π− Analysis

Particles in the final state of the KL → π+π− decay are π+ and π−. Their momenta
~pπ+ and ~pπ− were measured with the spectrometer. The KL momentum ~pKL

was
obtained by adding the two pion momenta, as

~pKL
= ~pπ+ + ~pπ− . (8.1)

The decay vertex ~rvtx was reconstructed from the intersection of the two tracks. The
KL → π+π− decay events were thus fully reconstructed with the spectrometer infor-
mation only.

Event selection

I required two kinematic selections to identify the decay.
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1. Square of the transverse momentum of π+π−

From Eq. (8.1), the square of the transverse momentum of π+π− perpendicular
to the KL direction should be zero. This value, denoted by p2

t , was calculated as

p2
t = (~pπ+ + ~pπ−)2

[
1−

(
~pπ+ + ~pπ−

|~pπ+ + ~pπ−|
· ~dKL

)2
]

, (8.2)

where the ~dKL
represents the unit vector pointing to the KL direction. The

direction from the center of the production target to the decay vertex was used
as the ~dKL

;

~dKL
=

~rvtx − (0, 0,−21m)

|~rvtx − (0, 0,−21m)| . (8.3)

The distribution of the observed p2
t is shown in Fig. 8.2(a). I required the p2

t to
be less than 50 MeV2/c2.
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Figure 8.2: (a) Distribution of p2
t of the two charged particles which is defined in

Eq. (8.2). (b) Distribution of the invariant mass of the two charged particles assuming
that they are π+ and π−. In both figures, the black dots show the measured data.
The histograms show the expectations from the Monte Carlo simulation, and their
colors represent the sources of the events: KL → π+π− (green), KL → πeν (red),
KL → π+π−π0 (cyan), KL → πµν (magenta), other KL interaction (orange) and
beam-neutron interaction (blue).

2. Invariant mass of π+π−

The invariant mass of two charged particles Mππ was reconstructed with assum-
ing that the particles have the π+ mass (139.57018 MeV/c2). The distribution
of the invariant mass is shown in Fig. 8.2(b). The KL → π+π− decay events
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have a peak at the KL mass (497.614 MeV/c2). I required the invariant mass
was equal to the KL mass within 30 MeV/c2.

Background subtraction

A contamination from the KL → πeν and the KL → πµν decay events still remained
even after applying the selection cuts. One possible way to further suppress those
backgrounds is using the calorimeter information. Electrons from the KL → πeν
decays make electromagnetic showers in the CsI calorimeter, and those showers can
be distinguished from the activity of pions from the KL → π+π− decays by using
the electron selection criteria introduced in Chapter 5. However, I avoided using the
calorimeter information because of the reasons listed below.

1. The contamination from the KL → πµν decay events was difficult to suppress,
because both pions and muons often interacted with the calorimeter as MIPs.

2. Hadron interactions of pions in the calorimeter are difficult to reproduce in the
Monte Carlo simulation.

3. A geometrical acceptance is lost by requiring the activity in the calorimeter,
because the effective area of the trigger scintillator was larger than that of the
calorimeter. In particular, the south side of the calorimeter was not active in
the June run.

Instead of introducing further selection cuts, the background contribution was es-
timated by using the Monte Carlo simulation and subtracted from the data. In the
simulation, the KLs were generated with a momentum spectrum distributed uniformly
from 0 to 10 GeV/c, to obtain a sufficient statistics even in a high momentum region.
The events were then weighted so that the momentum spectrum became consistent
with that measured in the previous work. The momentum spectrum and the beam pro-
file of neutrons were determined based on an independent simulation with Geant3 [24].
Details about the Monte Carlo simulation is described in Appendix B.

The amount of background contamination was determined by fitting the probability
density function (PDF) of the backgrounds to the p2

t distribution of the data. For
the KL background, the histogram of the p2

t distribution obtained from the simulation
was used as the PDF. For neutrons, the PDF was assumed as a parabolic function as
shown in Fig. 8.3. Its parameters were determined by fitting the p2

t distribution in the
simulation, by requiring the invariant mass cut.

The data was divided into 100 MeV/c regions in the reconstructed KL momentum. The
PDF for the p2

t distribution from the KL background was prepared for each momentum
region, while the shape of the PDF for the neutron background was common to all the
regions. The KL and neutron PDFs were combined based on the ratio of the numbers
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Figure 8.3: Monte Carlo expectaion of the p2
t distribution of the neutrons. The neutron

PDF was obtained by fitting a parabolic function to this plot, as shown in the red line.
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absolute value of the y axis was arbitrary, but the relative scale of the two background
was retained. The green line shows a function used to estimate the number of neutrons
in each momentum.
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of expected events in each momentum region which is shown in Fig. 8.4. Because of
a small statistics of the Monte Carlo, the number of the neutrons in each region was
determined by assuming the distribution shown in a green line in the figure.

The PDF was fitted to the data in 2000 < p2
t < 5000 MeV2/c2 range as shown in

Fig. 8.5. The PDF shape at p2
t < 1500 MeV2/c2 was approximated as a linear function

to determine the number of the background events in the signal region, as also shown
in Fig. 8.5 in a green line. The KL momentum distribution after subtracting the
backgrounds is shown in Fig. 8.6.
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8.2.2 KL → π+π−π0 Analysis

There are two charged pions, and two gammas from π0 in the final state of KL →
π+π−π0 decay. The momenta of the pions ~pπ+ and ~pπ− and the decay vertex position
~rvtx were measured with the spectrometer. The energies of the two gammas E1 and
E2 and their incident positions ~r1 and ~r2 were measured with the CsI calorimeter. The
momenta of the two gammas ~pγ1 and ~pγ2 were then calculated as

~pγi = Ei (~ri − ~rvtx) (i = 1, 2). (8.4)
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The momentum of KL was calculated as

~pKL
= ~pγ1 + ~pγ2 + ~pπ+ + ~pπ− (8.5)

The KL → π+π−π0 decay was thus fully reconstructed.

Event selection

I required some conditions to identify the decay.

1. Number of clusters.

Because there are 4 particles in the final state, I required 4 clusters in the CsI
calorimeter with energy > 50 MeV.

2. Track association to the cluster.

If the cluster position was located within 100 mm around the incident position
of charged tracks measured with the spectrometer, the cluster was regarded as
a charged pion and associated with the track. If any of the following conditions
were satisfied, such events were discarded.

• There were no associated cluster for at least one of the tracks.

• There were 2 or more clusters associated with one track.

• There was a cluster associated with both tracks.

3. CsI fiducial region.

Clusters which were not associated with any tracks were regarded as gammas,
called gamma clusters. To suppress electromagnetic showers leaking out of the
active region of the CsI calorimeter, the positions of the gamma clusters were
required to be located within the fiducial region which was defined in Fig. 5.3(a).
In addition, if a gamma cluster includes crystals located in the edge region which
was also defined in Fig. 5.3(a), the total energy deposit in such crystals was
required to be less than 10 % of the total energy deposit in the cluster.

4. Invariant mass of 2 γs (Mγγ).

I required that the invariant mass of the 2 γs should be equal to the π0 mass
(134.9766 MeV/c2) within 25 MeV/c2. As shown in Fig. 8.7(a), almost all the
contributions from the KL decays except the KL → π+π−π0 decay were rejected
with this requirement.

5. The k+−0.

As already shown in Chapter 5.1, the k+−0 defined in Eq. (5.2) tends to be
positive if the decay mode is KL → π+π−π0. Figure 8.7 (b) shows the observed
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k+−0 distribution. To reject charged tracks with mis-reconstructed momenta,
the k+−0 was required to be greater than -20000 MeV2.
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Figure 8.7: (a) The invariant mass of 2 gammas. (b) The k+−0 distribution. (c) The
invariant mass of 4 particles. (d) The observed KL momentum distribution. The black
dots shows the data with statistical errors. The histograms shows estimations from
Monte Calro simulation. Their colors represent origins of the events: the KL → πeν
decay (red), the KL → π+π−π0 decay (cyan), KL → πµν decay (magenta), other KL

interactions (orange), and the beam neutrons (green).

6. Invariant mass of 4 particles (Mππγγ).

Figure 8.7(c) shows the invariant mass of all 4 particles by assuming that the
charged particles were pions. I required that the mass should be equal to the
KL mass (497.614 MeVc2) within 50 MeV/c2.
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Backgrounds from other KL decays were well suppressed to the negligible level with
these selections. There remained 7552 events after these selection cuts. The recon-
structed KL momentum distribution of those events is shown in Fig. 8.7(d).

8.3 KL momentum spectrum

The reconstructed KL momentum distributions in the previous section, shown in
Fig. 8.6 and Fig. 8.7(d), were different from the momentum spectrum of the KL beam,
because they were smeared due to the resolution of KL momentum measurement, and
also because the probability to observe the KL depended on its momentum. In this
section, I describe the correction for the smearing effect and the observation probabil-
ity.

8.3.1 Unfolding

The resolution for the KL momentum was estimated with the Monte Carlo simulation,
and represented as the 2-dimensional histogram shown in Fig. 8.8, which is called a
migration matrix. The x axis of the migration matrix shows the Monte Carlo true
value of the KL momentum while the y axis shows the momentum smeared due to
the detector resolution. We have to unfold, or, correct for the smearing effect due
to the resolution. The unfolding process was done by using TUnfold class [34] which
is prepared in the ROOT library [33]. This class provides a function to solve the
unfolding problem.

The unfolded KL momentum distributions are shown in Fig. 8.9.

8.3.2 Observation Probability

Probability that the KL was observed through the KL → π+π− or the KL → π+π−π0

analysis was determined by four factors: the branching ratio of the decay, the probabil-
ity to decay before the spectrometer, The geometrical acceptance of the detector, and
the efficiency of the selection cuts. This observation probability, Probobs, was defined
as

Probobs =
number of observed KL

number of KL at the beam exit (or Z = −1m)
. (8.6)

The observation probability was estimated with the Monte Calro as a function of the
KL momentum, as shown in Fig. 8.10. The KL → π+π− decay analysis covered a wide
momentum region, while the KL → π+π−π0 decay analysis had a high sensitivity in
high momentum region.



134 CHAPTER 8. MEASUREMENT OF KL MOMENTUM SPECTRUM

(a)

[MeV/c]
ture

p
0 2000 4000 6000 8000

[M
eV

/c
]

re
c

p

0

1000

2000

3000

4000

5000

6000

7000

8000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b)

[MeV/c]
ture

p
0 2000 4000 6000 8000

[M
eV

/c
]

re
c

p
0

1000

2000

3000

4000

5000

6000

7000

8000

0

0.1

0.2

0.3

0.4

0.5

Figure 8.8: Migration matrices for the KL → π+π− decay (a) and the KL → π+π−π0

decay (b) which show the relation between the reconstructed KL momentum (prec)
and its Monte Calro true value (ptrue).

(a)

[MeV/c]
KL

p
0 2000 4000 6000 8000

# 
ev

en
ts

-100

0

100

200

300

400

500

600

700 Entries  82

Mean    31.23±   2197 

RMS     22.08±   1064 

(b)

[MeV/c]
KL

p
0 2000 4000 6000 8000

# 
ev

en
ts

0

100

200

300

400

500

600

700 Entries  82

Mean    30.36±   4234 

RMS     21.46±  944.2 

Figure 8.9: Unfolded KL momentum spectrums observed in the KL → π+π− analysis
(a) and in the KL → π+π−π0 analysis (b).
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Figure 8.10: Observation probability of KL → π+π− decay (a) and KL → π+π−π0

decay (b) as a function of KL momentum.

8.3.3 Result

The KL momentum spectrum at the beam exit was obtained by dividing the unfolded
momentum distribution by the observation probability. Two spectrums obtained from
the KL → π+π− analysis and the KL → π+π−π0 analysis were scaled to minimize
the chi-square between them. The average of the two histograms was calculated with
weighting the bin errors. The result is shown in Fig. 8.11.

To test the previous work [5], the result was fitted with the function used in that work
which was defined as

f(pKL
) = A · exp

(
−(pKL

[GeV]− µ)2

2 (σ(pKL
))2

)
, (8.7)

where pKL
represents the momentum of KL, and

σ(pKL
) = a (1− (b + cpKL

[GeV]) · (pKL
[GeV]− µ)) . (8.8)

The fitting result is also shown in Fig. 8.11(b). The fit χ2/NDF was 25.6/28. This
function well described the obtained KL momentum spectrum. The parameter errors
and the covariances between them are shown in Table 8.1 and Table 8.2. The error
of the fitting function, also shown in the dashed lines in the figure, were calculated
with the errors and covariances of the parameters. Details of the error calculation is
described in Appendix D.3.

The spectrum measured in the previous work is also shown in Fig. 8.11(b) in a blue
line. The spectrums were consistent with each other within 1-sigma deviation in a
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Table 8.1: Parameters and their errors of Eq. (8.7) obtained by fitting the data.
parameter A µ a b c

value 1 1.387 0.778 -0.312 0.0190
error ±0.026 ±0.034 ±0.030 ±0.048 ±0.0062

Table 8.2: Covariances between parameters of Eq. (8.7) obtained by fitting the data.
parameter A µ a b c

A 0.000694868 -0.000345716 -0.000545587 -0.000593292 5.28806×10−5

µ - 0.00117164 0.000606273 0.00129076 -0.000162336
a - - 0.000918408 0.00127293 -0.000131779
b - - - 0.00233233 -0.000285512
c - - - - 3.8117×10−5
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Figure 8.11: The KL momentum spectrum at the beam exit derived from the data,
shown in linear scale (a) and in log scale (b). The red and green dots in (a) show
the spectrum obtained from KL → π+π− decay and that from KL → π+π−π0 decay,
respectively. The black circles in both (a) and (b) show the combined result. In (b),
the best fit with Eq. (8.7) is shown in the red solid line and its ±1σ deviation are
shown in the red dashed lines. The blue line in (b) shows the result of the previous
measurement.
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momentum region below 4 GeV. In the higher momentum region, the previous work
overestimated the number of KLs.

8.4 Systematic Uncertainties

The systematic uncertainties of the KL momentum spectrum is described in this sec-
tion. I estimated uncertainties related to the background estimation, the resolution of
KL momentum, and the cut effectiveness.

8.4.1 Uncertainties for Background Estimation

To reconstruct the KL momentum spectrum, I assumed that there is no background
contamination in the observed KL momentum distributions (Fig. 8.6 and Fig. 8.7(d)).
I estimated the uncertainties related to the background estimation.

KL → π+π− analysis

1. Shape of the p2
t PDF for KL backgrounds.

The PDF of the p2
t distribution for KL backgrounds was made from the Monte

Carlo by assuming the KL momentum spectrum measured in the previous work.
To study a sensitivity of the PDF shape to the momentum spectrum shape, I
tested another PDF which is made by assuming the spectrum obtained in this
measurement, and also a PDF made by assuming the spectrum with a triangle
shape as shown in Fig. 8.12(a). This changed the observed KL momentum
distribution as Fig. 8.12(b). Even if the triangle shape is used, the change was
smaller than the statistical fluctuation in almost all momentum range. Although
a relatively large difference was found around the 4000 GeV/c, it had almost
no effect on the final result because the KL → π+π−π0 analysis dominantly
determined the spectrum shape in that range.

2. Shape of the p2
t PDF for the beam neutrons.

The p2
t PDF shape of the neutron backgrounds was assumed as a parabolic

function. It had a large uncertainty because of a small amount of the Monte
Carlo statistics. The parameters of the function was determined from the p2

t

distribution observed in the Monte Carlo, with requiring |Mππ − MKL
| < 30

MeV/c2 . To study this uncertainty, I tested a variety of PDFs made with
requiring other conditions:

• |Mππ −MKL
| < 45 MeV/c2
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Figure 8.12: (a) Triangle KL momentum spectrum shapes used to study the systematic
uncertainties. (b) The KL momentum distributions with three types of the KL PDFs.
The PDFs were made by assuming the KL momentum spectrum measured in the
previous work (black), measured in this thesis (red) and the triangle spectrum (green).

• |Mππ −MKL
| < 60 MeV/c2

• |Mππ −MKL
| < 60 MeV/c2 and pKL

< 1000 MeV/c

• |Mππ −MKL
| < 60 MeV/c2 and 1000 < pKL

< 2000 MeV/c

• |Mππ −MKL
| < 60 MeV/c2 and pKL

> 2000 MeV/c.

In addition to a parabolic function, the PDF with a linear function form was
also tested. Differences of the observed KL momentum distribution by changing
the PDFs were much smaller than the statistical errors, as shown in Fig. 8.13.

3. The number of the beam neutron backgrounds.

The neutron flux was estimated based on the Geant3 simulation, but that number
has an uncertainty due to an inaccuracy of simulation for hadronic interactions.
The z vertex distribution observed in the data agreed with this expected flux,
but the Mππ distribution claimed the neutron flux should be 1.5 times larger
than expected, as shown in Fig. 8.14.

I changed the neutron flux to be ×3 or ×1/3 of the Geant3 expectation, and
studied the effect on the momentum spectrum measurement. The difference of
the observed KL momentum distribution due to the flux ambiguity was much
smaller than statistical fluctuation, as show in Fig. 8.15.

4. Approximation of the p2
t PDF around the signal region
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Figure 8.13: The KL momentum distribution with the default condition and its statis-
tic errors are shown in the black dots and error bars. The fluctuation by changing the
neutron PDFs is shown in the red error bars.
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Figure 8.14: (a) Z position of the decay vertex. (b) The Mππ distribution. The
black dots show the data, while red and green histograms show the Monte Carlo
expectation from KL and beam neutrons. To reproduce the tail shape, the neutron
events was scaled by factor 1.5 in (b).
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Figure 8.15: The KL momentum distribution derived with scaling the expected number
of neutron events by 0.333 (red), 1 (black), 3 (green).

To estimate the number of backgrounds events in the signal region, I approxi-
mated the PDF of the p2

t distribution near the signal region as a linear function
as shown in the green line in Fig. 8.5. Its parameters were determined by fitting
the function to the PDF in the range of p2

t < 1500 MeV2/c2. To study the
uncertainty related to this approximation, I changed the fitting range from 800
to 2000 MeV2/c2, and also changed the function form to a parabolic function.
The difference of the KL momentum distribution due to these change was much
smaller than the statistical errors, as shown in Fig. 8.16

KL → π+π−π0 analysis

1. Other KL decays and beam neutrons.

After applying all the selection cuts, the number of events from the KL decays
other than the KL → π+π−π0 decays was estimated to be 1.28 by using the
Monte Carlo simulation. Because this number was ∼ 6000 times smaller than
that from the KL → π+π−π0 decays, its contribution to the measurement result
was negligible.

The number of events from the beam neutrons after applying all the selection
cuts was estimated as 0 with the Monte Carlo. The Monte Carlo statistics,
however, was insufficient, as small as 3 % of the data. To enhance the neutron
events, I removed the cut on the invariant mass of four particles (Mππγγ cut) and
the k+−0 cut. Although it made neutron events 10 times larger, the invariant
mass cut for two photons (Mγγ cut) rejected all the events. (The Mγγ distri-
bution from neutrons without the k+−0 and Mππγγ cuts were already shown in
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Figure 8.16: The KL momentum distribution with the default condition and its statis-
tic errors are shown in the black dots and error bars. The fluctuation by changing
the method of approximation of the PDF around the signal region is shown in the red
error bars.

Fig. 8.7(a)). I therefore decided that the neutron contribution to the measure-
ment was negligible.

2. Mis-reconstructed KL → π+π−π0 decays.

There were events where the Mγγ was less than 100 MeV/c2 in both the data
and the Monte Carlo simulation as shown in Fig. 8.17(a). From the Monte
Carlo study, I found that in such events one of the two photons did not hit the
calorimeter but the hadronic shower from the pion in the calorimeter mimicked
two clusters. Because the hadronic interactions are involved, the number of such
events was not consistent between the data and the Monte Carlo.

To estimate the number of such events contaminating the signal region, I fitted
an exponential function to the data in the range of 60 < Mγγ < 100 MeV/c2,
and extrapolated the function to the signal region, as shown in the black line in
Fig. 8.17(a). The expectation was 126 events.

To study the effect of these contamination on the measurement, I subtracted
126 events from the observed KL momentum distribution. The momentum dis-
tribution of 126 events was assumed to be the same as that of the events in
60 < Mγγ < 100 MeV/c2, which is shown in Fig. 8.17(b). The 126 events were
generated randomly according to this distribution and were subtracted. I tested
200 patterns of the random generation. The change of the KL momentum distri-
bution due to this subtraction was smaller than the statistical errors, as shown
in Fig. 8.18.
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Figure 8.17: (a)The Mγγ from the KL → π+π−π0 decay. The black dots show the
data. The cyan and red histograms show the Monte Carlo expectation from the
KL → π+π−π0 decays. I required that both of the two photons from π0 hit the CsI
calorimeter for the cyan histogram, while I required for the red histogram that at least
one photon did not hit. The orange histogram shows the events from the other KL

decays. (b) Reconstructed momentum distribution of events with 60 < Mγγ < 100
MeV/c2.
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Figure 8.18: The KL momentum distribution with and without subtracting the con-
tribution from the mis-reconstructed KL → π+π−π0 events. The distribution without
the subtraction and its statistical errors are shown in the black circles and error bars.
The red dots show the distirbution with the subtraction, and their error bars show the
fluctuation of the 200 patterns of the random generation.
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8.4.2 Uncertainties due to Resolution for KL Momentum

The resolution of KL momentum, σpK , was determined by the momentum resolution of
the spectrometer, σp/p, and the energy and position resolutions of the CsI calorimeter,
σE/E and σX . Although these resolutions were estimated in Chapter 4 or measured
in Chapter 7, finite errors were assigned to the evaluation as described in Eq. (4.35),
Eq. (7.3), Eq. (7.8), and Eq. (7.9). These errors gave an ambiguity to the σpK . To study
the relation of the σpK to the σp/p, σE/E, and σX , I did a toy Monte Carlo simulation.
In the simulation, the Monte Carlo true value of the momentum of the pion from the
KL → π+π− decay or KL → π+π−π0 decay was smeared in two patterns: smeared
with σp/p, or with σp/p plus its error. Similarly, the photon energy in KL → π+π−π0

decay was smeared by σE/E or by σE/E plus its error, and the photon hit position was
smeared by σX or by σX plus its error. The KL momentum was calculated using those
smeared values. The difference of the σpK due to adding the errors is shown in Fig. 8.19.
I then derived the migration matrix by additionally smearing the reconstructed KL

momentum according to this σpk difference. The KL momentum distribution unfolded
with these migration matrix is shown in Fig. 8.20. The difference is smaller than the
statistical fluctuation.
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Figure 8.19: Change in KL momentum resolution due to the worsening of the spec-
trometer and calorimeter resolutions by 1σ. The black and red show the KL → π+π−

decay and the KL → π+π−π0 decay, respectively.

8.4.3 Uncertainties due to Cut Effectiveness

The difference of the effectiveness of the kinematic cuts between the data and the
Monte Carlo expectation is one of the uncertainties of the observation probability.

• The KL → π+π− analysis
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Figure 8.20: The red dots show the unfolded KL momentum distribution using the
migration matrix with additionally smearing by the σpK uncertainty. Their error bars
show the fluctuation by changing the smearing pattern. The black circles show the
distribution without smearing, and their error bars show the statistic errors. (a)The
KL → π+π− decays. (b)The KL → π+π−π0 decays.

In the KL → π+π− analysis, two kinematic selection cuts were applied as de-
scribed in Section 8.2.1, that is, the invariant mass cut (Mππ cut) and the square
of transverse momentum cut (p2

t cut) of the two charged particles.

I changed each cut value to be ×2 or ×1/2 of the default value. The recon-
structed KL momentum distribution and the observation probability with the
different p2

t cut values are shown in Fig. 8.21(a) and (b). Although there are large
changes in these plots, the KL momentum distribution divided by the observa-
tion probability changed within the statistical errors as shown in the Fig. 8.22.

• The KL → π+π−π0 analysis

In the KL → π+π−π0 analysis, six kinematic conditions were applied as enumer-
ated in Section 8.2.2 “Event selection”.

The uncertainties of the first condition (the number of clusters) and the sec-
ond condition (track association) mainly come from the pion showers in the CsI
calorimeter, because they were made by hadronic interactions which were diffi-
cult to reproduce in the Monte Carlo. To study the pion interaction in the CsI
calorimeter, I used the KL → πeν decays. I collected events where two charged
tracks hit the CsI calorimeter and one of the tracks was identified as electrons
by using the selection criteria introduced in Chapter 5. Because electrons domi-
nantly came from the KL → πeν decays, the other track was identified as pions.
By using these pion samples, the probability that a pion makes two clusters
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Figure 8.21: (a) The KL momentum distributions and (b) the observation probability,
with the different p2

t cut values. The black histgram shows the distribution with
the default cut value (p2

t < 50 MeV2/c2) and its statistic error, while the red and
green histograms show the distribution with p2

t < 25 MeV2/c2 and < 100 MeV2/c2,
respectively.

(a) Changing p2
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(b) Changing Mππ cut value.
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Figure 8.22: The KL momentum distributions divided by the observation probability,
with the different p2

t cut values (a) and with the different Mππ cut value (b). The
black histgram shows the distribution with the default cut value (p2

t < 50 MeV2/c2

or —Mππ −MKL
| < 30MeV/c2). The red and green histograms show the distribution

with ×1/2 and ×2 of the default cut values.
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whose energy are larger than 50 MeV, and the distance between the two clusters
is greater than 100 mm, was estimated as the function of the pion momentum,
as shown in Fig. 8.23(a). The probability that the pion tracks associated with
a single cluster was also estimated as shown in Fig. 8.23(b). The ratio of these
probabilities of the data to those of the simulation was defined as a weight of the
pion track. I then calculated the observation probability for the KL → π+π−π0

decay again, with assigning the weight to each of the two pion tracks and counting
the event as the multiplication of those two weights. The observation probability
was changed with the weight as shown in Fig. 8.24. Although the absolute scale
of the probability was changed, the momentum spectrum did not change.

(a) Condition for the number of cluster.
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(b) Condition for the track association.
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Figure 8.23: Probability that a pion satisfies the first condition (a) and the second con-
dition (b) of the KL → π+π−π0 kinematic cuts, as a function of the pion momentum.
The black dots show the data, and the red dots shows the Monte Carlo simulaiton.

The third conditions (CsI fiducial region) was related to an electromagnetic
process and the uncertainty from this condition was negligible compared to the
first and the second conditions.

To estimate uncertainties of Mγγ, k+−0, and Mππγγ cuts, the number of events
were compared before and after applying the cuts. The data set was divided
into 5 KL momentum sections, and the comparison was taken for each section.
For the Mγγ cut, there were contributions from background events from the mis-
reconstructed KL → π+π−π0 decays. The number of such backgrounds were
estimated by assuming that those events distributed exponentially, as shown in
Fig. 8.25. The cut efficiency was calculated as

N center
obs −N center

BG

Nwide
obs −Nwide

BG

, (8.9)
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Figure 8.24: Observation probability for the KL → π+π−π0 decay. In the black
histogram, the uncertainty of the first and the second conditions of the kinematic cuts
are not considered. In the colored histograms, the uncertainties of only the first (red),
only the second (green) or both conditions (blue) were considered.

where Nobs and NBG represent the number of observed events and the estimation
of the background events, respectively. The superscript “center” means the
numbers in the range of |Mγγ −Mπ0(= 134.9766MeV/c2)| < 25 MeV/c2, while
“wide” means in the range of 70 < Mγγ < 200 MeV/c2. For the k+−0 cut and
the Mππγγ cut, the cut efficiencies were calculated as

(the number of observed events after applying cut)

(the number of observed events before applying cut)
. (8.10)

Figure 8.26 shows the efficiencies of the Mγγ, k+−0 and Mππγγ cuts in each
momentum region. The difference of the efficiency between the data and the
Monte Carlo was less than 2% for any cut and for any momentum region.

8.4.4 Uncertainties in Total

The KL momentum spectrum was derived separately with including each uncertainty
source described above. The fluctuation of the derived spectrum were then quadrati-
cally summed, and adopted as a systematic uncertainty of the spectrum as shown in
Fig. 8.27(a). The ratio of the systematic uncertainty to the statistic error is shown in
Fig. 8.27(b). The systematic uncertainties are comparable or smaller than the statistic
errors, except for p < 500 MeV/c region. Table 8.3 summarizes the contribution from
each uncertainty source at the KL momentum = 1.7 GeV/c and 5.1 GeV/c.
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Figure 8.25: An example of an estimation of cut efficiency for the Mγγ cut. The dots
and histogram show the Mγγ distribution in the data and the simulation where the
KL momentum is in the range of 4 ∼ 5 GeV/c. The data in 45 < Mγγ < 90MeV/c2

was fitted with an exponential function as shown in the solid line, and the function
was extrapolated as shown in the dashed line, to estimate the number of background
events in the signal region.
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Figure 8.26: Cut efficiencies for Mγγ cut (top), k+−0 cut (middle), and Mππγγ cut
(bottom). The black markers show the data, while the red markers show the Monte
Carlo expectation.
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Table 8.3: Uncertainties of the KL momentum spectrum at pKL
= 1.7 GeV/c and

5.1 GeV/c, where the pKL
represent K momentum. The spectrum heights at those

momenta are also shown in the last row.
uncertainty source at pKL

= 1.7 GeV/c at pKL
= 5.1 GeV/c

KL → π+π− background estimation 0.007 0.0007
resolution for pKL

0.015 0.0014
cut efficiency 0.044 0.0010

KL → π+π−π0 background estimation 0.005 0.0017
resolution for pKL

0.012 0.0015
cut efficiency 0.009 0.0003

total of sys. err. 0.050 0.0031

stat. err. 0.053 0.0052

spectrum height 0.907 0.0293
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Figure 8.27: (a) TheKL momentum spectrum with statistical errors (black error bars)
and with statistic and systematic errors (red error bars). (b) The ratio of the system-
atic error to the statistical errors.



Chapter 9

Discussion

In this chapter, I will discuss the impact of my studies on the KOTO physics run.

9.1 Shower Shape Study

As described In Chapter 6, there were inconsistencies between the data and the Monte
Carlo in the distributions of the shape χ2, the number of the crystals in the cluster, and
the cluster RMS. I modified the bremsstrahlung model used in the Geant4 simulaiton
from the default G4SeltzerBergerModel to the G4eBremsstrahlungModel, to improve
the Data – Monte Carlo consistency. In this section, I will discuss how the inconsisten-
cies influence the signal efficiency of the shower shape cuts for the KOTO physics run,
and also discuss the effect of the Monte Carlo modification. In this study, I assume
that the responses of the calorimeter to photons and electrons are similar.

9.1.1 Cluster RMS and the Number of Crystals

First I studied the efficiencies of the cuts applied to the cluster RMS and the number of
crystals. The electron data used in Chapter 6 was also used in this study. Because these
cut variables depend on the energy of the incident electrons as shown in Figure 9.1,
I divided the data into 100 MeV/c regions in the electron energy, and studied each
region. The cut efficiency with a given cut value was estimated by integrating and
normalizing the distributions of the cut variables, as

P cut
RMS(x) =

∫ x

0
fRMS(x′)dx′∫∞

0
fRMS(x′)dx′

(9.1)

150
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for the cluster RMS, and

P cut
nCsI(x) =

∫ x

0
fnCsI(x

′)dx′∫∞
0

fnCsI(x′)dx′
, (9.2)

for the number of crystals, where the x is the cut value and the fRMS and fnCsI

represent the distributions of the cluster RMS and the number of crystals. Here, the
events with larger values than the cut values are rejected. The P cut

RMS(x) and P cut
nCsI(x)

for the events with 600< Ee < 700 MeV/c2, where the Ee represents the electron
energy, are shown for the data and the Monte Carlo simulations in Fig. 9.2(a) and
(b). As shown in Fig. 9.3(a, b), the difference between the data and the default Monte
Carlo was at most 12 %, while difference between the data and the modified Monte
Carlo was 6 %. The differences in the different energy regions are shown in Fig. 9.4.
In all the energy regions, the differences of the modified Monte Carlo from the data
were about a half of those of the default Monte Carlo.
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Figure 9.1: Cluster RMS (a) and the number of crystals (b) as a function of the
incident electron energy. The histogram shows the number of events observed in the
data, which are scaled so that the integral in each x bin is equal to 1. The black line
in each x bin shows the mean value in the bin.

9.1.2 Shape χ2

To study the shape χ2, the electron data was selected by the same selection cut set used
in Chapter 6 except that the shape χ2 cut was removed. Because no dependence on the
incident electron energy was observed in the shape χ2 distribution as shown in Fig. 9.5,
I did not divide the data by the energy. The amount of the background contamination
was estimated from the events with 0.5 < ECsI/E

vis
spec < 0.7 and subtracted as shown

in Fig. 9.6.
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(b) The number of crystals in a cluster
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Figure 9.2: Cut efficiency of the cluster RMS (a) and the number of crystals (b). The
x axis shows the cut values. The black, red, and green lines are derived from the data,
the default Monte Carlo, and the modified Monte Carlo simulation, respectively.
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Figure 9.3: Difference of the cut efficiency between the data and the Monte Carlo
simulation for the cluster RMS (a) and the number of crystals (b). The x axis shows
the cut value. The red (green) line shows the difference of the data from the default
(modified) Monte Carlo.
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(a) Cluster RMS

]2electron energy [MeV/c

600 700 800 900 1000 1100

cu
t

R
M

S
P∆

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

(b) The number of crystals in a cluster

]2electron energy [MeV/c

600 700 800 900 1000 1100

cu
t

nC
sI

P∆

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Figure 9.4: Difference of the cut efficiencies between the data and the Monte Carlo
simulation for the cluster RMS (a) and the number of crystals (b), in each energy
region. The red (green) graphs show the differences between the data and the default
(modified) Monte Carlo. The dots, squares, triangles show the differences of the
efficiency at the cut values where the effciencies observed in the data are 50, 70, and
90 %, respectively.

The cut efficiency for the shape χ2 was calculated from the shape χ2 distribution fshape

as

P cut
shape(x) =

∫ x

0
fshape(x

′)dx′∫ 10

0
fshape(x′)dx′

, (9.3)

where I assumed that the events with large shape χ2 are dominantly from the back-
grounds, and restricted the integral range in 0 < shape χ2 < 10. The cut efficiency in
the data and the Monte Carlo, and those differences are shown in Fig. 9.7 and Fig. 9.8.
The differences from the data are at most 4 % and 2% in the default and the modified
Monte Carlo, respectively.

9.2 Resolutions of the CsI Calorimeter

As described in Section 1.3.2, all the kinematic information of the KL → π0νν̄ events
and backgrounds are solely obtained from the CsI calorimeter. Therefore, the efficiency
of kinematic selection cuts, which is described in Appendix A.1, depends on the energy
and position resolution of the calorimeter. To study this dependence, I used a toy
Monte Carlo simulation in which all particles hitting any detector were stopped on
its surface, without simulating the interaction with the detector component. Energies
and positions of photons stopping at the CsI calorimeter was then smeared by a given
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Figure 9.5: Energy dependence of the
shape χ2.
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Figure 9.7: (a) Cut efficiency of the shape
χ2. The black, red, green histograms
show the data, the default Monte Carlo,
and the modified Monte Carlo, respec-
tively.
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resolution. The particles stopping at the veto detectors were ignored to study the
influences of the CsI calorimeter resolution alone.

In this section, I will first describe how the CsI resolutions affect the π0 reconstruction
in the KL → π0νν̄ decay. I will then show the influence of the resolution measurement
described in Chapter 7 on the KOTO physics run.

In this study, the standard coordinate system of the KOTO experiment is used. The
directions of the x, y, and z axis in the system are the same as the system used in
this thesis. The origin is located on the upstream surface of the “Front Barrel” which
is the most upstream veto counter in the KOTO detector. In this coordinate system,
the upstream surface of the CsI Calorimeter is located at z = 6.148 m.

9.2.1 π0 Kinematics for Signal Events

Let us study the π0 reconstruction in the KL → π0νν̄ decay to understand how
the CsI calorimeter performance influences the kinematic variables. Even if the CsI
calorimeter has infinitely accurate resolutions for photon energy and incident position,
the uncertainties of the π0 kinematics arise from the size of the beam profile, because
the x and y positions of the π0 vertex are unknown in the reconstruction process, and
we assume that the π0 vertex is located on the beam axis. The differences of the
reconstructed π0 Pt and the z vertex from their Monte Carlo true values are shown
in Fig. 9.9 as a function of the z vertex, where no smearing effects due to the energy
and position resolution of the calorimeter are included. To simulate the calorimeter
resolution effect, I defined an energy resolution function as

σE

E
(E) = aE ⊕ bE√

E[GeV ]
, (9.4)

and a resolution function for the incident position as

σX(E) = aX ⊕ bX√
E[GeV ]

, (9.5)

where E represents the photon energy. The energies and positions of the photons
hitting the CsI calorimeter were then smeared with these resolution functions. The
parameters aE and bE (or aX and bX) were changed from 0 to 9 % ( 0 to 9 mm). When
one of the parameters were changed, the other parameters were set to 0. Fluctuations
of the Pt and the z position due to the smearing are shown in Fig. 9.10. The Pt
resolution is dominated by the uncertainty due to the finite beam size, while the z
position resolution strongly depends on the energy resolution of the CsI calorimeter.
The z vertex dependence of the π0 Pt resolution and the z vertex resolution are shown
in Fig. 9.11, where bE = 2% and aE = aX = bX = 0. The z position resolution becomes
wider for upstream decays.
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Figure 9.9: Differences of the reconstructed π0 Pt (a) and the z position of the decay
vertex (b) from their Monte Carlo true values as a function of decay z position. Here,
the photon energy and incident position are not smeared. The differences come from
the uncertainty of x and y positions of the decay vertex due to the finite beam size.
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Figure 9.10: RMS of the differences of the reconstructed π0 Pt (a) and the z vertex (b)
from their Monte Carlo true values V.S. the parameters of the resolution functions.
The dependence on aE, bE, aX , and bX are shown in red, green, blue, and orange lines,
respectively.
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Figure 9.11: RMS of the differences of the reconstructed π0 Pt (a) and the z vertex
(b) from their Monte Carlo true values, as a function of z position of the vertex. The
black line shows the fluctuation with no smearing, while the green line shows that
with the smearing based on the energy and position resolution for the small crystals
described in Eq. (9.6).

9.2.2 The Influence on the Physics RUN

The measurements in Chapter 7 determined the parameters as

aE = (0.66± 0.52)%, (9.6)

bE = (1.81± 0.04)%, (9.7)

aX = (1.99± 0.23)mm, (9.8)

bX = (3.95± 0.35)mm (9.9)

for the small crystals, and

aE = (1.71± 0.17)%, (9.10)

bE = (1.31± 0.10)%, (9.11)

aX = (6.17± 0.18)mm, (9.12)

bX = (4.01± 0.40)mm (9.13)

for the large crystals. The aX and bX were calculated as

aX =

√
(px

1)
2 + (py

1)
2

2
, bX =

√
(px

2)
2 + (py

2)
2

2
, (9.14)

where p
x(y)
1 and p

x(y)
2 represent parameters p1 and p2 of x (y) position resolution in

Eq. (7.8) and Eq. (7.9). The parameters expected from the Monte Carlo simulation
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Table 9.1: Parameters of the resolution function. The measured values, the values
expected from the Monte Carlo simulation, the KOTO design values are shown.

crystal area aE [%] bE [%] aX [mm] bX [mm]
measured values (small) 0.66± 0.52 1.81± 0.04 1.99± 0.23 3.95± 0.35

(large) 1.71± 0.17 1.31± 0.10 6.17± 0.18 4.01± 0.40
MC expectation (small) 0.86 1.72 2.35 3.56

(large) 0.00 1.56 5.27 3.90
KOTO design values (small & large) 1 2 0 5

are shown in Table 9.1. The KOTO design values of the calorimeter performance
are also shown in the table. In the preparation period of the KOTO experiment, we
estimated the number of the signal and background events by assuming this design
values.

In the following, I will study the changes of the background estimations due to the
uncertainties of the measured parameters, and also due to the difference between the
measured parameters and the Monte Carlo expected parameters or the KOTO design
values.

Background expectation

Among the KL backgrounds expected in the KOTO experiment, the kinematic cuts
are important in particular for the ”odd-pair” KL → π0π0 background and the KL →
π+π−π0 background. The odd-pair KL → π0π0 background is a kind of background
events from the KL → π0π0 decay, where two photons from different π0s hit the
CsI calorimeter. The reconstructed decay vertex is incorrect in this background, and
consequently the kinematics of the two photons are reconstructed incorrectly. The
cut for the product of the photon energy and incident angle (E-θ cut), and the cut
for the ratio of two photon energies (E ratio cut) strongly suppress this background.
The KL → π+π−π0 background is strongly suppressed by requiring the π0 Pt to be
> 130 MeV/c, because the momentum of the π0 generated in this decay mode is
kinematically limited to be less than 133 MeV/c. The number of the signal events,
the odd-pair KL → π0π0 background events, and the KL → π+π−π0 background
events are estimated to be 2.71, 0.14, and 0.87 events1, respectively, after applying
all the KOTO standard kinematic cuts in a 12-month data taking with the designed
beam power of the J-PARC (= 2 × 1014 protons on target / 3.3 sec). The details of
these backgrounds and the kinematic cuts in the KOTO experiment are described in
Appendix A.2.1. In the following, I will study dependences of the numbers of such
background events on the energy and position resolutions of the CsI calorimeter.

1These values are estimated by using the toy simulation by weighting the inefficiencies of the veto
counters. More accurate estimation is found in [5].
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Table 9.2: The number of background events after applying all the kinematic cuts,
with different resolution parameters. The number of each decay mode were simulated
by generating 108 KLs which decay to only that decay mode. The veto detectors were
not considered.

measured values MC expectation KOTO design
odd-pair KL → π0π0 (936.0± 3.1)× 102 (935.3± 3.1)× 102 (937.6± 3.1)× 102

KL → π+π−π0 2474± 50 2462± 50 2537± 50

• The odd-pair KL → π0π0 background.

The odd-pair KL → π0π0 background is suppressed by the E−θ cut and E ratio
cut as shown in Fig. A.2 in Appendix A.2.1. I changed the parameters of the
energy and position resolution functions around the measured values, as

aE (or bE) =

√
(ameas

E (or bmeas
E ))2 +

i

|i| (i× 1%)2 (9.15)

aX (or bX) =

√
(ameas

X (or bmeas
X ))2 +

i

|i| (i× 1[mm])2, (9.16)

where i = −4,−3, ..., 5 as long as the value inside the square root > 0. The
ameas

E(X) and bmeas
E(X) represent the measured values shown in Table 9.1. When one of

the parameters was changed, the i for the other parameters were set to 0. The
energies and positions of photons were smeared based on those resolutions in the
toy simulation. The changes in the estimated number of the background events
was < 0.5%, as shown in Fig. 9.12(a). The kinematic cuts for the KL → π0π0

background do not strongly depend on the resolutions of the CsI calorimeter.

The number of the “odd-pair” KL → π0π0 background events after applying all
the kinematic cuts were estimated with different resolution parameter sets: the
measured parameters, the parameters expected from the Monte Carlo, and the
parameters of the KOTO design value. The estimations are shown in Table 9.2.
The differences between them are within 0.1%.

• The KL → π+π−π0 background.

The KL → π+π−π0 background is largely suppressed by requiring π0 Pt > 130
MeV/c as shown in Fig. A.3 in Appendix A.2.1. By changing the parameters of
the resolution functions as described in Eq. (9.15), the estimated number of this
background events changes at most 10% as shown in Fig. 9.12(b). The errors of
the measured parameters described in Eq. (9.6) are also shown in Fig. 9.12(b) as
horizontal bars. The number of the KL → π+π−π0 background events fluctuated
by less than 1% within the errors.
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Figure 9.12: The number of the odd-pair KL → π0π0 background events (a) and the
KL → π+π−π0 background events estimated from the Monte Carlo simulation, by
changing the parameters of the resolution functions. The x axis shows the “i” defined
in Eq. (9.15). When one of the parameters was varied, the i for the other parameters
were set to 0. The results with the varied aE, bE, aX , and bX are shown in red, green,
blue, and orange points, respectively. The horizontal bars in the bottom of the plots
represent the errors of the measured aE, bE, aX , and bX described in Eq. (9.6)

The number of the KL → π+π−π0 background events after applying all the
kinematic cuts were estimated with the measured parameter sets, the parameters
expected from the Monte Carlo, and the KOTO design values. The result are
shown in Table 9.2. The differences between them are within 3%.

As for the backgrounds from the beam neutrons, the resolution for the z position of
the decay vertex influences the NCC-π0 background estimation where the neutron
interacts with the “NCC” detector located upstream of the decay region and produce
a π0, as described in Appendix A.2.2. Because we require the decay vertex to be 550
mm apart from the NCC downstream surface and the z resolution is much smaller, at
most 100 mm as shown in Fig. 9.11, the influence of the CsI resolution on the NCC-π0

background is estimated to be negligible.

In summary, the uncertainties of the energy and position resolutions measured in
Chapter 7 are small enough that they do not change the background estimations.
Even though the measured parameters have finite differences from those of the Monte
Carlo expectation or the KOTO design values, the effect of such differences on the
background estimations is negligible.
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9.3 KL Momentum Spectrum

The KL momentum spectrum measured in Chapter 8 has almost the same shape
with that obtained in the previous work, although there is a small difference of the
shape in the momentum region > 4 GeV/c. (Hereafter these two spectrums are called
“new spectrum” and “previous spectrum”). The uncertainty of the shape of the new
spectrum is, however, much smaller than that of the previous spectrum, in particular
in the high momentum region where the previous work had no sensitivity. To discuss
the importance of this improvement of uncertainty, the number of the KL → π0π0 and
the KL → π+π−π0 background events were estimated with using the new and previous
spectrums, and also using the spectrums modified by their 1σ deviations which are
shown in dashed lines in Fig. 9.13. Each spectrum was normalized with its integral
between 0 and 4 GeV/c. This integral range corresponds to the sensitive range of the
KL flux measurement conducted before.2 In this estimation, I used the toy Monte
Carlo simulation where any particle hitting any detector was stopped at its surface.
The energies and hit positions of the photons hitting the CsI calorimeter were smeared
with the energy resolution, σE, and position resolution, σX , which are approximated
as

σE/E = 1%⊕ 2%√
E[GeV]

(9.17)

and

σX =
5[mm]√
E[GeV]

, (9.18)

where E represents the photon energy. For each particle hitting the other detectors,
the probability of not detecting the particle was calculated based on the KOTO veto
inefficiency function [39], which depends on the momentum of the incident particle,
detector type, and incident particle type. The event was weighted by the product of
the veto inefficiencies of all particles.

9.3.1 The KL → π0π0 Background

Figure 9.14(a) shows the product of the decay probability, the geometrical acceptance,
and the kinematic cut efficiency for the KL → π0π0 background events. Events with
the KL momentum > 3 GeV are suppressed with these effects. Such events are further
suppressed by the veto detectors as shown in Fig. 9.14(b), although there remains
some events with large veto inefficiencies in > 5 GeV region. In these events, extra
photons tend to fly in the forward direction and hit the veto counter located on the
beam axis which is called “Beam Hole Photon Veto (BHPV)”. The inefficiency of

2This measurement was conducted simultaneously with the previous measurement for the KL

momentum spectrum.
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Figure 9.13: The KL momentum spectrums used to study an influence of the spectrum
shape on the background estimation. The black (red) solid line shows the previous
(new) spectrum and the dashed line shows +1σ deviation from it. For the momentum
> 5 GeV/c, the previous spectrum does not have error data. I assumed the previous
spectrum +1σ deviation as the linear function in such region.

BHPV for photons are estimated as ∼ 10−3 which is relatively larger than those for
other veto detectors (typically 10−5 ∼ 10−6) because it is exposed to the beam core
neutrons.

Table 9.3 summarizes the estimations of KL → π0π0 backgrounds by assuming the
four spectrums: the new spectrum, the previous spectrum and the modified spectrums
with their 1σ deviations. The estimated numbers between the previous spectrum and
the “previous +1σ” spectrum, and between the new spectrum and the “new +1σ”
spectrum, are consistent within their errors. The KL → π0π0 background events are
not sensitive to the spectrum shape.

9.3.2 The KL → π+π−π0 Background

For the KL → π+π−π0 backgrounds, the probability to observe the high-momentum
(> 4 GeV) KL is larger than that for low-momentum (< 4 GeV) KL before applying the
kinematic cuts, as shown in Fig. 9.15. The high-momentum KL events are, however,
strongly suppressed with the Pt/Pz cut, which is the cut for the ratio of the transverse
component to the z component of the reconstructed π0 momentum. The details of this
cut is described in Appendix A. The efficiency of the kinematic cuts is estimated as 0.51
by using the previous spectrum as shown in Table 9.3. If the “previous +1σ” spectrum
is used, this value changes to 0.28. This 55% uncertainty for the cut efficiency arises
from the uncertainty of the spectrum shape. The cut efficiencies estimated by using
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Figure 9.14: Product of the decay probability, the geometrical acceptance and the
kinematic cut efficiency for the KL → π0π0 background events, without (a) and with
(b) the weight of veto inefficiency.

Table 9.3: The number of the signal events, the KL → π0π0 background events, and
the KL → π+π−π0 background events estimated with different spectrum shapes by
the toy Monte Carlo. The numbers in “loose kine. cuts” rows were estimated with
applying the π0 Pt cut and the Z-vertex cut, the Eγ cut and the calorimeter fiducial
cut. The numbers in “all kine. cuts” rows were estimated with applying all the KOTO
standard kinematic cuts.

previous previous +1σ new new +1σ
KL → π0νν̄ loose kine. cuts 4.93± 0.04 4.82± 0.04 4.88± 0.04 4.85± 0.04
KL → π0νν̄ all kine. cuts 2.75± 0.03 2.64± 0.03 2.73± 0.03 2.71± 0.03
KL → π0π0 loose kine. cuts 4.47± 0.23 4.41± 0.21 4.36± 0.22 4.30± 0.22
KL → π0π0 all kine. cuts 1.55± 0.03 1.53± 0.03 1.51± 0.02 1.49± 0.02
KL → π+π−π0 loose kine. cuts 1.73± 0.52 2.93± 0.62 1.34± 0.50 1.39± 0.50
KL → π+π−π0 all kine. cuts 0.89± 0.50 0.83± 0.46 0.88± 0.50 0.87± 0.49
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the new spectrum and the “new +1σ” spectrum are 6.6 and 6.3, respectively. The
difference is 4%; it is much smaller than that for the previous spectrum.

By the way, the Pt/Pz cut was originally designed for the KEK E391A experiment
which was the pilot experiment of the KOTO, to reject the CV-η background. In this
background, the beam neutrons interact with the charged veto counter named “CV”,
and produce η mesons. The details of the background is described in Appendix A.2.2.
There is an opinion that this cut should be modified because the configuration of the
CV is changed in the KOTO experiment from E391a experiment, but the cut is not
optimized yet for KOTO. I suggest that we should be careful to the high-momentum
KL → π+π−π0 backgrounds when we modify this cut.
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Figure 9.15: Product of the decay probability, the geometrical acceptance, and the
kinematic cut efficiency for the KL → π+π−π0 background events with the weight of
veto inefficiency. For the black dots, only the Eγ cut, the calorimeter fiducial cut, the
π0 Pt cut and the Z-vertex cut are applied. All the kinematic cuts are applied for the
red dots.
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Conclusion

The J-PARC KOTO experiment studies the KL → π0νν̄ decay, which is a sensitive
probe for the direct CP violation in the Standard Model, and also a new physics
beyond the Standard Model. Only two photons from the π0 are observable in this
decay mode. We observe them by using a CsI electromagnetic calorimeter.

The CsI calorimeter measures the energies and incident positions of the two photons.
These are the sole kinematic information obtained in this experiment. The kinematic
selection cuts based on these variables are important to distinguish the signal events
from the background events. Because of the small crystal sizes, the shower shape in-
formation of the incident particles are also obtained with the calorimeter. Background
events with abnormal cluster shapes are suppressed by using the shape information,
in particular, the “fusion” KL → π0π0 background.

Before my studies described in this thesis, the energy and position resolutions of the
calorimeter in the KOTO experimental condition had not been fully measured yet. As
for the shower shape information, the study was developed based on the Monte Carlo
simulation, but the consistency of the electromagnetic shower shape between the data
and the Monte Carlo had not been checked yet.

I measured these values in the engineering runs conducted in February and June in
2012. I placed a spectrometer which consisted of a magnet and three drift chambers
in upstream of the CsI calorimeter to measure the electrons from the KL → πeν
decays. By using the momentum-analyzed electrons as a reference, I measured the
resolutions of the CsI calorimeter, and also studied the shower shapes. This is the first
measurement of the CsI calorimeter performance with the actual CsI calorimeter, and
also the first test using almost the same criteria with the physics run for the clustering,
energy and position corrections in the CsI calorimeter.

The energy resolution was measured as σE/E = (0.66±0.52)%⊕(1.81±0.04)%/
√

E[GeV ]

for the small crystals, and (1.71 ± 0.17)% ⊕ (1.31 ± 0.10)%/
√

E[GeV ] for the large
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crystals of the calorimeter. The position resolution was measured as σX = (1.99 ±
0.23) ⊕ (3.95 ± 0.35)/

√
E[GeV ] mm for small crystals, and (6.17 ± 0.18) ⊕ (4.01 ±

0.40)/
√

E[GeV ] mm for the large crystals. These values were consistent with the
Monte Carlo simulation within 1.5σ, except the energy resolution of the large crystals.
The effect of the difference on the background estimation for the KOTO experiment
was studied and estimated to be negligible. The uncertainties of the measurement are
small enough that they do not change the background estimation.

There were inconsistencies between the data and the Monte Carlo in the distribution of
the variables related to the shower shapes. Due to these inconsistencies, cut efficiencies
for the shape χ2, the number of crystals in the cluster, and the cluster RMS differ by
at most 4 %, 10 ∼ 15%, and 5 ∼ 9%, respectively, between the data and the Monte
Carlo. I modified the physics models used in the Monte Carlo simulation to improve
the data – Monte Carlo consistency. The differences of the efficiencies became about
a half with the modification.

I simultaneously measured the KL momentum spectrum with the engineering run
data. The spectrum was previously measured in 2010, but that measurement had
large uncertainties and no sensitivity in the > 4 GeV/c range. I derived the spectrum
by analyzing the KL → π+π− decays and the KL → π+π−π0 decays. The uncertainties
of the spectrum shape around its peak became 1/2 of the previous measurement. The
spectrum shape in the momentum region > 4 GeV/c was determined for the first time
in KOTO.

These measurements reveals parameters of the KOTO experiment which are basic, but
had not been fully understood before. The results described in this thesis will help to
reduce several uncertainties of the KOTO physics run.



Appendix A

Cuts and Backgrounds of the
KOTO Experiment

The kinematic cuts and the shower shape cuts prepared for the KOTO physics run
are described in Section A.1. The types of backgrounds in the KOTO physics run are
explained in Section A.2.

In this Appendix, I use a standard coordinate system in the KOTO experiment. The
origin is placed at the upstream surface of the “Front Barrel” which is the most
upstream veto counter in the KOTO detector. The z axis is parallel to the KL beam
axis. The y axis points vertically up, and the x axis points to the direction for the
system to be right-handed. In this coordinate system, the upstream surface of the CsI
calorimeter is located at z = 6.148 m.

A.1 Selection Cuts

The cut values described in this section are based on the Monte Carlo study, and are
tentative. In the physics run, they will be fine-tuned with the data.

A.1.1 Kinematic Cuts

Cuts For π0

As described in Section 1.3.2, the following two selection cuts are required to the
reconstructed π0 to identify the KL → π0νν̄ decay occurring inside the KOTO detec-
tor.
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• Pt cut.

The transverse momentum (Pt) of the π0 should be greater than 130 MeV/c and
less than 250 MeV/c. The requirement of lower limit ensures the existence of
neutrino, and rejected backgrounds from the KL → π+π−π0 decays and KL →
γγ decays as described in the next section. The upper limit is determined from
the KL → π0νν̄ kinematics whose the maximum Pt is 231 MeV/c.

• Z-vertex cut.

The z position of the decay vertex of the π0 should be located within 2-m decay
volume between z=3 m and 5 m, which is illustrated in Fig. 1.6.

In addition, the following cut is required to suppress the background events.

• Pt/Pz cut.

The ratio of the π0 Pt to the z component of the π0 momentum (Pt/Pz) should
satisfy all the three conditions:

Pt/Pz > 0.1

Pt/Pz > 0.05 (z[m]− 4) + 0.1

Pt/Pz < 0.07 (z[m]− 3) + 0.2,

where z represents the z position of the π0 vertex. This cut are designed to sup-
press the CV-η background where the beam neutrons interact with the detector
component and generate η mesons. The detail of the η background is described
later in Section A.2.2. The cut values were optimized based on the study in the
KEK E391a experiment and are not optimized for the KOTO experiment yet.

Cuts for 2 photons

The two photons measured with the CsI calorimeter are required to be satisfied con-
ditions listed below.

• Eγ cut.

Energies of both two photons should be greater than 100 MeV to reject hits due
to electrical noises or accidental hits.

• Calorimeter fiducial cut.

The measured incident position, X and Y, of both photons should satisfy

|X| > 150mm, |Y | > 150mm,
√

X2 + Y 2 < 850mm. (A.1)

These requirements reduce the amount of energy leaking out of the calorimeter
through its beam hole or the outer edge.
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• Azimuthal angle cut.

The difference of the azimuthal angles of the two photons should be less than
150 degrees. This requirement rejects photons from the KL → γγ decay where
the difference of azimuthal angle is nearly 180 degrees.

• E − θ cut.

The product of the energy and the incident angle of each photon should be less
than 2.5 [GeV·degree]. This requirement suppresses a kind of the KL → π0π0

background where two photons from different π0s hit the CsI calorimeter. This
type of the KL → π0π0 background is called “odd-pair” background. The details
of the background will be described in the next section.

• E ratio cut.

The ratio of the smaller energy to the larger energy of the two photons should be
greater than 0.2. This also suppresses the “odd-pair” KL → π0π0 background.

• E-total cut.

The sum of energies of the two photons should be greater than 500 MeV. This re-
quirement rejects π0’s produced downstream of the CsI calorimeter with photons
traveling back upstream.

A.1.2 Shower Shape Cuts

Shape χ2

In the signal events, a cluster should be made from a single electromagnetic shower. To
evaluate a consistency of an observed cluster shape with an assumption of the single
electromagnetic shower, we calculate a quantity called “shape χ2” for each cluster in
the calorimeter. The shape χ2 is defined as

χ2 ≡ 1

N

in 27× 27 region∑
i

(
ei/Einc − µ

σ

)2

, (A.2)

where ei represents an energy deposit in the i-th crystal in the cluster, Einc is the
measured photon energy defined in Eq. (3.7), and N is the number of crystals used
in the summation.1 The range that the sum is calculated, µ and σ are explained
below.

1The shape χ2 was originally defined in my master thesis [40]. In that time, the summation range
was 11× 11 crystals.
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1. The range of the summation

To determine the range, we first calculate the total energy deposit in each row
and each column of crystal arrays. The “center crystal” is then defined as the
crystal at the intersection of the row and column with the maximum energy
deposit. The summation is calculated for all the crystals which are included in
the cluster and located in the 27 × 27 crystal array where the center crystal is
located on the intersection of the 9-th row and the 9-th column of the array. A
schematic view of the summation range is illustrated in Fig. A.1.

2. The µ and σ

The µ and σ in Eq. (A.2) represent the mean and RMS of the ei/E estimated
with Geant4 simulation for photons. These are expressed as functions:

µ = µ(Einc, θinc, φinc, qrow, qcolumn, xi, yi)

σ = σ(Einc, θinc, φinc, qrow, qcolumn, xi, yi),

where θinc and φinc are the polar angle and azimuthal angle of the incident
photons which are calculated from the measured cluster position and the π0

vertex position. The qrow is defined as

qrow ≡ max(E+
row, E−

row)

Ectr
row

, (A.3)

where Ectr
row is the total energy deposit in the row which includes the center

crystal, and E+
row and E−

row represent those in the two neighboring rows. The
operator “max(A,B)” returns A if A > B, otherwise returns B. The qcolumn

is the similar quantity to qrow, just replacing “row” to “column” in the above
explanation. The xi and yi are the x and y positions of the i-th crystal.

To save a computational resource, the µ and σ were prepared only for photons
with 0◦ < φinc < 45◦. The crystal positions were modified with y position
inversion and rotation appropriately so that the azimuthal angle fitted in the
φinc range.

The χ2 is designed to be ∼1 if the incident particle is a photon. Otherwise it will
have a larger value. By applying a cut on this value, we suppress backgrounds with
an abnormal shower shape, the KL → π0π0 “fusion” background in particular. In
that background, showers of two photons hitting the CsI calorimeter close to each
other overlapped and look like one cluster. Such fused clusters tend to have the larger
shape χ2 values. The details of the fusion background will be described in the next
section.

We require the shape χ2 to be less than 2.5.
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Figure A.1: Schematic view of the center crystal and the range of the summation
used in the shape χ2 calculation. A 2-dimensional histogram shows an example of
energy deposits in the cluster. Each bin corresponds to a crystal. The 1-dimensional
histograms on the left and bottom show the total energy deposit in each row and each
column, respectively. The star mark represents the center crystal. The range of the
summation corresponds to the square of 0∼26 columns × 0∼26 rows of the histogram.
The purple lines show the edge of the range.
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Table A.1: The numbers of signal and background events which are expected in 12-
months of data taking with designed beam power. This estimation is quoted from [5].

source # expected

signal KL → π0νν̄ 2.39± 0.03
K-decay KL → π0π0 1.32± 0.04

backgrounds KL → π+π−π0 0.11± 0.01
KL → πeν 0.07± 0.04

neutron NCC-π0 0.05± 0.02
backgrounds CV-π0 0.04± 0.04

CV-η 0.01± 0.01

Other shape variables

The number of crystals in the cluster is a convenient quantity to check the size of the
shower. A cluster RMS is defined as

RMSclus ≡
√

1

Eclus

∑
i

{
ei ×

(
(xi −Xclus)

2 + (yi − Yclus)
2)}, (A.4)

where Eclus, Xclus, and Yclus are an energy, x position, and y position of the cluster
defined in Eq. (3.4), and xi and yi are the x and y position of the i-th crystal in the
cluster. This quantity represents the width of the shower.

Definite cut values are not set for these values, but these are useful to qualify the cluster
shape as an electromagnetic shower. For example, I use the number of the crystals to
distinguish the electron clusters from the clusters made by MIPs in Chapter 5.

A.2 Backgrounds

Two background sources are considered. One is other KL decay modes, another is
halo neutrons in the beam. The number of signal events and background events in a
12-month data taking with the design beam power (2× 1014 protons on target per 3.3
seconds) are estimated as shown in Table A.1. The estimation is based on the Monte
Carlo study assuming that all the veto detector fully functions as their designs. Each
background in the table is explained in the following.
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A.2.1 KL Decay

In all the KL decays except the KL → π0νν̄ and the KL → γγ decays, there are at
least two charged particles or at least two extra photons. Because the KOTO veto
system detects those particles with a high efficiency, only the decays with relatively
large branching ratio (BR) are possible to be background sources. The KL → π0π0

decay, KL → π+π−π0 decay, and KL → πeν decays are considered to be the main
background sources. The contribution from the KL → 3π0 decay is estimated to be
negligible. Although the branching ratio is relatively large (BR = 19.52%), the decay
accompanies 4 extra photons in its final state and is vetoed easily. The contribution
from the KL → γγ decay is also expected to be negligible, because there is no missing
transverse momentum in the event and the Pt cut effectively distinguishes this decay
from the KL → π0νν̄ decay.

1. The KL → π0π0 decay.

The KL → π0π0 decay (BR = 8.64 × 10−4) is expected to be the largest back-
ground source of the KOTO experiment. There are three mechanisms that this
decay becomes the background.

The first one is that the two photons from the same π0 hit the CsI calorimeter
and the other two photons escape detection. This is called “even-pair” back-
ground. In this case, the undetected two photons carried the missing transverse
momentum as if the neutrinos in the KL → π0νν̄ decay. The vertex of the π0 or
the directions of the detected photons are correctly reconstructed. As a result,
neither the kinematic cuts nor the shower shape cuts are effective for the even
background.

The second one is that the two photons from the different π0s hit the CsI
calorimeter and the other two photons escape. This is called “odd-pair” back-
ground. The kinematic cuts are effective for this background because the π0

should not be reconstructed correctly. The E − θ cut and the E ratio cut are
effective in particular, as shown in Fig. A.2.

The third type is called “fusion” background where the three of four photons
hit the CsI calorimeter, and two of them are so close to each other that their
electromagnetic showers overlap and mimic one shower. In this case, the veto
efficiency should be lower than other two types because there is only one extra
photon. The fused cluster, however, tends to have a different shower shape from
that of a normal electromagnetic shower. The cuts on shower shape strongly
suppress this background.

Table A.2 shows a Monte Carlo estimation of the numbers of the three back-
grounds in a 12-month data taking with the designed beam power. The odd-
pair background is suppressed by a factor 23 by the kinematic cuts for the two
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Table A.2: The expected numbers of the KL → π0π0 background events in 12-month
data taking with the design beam power (2 × 1014 protons on target per 3.3 seconds
). The acceptance loss due to accidental activities is not included. The estimation for
the signal event is also shown.
type π0 kine. cuts. & veto # w/ 2γ kine. cuts # w/ shape cuts

even-pair 1.99± 0.09 1.23± 0.07 1.12± 0.07
odd-pair 4.35± 0.72 0.21± 0.13 0.20± 0.13
fusion 9.56± 0.34 6.75± 0.28 0.82± 0.10

KL → π0π0 total 15.92± 0.79 8.19± 0.31 2.16± 0.17

KL → π0νν̄ 8.07± 0.02 4.91± 0.01 4.54± 0.01

photons and the fusion background is suppressed by a factor 8 by the shower
shape cuts. The contribution of the even-pair background becomes largest after
applying all the cuts.
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Figure A.2: Kinematics of photons in the signal events (black), the even-pair (red), and
the odd-pair KL → π0π0 backgrounds (green). An energy multiplied by an incident
angle of each photon shown in (a). An energy ratio of the two photons shown in (b).
A vertical dashed line in each plot represents the cut value. All the kinematic cuts
except cuts for quantities drawn here are applied, and neither the veto nor the shower
shape cuts are required.

2. The KL → π+π−π0 decay.

The KL → π+π−π0 decay becomes a background source if the two charged pions
escape detection. Contributions of the events where one of the two pions escapes
through the beam hole is especially dominant, because a detection efficeincy of
a charged veto counter in the beam (“BHCV” in Fig. 1.6), is lower than the
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other veto counters due to the high flux of beam particles. The Pt of the π0 is,
however, kinematically limited to be less than 133 MeV/c, as shown in Fig. A.3.
The Pt cut effectively suppress this background.
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Figure A.3: Transverse momentum of the reconstructed π0 of the signal events (black)
and the KL → π+π−π0 events (red). Vertical dashed lines show the cut values. All
the kinematic cuts except the π0 Pt cut are applied. Neither the veto nor the shower
shape cuts are applied.

3. The KL → πeν decay.

The KL → πeν decay does not accompany a π0 or two photons. The positron
from this decay, however, often annihilates with electrons in the charged veto
counter located upstream of the CsI calorimeter (“CV” in Fig. 1.6), and converts
to two photons. The π− is also possible to convert to two photons via the charge
exchange interaction with a proton in the CV, that is, π− + p → π0(→ 2γ) + n.
If both of these interactions occur at the surface of the CV before depositing
sufficient energies, the charged particles are not detected in our veto system.
If two of the four photons are missed, this decay event becomes a background.
Dominant contributions come from the events as follows [41]. The two photons
from the π+ hit the CsI calorimeter and the low energy photon from the e+

escapes the detection. If the other photon from the e+ hits close to one of the
two photons from the π+, then their showers overlap and seems as one photon.
A schematic view of the event is shown in Fig. A.4. Because there is a fused
shower, these events are suppressed with the shower shape cuts by a factor 10.
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Figure A.4: Schematic view of the KL → πeν background.

A.2.2 Beam Halo Neutron

The beam halo neutrons are possible to be a background source if they interact with
a detector component near the beam axis and produce a particle decaying to two
photons.

NCC-π0 background

The largest contribution of the halo neutron backgrounds comes from the π0 produc-
tion at “NCC”, which is a photon veto counter located upstream of the decay volume
as illustrated in Fig. 1.6. If the two photons from π0 were not detected in the NCC,
and hit the CsI calorimeter, this event becomes a background. This is called NCC-π0

background. We can strongly reject this background by the Z-vertex cut because the
π0 decay vertex is correctly reconstructed at the NCC position if the energies of two
photons from the π0 are correctly measured. Only if the energy of either of the photons
is mis-measured lower than the actual energy due to energy leakage or photonuclear
interaction, the reconstructed vertex shifts downstream and is possible to be inside
the decay volume.

CV-π0 background

The π0 produced at the CV is also possible to be a background. This is called CV-
π0 background. Because the decay vertex is reconstructed at the CV position, this
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background is also suppressed by the Z-vertex cut. In contrast to the NCC-π0 back-
ground, the reconstructed vertex is possible to be inside the decay volume if the
energy of either photon from the π0 is mis-measured larger than the actual energy.
This mis-measurement occurs when the energies of extra secondary particles, which
are simultaneously produced with the π0, are added to one of the photon cluster. In
that case, the shape of the cluster is different from a normal photon cluster and the
shower shape cut is therefore effective to reject this background. The contribution of
this background becomes comparable or smaller than the NCC-π0 background after
applying the kinematic cuts and the shower shape cuts.

CV-η background

The η produced at the CV is also possible to be a background if it decays to 2 photons
(BR(η → 2γ) = 39.3%). This is called CV-η background. The decay vertex is
reconstructed more upstream than the actual vertex, because we assumed that the
invariant mass of the two photons is equal to the π0 mass in the vertex reconstruction
as described in Section 1.3, but the assumption is wrong in this case. The Z-vertex
cut is therefore not effective to this background unlike the NCC-π0 or the CV-π0

background. Instead, the shower shape cuts are effective to this background because
the incident angles of the photons are reconstructed much smaller than the actual
angles, and consequently the observed shower shapes are different from the shapes
expected from those incident angles.



Appendix B

Monte Carlo

I used a Monte Carlo simulation based on Geant4 to reproduce the data. The result
of the simulation was used in Section 4.3 to derive the momentum resolution and
the position resolution of the spectrometer, in Chapter 7 to estimate the energy and
position fluctuation of electrons due to the materials in the experimental area, and in
Chapter 8 to evaluate the acceptance of the KL → π+π− and KL → π+π−π0 decays.
In addition, the Monte Carlo expectations were shown in several plots to check the
consistency with the measured result.

In the simulation, primary particles, KLs and neutrons which are described in Sec-
tion B.1, were generated from Z=-1m. The interactions of the primary particle and
its daughter particles with the materials except for the CsI calorimeter were simulated
based on FTF BIC package in Geant4. Hits on the drift chambers and hits on the
trigger scintillators were reproduced with a criteria described in Section B.2. As for
the CsI calorimeter, the electromagnetic or hadronic showers in it took long CPU time
to simulate. To save the time, the interactions in the calorimeter were simulated only
for the events where there were at least two hits on the trigger scintillators, and at
least one hit in every wire plane of the drift chambers. The interactions in the CsI
calorimeter were simulated based on Geant4 QGSP BERT package . The reproduction
of the response of the CsI calorimeter is described in Section B.2. The same analysis
criteria was then applied to the simulation data as the measured data.
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B.1 Primary Particle Generation

B.1.1 KL

Initial position and direction

The initial position and direction of the primary KL was determined with the following
steps, based on the geometry of the production target and the beam-line collimators
which were described in Section 2.1. First we decided a x and y point on the target,
Xtgt and Ytgt. The Xtgt and Ytgt virtually corresponded to the interaction point of
the proton from the accelerator, and randomly distributed in −9.1 ∼ 9.1 mm for Xtgt

and in −1 ∼ 1 mm for Ytgt according to the target geometry. The KL was assumed
to be produced from that point, and its flight direction was decided at isotropically
random. We then required the KL flight trajectory to pass through the entrance of the
collimator which is located 7 m downstream of the target. The size was −7.6 ∼ 7.6
mm in x and −12.5 ∼ 12.5 mm in y. The Xtgt, Ytgt, and KL flight direction were chosen
repeatedly until this requirement was satisfied, and was adopted as the initial direction
of the primary KL. The KL trajectory was then extrapolated to 20 m downstream
of the target which corresponded to z=-1m. The position of the trajectory there was
adopted as the initial position of the primary KL.

Momentum spectrum

To calculate the acceptance of the KL → π+π− decays and KL → π+π−π0 decays in
Chapter 8, the momentum of the primary KL distributed uniformly between 0 and 10
GeV/c . Otherwise the momentum spectrum measured in Chapter 8 was used.

Decays

The standard KL in Geant4 has only 4 main decay modes: KL → πeν, KL → πµν,
KL → 3π0, and KL → π+π−π0. It does not have the KL → π+π− decay channel
which was used to measure the KL momentum spectrum in Chapter 8. Furthermore,
a flat phase space is assumed for the KL → 3π0 decay and the KL → π+π−π0 decay
in Geant4. We therefore designed and used custom KL decay routines.

The decay matrices, M , for the KL → 3π0 decay and the KL → π+π−π0 decay were
replaced as [26]

|M |2 ∝ 1 + g
s3 − s0

m2
π+

+ h

(
s3 − s0

m2
π+

)2

+ k

(
s2 − s1

m2
π+

)2

, (B.1)
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where si(i = 0 ∼ 3) were defined as

si ≡ (pK − pi)
2 , for i = 1, 2, 3, (B.2)

s0 ≡ 1

3

(
m2

K + m2
1 + m2

2 + m2
3

)
. (B.3)

Here pK and pi are the four-vectors of the KL and the i-th pion, respectively. Similarly
mK and mi are their masses. The index 3 is allocated for a π0, and the indexes 1 and
2 are allocated for the other two pions. The g, h and k in Eq. (B.1) were [26]

g = 0 (B.4)

h = −0.005 (B.5)

k = 0 (B.6)

for the KL → 3π0 decay and

g = 0.678 (B.7)

h = 0.076 (B.8)

k = 0.0099 (B.9)

for the KL → π+π−π0 decay. The directions and energies of the three pions were
determined according to this |M |2.
We separately prepared the KL decaying to only π+π− channel, because this decay
mode has a relatively small branching ratio, BR(KL → π+π−) ∼ (1.97± 0.01)× 10−3,
and it is not efficient to simulate this decay mode simultaneously with the main de-
cay modes. The two daughter pions with the same energies were produced isotrop-
ically in the KL rest frame, by using G4PhaseSpaceDecayChannel class prepared in
Geant4.

B.1.2 Neutron

The initial positions, directions and the energies of the primary neutrons were obtained
by an independent Monte Carlo simulation with Geant3 [24]. In the simulation, the
neutrons produced in the target were propagated to the exit of the collimator. The
simulation included interactions with the materials in the beam line such as the col-
limator or the gamma absorber. The position, direction, and energy of each neutron
at the exit of the collimator were stored, and used for the primary neutrons in our
simulation.
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B.2 Detector Response

B.2.1 Trigger Scintillators

Energy deposits in trigger scintillator modules were summed. The sum of deposits
greater than 1.5 MeV was treated as a hit. The timing information was not stored
because the drift length in the drift chambers were reproduced without using it, as
described next.

B.2.2 Drift Cambers

Neither the production nor the drift of ionization electrons in the chamber gas were
simulated. Instead, I stored the passage point of charged particles at each wire plane.
The nearest wire to the passage point was assumed to have a hit, and the drift length
d was calculated as

d = |Xpath −Xwire| cos θX (B.10)

for x-wire planes, where Xpath and Xwire represent the x position of the passage point
and the hit-wire position, respectively. The θX denotes the incident angle projected
in x-z plane. A schematic view of drift length reproduction is shown in Fig. B.1. For
y-wire planes, replace x in this explanation with y.

In addition, the drift lengths were fluctuated as

d → d′ = d + rand(fcom) + rand(fint), (B.11)

where fcom and fint were the probability distributions of fluctuations measured in
Section 4.3.1. The “rand(f)“ means a random value based on a given distribution f .
The rand(fcom) was common to all the drift lengths in that event, while the rand(fint)
differed for each hit.

B.2.3 CsI Calorimeter

In Geant4 simulation, a particle in a material moves step by step, and an interaction
between a particle and a material is simulated for each step. The step length is deter-
mined according to the cross-sections of interactions implemented in the simulation.
The energy deposit on the material is calculated by each step. We stored the energy
deposit, timing, and position of every step in the CsI calorimeter. An energy deposit
in a CsI crystal, E, was then calculated as

E =
in the CsI∑

i

ei (B.12)
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Figure B.1: Schematic view of the drift length reproduction in the simulation.

where ei represents an energy deposit of the i-th step in the crystal, and the sum is
calculated for all the steps in the crystal. The index i is assigned in the order of time.
The timing of the crystal, T , was defined as

T = tj, (B.13)

where tj represents a timing of the j-th step in the crystal, where the index j satis-
fies

j−1∑
i=0

ei <
E

2
<

j∑
i=0

ei. (B.14)

The real CsI crystals, however, have several sources of the fluctuations in both energy
and timing which were not included in the simulation. To reproduce the response of
the CsI calorimeter as realistically as possible, the energy in Eq. (B.12) and timing in
Eq. (B.13) were modified to include such effects. The sources of fluctuations and the
modifications for them are explained below.

1. Light yield dispersion

The scintillation light yield was different among the CsI crystals. In addition,
the light yield was not uniform along z direction. The relative light yield and the
“nonuniformity” along the z direction of each crystal was measured before the
crystals were installed, by using a 137Cs radioactive source. The PMT output
for 667 keV gamma-rays from 137Cs was measured for every 2.5-cm step along
the z direction. We defined the relative light yield as

LYrel(z, IDCsI) =
LY137Cs(z, IDCsI)

〈〈LY137Cs(z, IDCsI)〉z〉CsI

(B.15)



B.2. DETECTOR RESPONSE 183

where LY137Cs(z, IDCsI) represents the output of the crystal with a crystal ID=IDCsI

due to 137Cs placed at z. The 〈X〉z means the average of X for all the 2.5-cm
steps along the z direction, while the 〈X〉CsI means the average for all the crys-
tals. Figure B.2 shows the distribution of the relative light yield averaged along
the z direction, or 〈LYrel(z, IDCsI)〉z. The light yield differed by ∼20% among
the crystals. We also found that the light yield differed along the z direction, as
shown in Fig. B.3. The difference fell within ±10% for most of crystals.

To reproduce this effect in the simulation, Eq. (B.12) was modified as

E =
in the CsI∑

i

ei × LYrel(zi) (B.16)

where zi represent the z position of the i-th interaction, and LYrel(z) is the
relative light yield of the crystal at z.
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2. A photoelectron fluctuation.

The number of photoelectrons at the PMT should fluctuate according to Poisson
distribution. The typical number of the photoelectrons per MeV, np.e., was mea-
sured using cosmic-rays [4], as np.e. = 12.7 [photoelectrons/MeV]. To reproduce
this fluctuation in the simulation, the energy of each crystal, E in Eq. (B.16),
was modified as

E → Poisson(E × np.e.)

np.e.

, (B.17)
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where Poisson(x) means a random value according to the Poisson distribution
whose mean value is x.

3. The accuracy of the energy calibration.

In the data, the energy in each crystal was calculated from the waveform integral
of the crystal by multiplying the calibration factor. The accuracy of the calibra-
tion factor was measured as 0.669 ± 0.016% in Section 5.4. The energy of each
crystal, E, in the simulation was fluctuated according to the normal distribution
whose width was equal to this accuracy.

4. The timing resolution of each crystal.

The timing resolution of a crystal was measured in the past beam test [4], as
already shown in Eq. (3.5). The timing of each crystal, T in Eq. (B.13), in
the simulation was fluctuated according to the normal distribution whose σ was
equal to this resolution.



Appendix C

Chamber Alignment

The drift chambers were placed so that their wire planes were perpendicular to the
z-axis. Their positions were measured with a LASER marking instrument and a
stainless steel ruler. The accuracy of the measurement was estimated as 0.5 mm
for x and y directions from the width of the LASER maker. The accuracies in the z
direction were estimated as 0.5 mm for the 1st chamber, and 2 mm for the 2nd and
3rd chambers.

A displacement of the measured positions of the drift chambers from the real positions
were estimated by using charged tracks in the data. In this Appendix, I will describe
how the displacements were determined.

C.1 Displacement of Drift Chambers

The center positions of the three drift chambers are denoted as

~rctr
i ≡ (xctr

i , yctr
i , zi) (i = 1, 2, 3), (C.1)

where i = 1, 2, and 3 indicates the 1st, 2nd, and 3rd chamber, respectively. The hit
position on the chamber relative to its center is described as

~rwire
i ≡ (xwire

i , ywire
i , 0) (i = 1, 2, 3). (C.2)

If there is no displacement, the hit position on the i-th chamber, ~ri, is then represented
as

~ri ≡ ~rwire
i + ~rctr

i (C.3)

≡ (xi, yi, zi) (i = 1, 2, 3). (C.4)
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The displacement of the chambers are expressed with the rotations around their centers
and the parallel translations . I defined the translation vectors and the rotation matrix
of i-th chamber as

~δi ≡ (δix, δiy, δiz) , (C.5)

and

θ̂i ≡



0 −θiz θiy

θiz 0 −θix

−θiy θix 0


 , (C.6)

where I assumed θix(yz) ¿ 1 and ignored O(θ2) terms. A variable with “hat”, like Â,
means a matrix.

Considering the displacement, Eq. (C.3) is modified as

~ri → ~r′i ≡
(
1 + θ̂i

)
~rwire

i + ~rctr
i + ~δi (C.7)

≡ (x′i, y
′
i, z

′
i) (i = 1, 2, 3). (C.8)

Hereafter, I use the prime mark (′) for quantities which take the displacement into
account.

Our task is to derive the ~δi and θ̂i from the data. These displacement were determined
with reference to the 1st chamber, that is, I assumed the ~δ1 = ~0 and θ̂1 = 1̂. The
~δ2, θ̂2 and θ̂3 were derived by using data with straight tracks. The δ3x and δ3y were
determined by using the KL → π+π− events. The δ3z cannot be derived from the data
and I assumed δ3z = 0. In the rest of this section, I will explain the details of the
derivation of the ~δs and θ̂s.

C.1.1 Translation and Rotation of the 2nd Chamber

The ~δ2 and θ̂2 were determined by using a special run data where the spectrometer
magnet was turned off. In the data, charged tracks should be straight, and the hit
position recorded in the 2nd chamber should lie on the straight line which joined the
hit positions on the 1st and 3rd chambers. Assuming that the 1st and 3rd chamber
have no displacement, the straight track can be reconstructed as

~X(z) = ~s(z − z1) + ~r1, (C.9)

where ~s represents the slope of the track:

~s ≡ (~r3 − ~r1) /(z3 − z1) (C.10)

≡ (sx, sy, 1) . (C.11)

The hit position on the 2nd chamber, ~r′2, should be on this track, i.e.:

~r′2 − ~X(z′2) = ~0. (C.12)
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We do not know yet the displacement of the 2nd chamber and the ~r′2 is not observable
but ~r2 is. Replacing ~r′2 in Eq. (C.12) with ~r2, I defined the observable quantity ~∆2

as

~∆2 ≡ ~r2 − ~X(z2)

= (∆2x, ∆2y, 0) . (C.13)

Rewriting Eq. (C.12) to make the ~∆2 visible,

~r′2 − ~X(z′2) = 0

=
(
1 + θ̂2

)
~rwire

2 + ~rctr
2 + ~δ2 −

(
~X(z2)− ~s (z2 − z′2)

)

= ~r2 − ~X(z2) + θ̂2~r
wire
2 + ~δ2 − ~s

(−xwire
2 θ2y + ywire

2 θ2x + δ2z

)

= ~∆2 + θ̂2~r
wire
2 + ~δ2 − ~s

(−xwire
2 θ2y + ywire

2 θ2x + δ2z

)

∴
(

∆2x

∆2y

)
= −

(
δ2x

δ2y

)
+

(
sx

sy

)
δ2z

+

(
ywire

2 sx

ywire
2 sy

)
θ2x −

(
xwire

2 sx

xwire
2 sy

)
θ2y +

(
ywire

2

−xwire
2

)
θ2z.

(C.14)

Each component of the ~δ2 and θ̂2 were observed as the correlation between its coefficient
vector in this equation and the ~∆2. For example, the θ2x was observed as the slope
of a plot of ∆2x(y) vs ywire

2 sx(y). Because the coefficient vectors were not independent

each other, I adopted the iteration process to determine the ~δ2 and θ̂2. First, the δ2x

and δ2y were determined as the peak position of the ∆2x and ∆2y shown in Fig. C.1(a),
respectively. The θ2z was also derived as the slope of ∆2x(∆2y) vs ywire

2 (−xwire
2 ) plot

which is shown in Fig. C.1(b). By taking the derived δ2x, δ2y, and θ2z into consideration,

the ~∆2 was calculated again, and then the remaining components were determined.
The δ2z was derived as the slope of the ∆2x (∆2y) vs sx (sy) plot which is shown
in Fig. C.1(c). The θ2x was derived from the slopes of the plots of ∆2x (∆2y) vs
−y2sx (−y2sy) which is shown in Fig. C.1(d). Similarly θ2y was derived from the

∆2x (∆2y) vs −x2sx (−x2sy) plot. Furthermore, the ~∆2 was iteratively calculated 4

more times, and the ~δ2 and θ̂2 were updated in each iteration.

C.1.2 Rotation of the 3rd Chamber

The rotation of the 3rd chamber, θ̂3, was derived by also using the straight-track data.
Events with two tracks were used, which originated dominantly in KL decays. Each
of the two tracks could be expressed with hit positions on the 1st and 3rd chamber,
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Figure C.1: Plots to derive the displacement of the 2nd chamber, ~δ2 and θ̂2. (a) The
∆2x (black) and ∆2y (blue) measured in the data. The peak positions were determined
by fitting Gaussian which is shown in a red line. (b) Dependence of the ∆2x on the
ywire

2 . (c) Dependence of the ∆2x on the sx. (d) Dependence of the ∆2x on the −ywire
2 sx.

The θ2z, δ2z, and θ2x were determined from the slopes of (b),(c), and (d), respectively.
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~r1 and ~r′3, as

~X ′
T (z) = ~s′T (z − z1) + ~r1T (T = A or B), (C.15)

where T = A or B represents a tag of track. The sT represents the slope of the track
and is defined as

~s′T ≡
(
~r′3T − ~r1T

)
/(z′3T − z1) (C.16)

=
(
s′xT , s′yT , 1

)
. (C.17)

The position difference between the two tracks at a given z is

~X ′
A(z)− ~X ′

B(z) =
(
~s′A − ~s′B

)
(z − z1) + (~r1A − ~r1B)

(
∆AB

~X ′(z)
)

=
(
∆AB

~s′
)

(z − z1) + (∆AB~r1) , (C.18)

where the notation ∆ABQ means QA−QB for a given quantity Q. The |
(
∆AB

~X ′(z)
)
|

becomes minimum at

z′min = z1 −

(
∆AB

~s′
)
· (∆AB~r1)

(
∆AB

~s′
)2 . (C.19)

Because the two tracks comes from the same vertex, the minimum value should be
zero, i.e.:

(
∆AB

~X ′(z′min)
)

= −
(
∆AB

~s′
)

(
∆AB

~s′
)
· (∆AB~r1)

(
∆AB

~s′
)2 + (∆AB~r1) (C.20)

= ~0. (C.21)

Because we do not know the displacement of the 3rd chamber yet, the ~r′3T is not

an observable but ~r3T is. Consequently, the ~s′T , z′min and
(
∆AB

~X ′(z′min)
)

are not

observables. The observable quantities are

~sT ≡ (~r3T − ~r1T ) /(z3T − z1), (C.22)

zmin ≡ z1 − (∆AB~s) · (∆AB~r1)

(∆AB~s)2 , (C.23)

and (
∆AB

~X(zmin)
)

= − (∆AB~s)
(∆AB~s) · (∆AB~r1)

(∆AB~s)2 + (∆AB~r1) . (C.24)
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I define ~ε as the difference of the ~s′ and the ~s, i.e.:

~εT ≡ ~s′T − ~sT . (C.25)

The difference of ~ε’s of two tracks can be written as

(∆AB~ε) = ~εA − ~εB

=
1

z3 − z1

{(∆AB~cx) θ3x + (∆AB~cy) θ3y + (∆AB~cz) θ3z + (∆AB~s) δ3z} ,

(C.26)

where

~cx =



−ywire

3T sTx

−ywire
3T sTy

0


 , ~cy =




xwire
3T sTx

xwire
3T sTy

0


 , ~cz =




ywire
3T

xwire
3T

0


 . (C.27)

The computation process to derive Eq. (C.26) is described in Appendix D.4.1: ”Ver-
bose Calculation”.

Substituting Eq. (C.23), Eq. (C.24) and Eq. (C.25) into Eq. (C.20),
(
∆AB

~X ′(z′min)
)

∼
(
∆AB

~X(zmin)
)

+ (zmin − z1) (∆AB~ε)

− (∆AB~s)

(∆AB~s)2

{(
2
(
∆AB

~X(zmin)
)
− (∆AB~r1)

)
· (∆AB~ε)

}

(C.28)

The computation process to derive Eq. (C.28) is also described in Appendix D.4.2.

Note that the left-hand side,
(
∆AB

~X ′(z′min)
)
, is 0. Substituting Eq. (C.26),

(
∆AB

~X(zmin)
)

= ~dxθ3x + ~dyθ3y + ~dzθ3z, (C.29)

where

~dr =
1

z3 − z1

×
{

(∆AB~s)

(∆AB~s)2

(
2
(
∆AB

~X(zmin)
)
− (∆AB~r1)

)
· (∆AB~cr)− (zmin − z1) (∆AB~cr)

}
,

(C.30)

where r = x, y and z. The θ3x, θ3y, and θ3z were thus related to the ∆AB
~X(zmin). I

calculated the inner product of ∆AB
~X(zmin) and each coefficient vector, ~dx, ~dy, and ~dz.

The θ3x(y,z) was derived as a slope of a 2-dimensional plot of the inner product versus

|~dx(y,z)|, as shown in Fig. C.2. Because the ~dx, ~dy, and ~dz had correlations between
each other, I determined them with an iterative process. Once estimating the θs, I
made the 2-dimensional plots again with taking the estimated θs into account, and
the θs were updated from the plots. This process was iterated 4 times.
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Figure C.2: Plots to derive the rotation of the 3rd chamber, θ̂3. (a)
(
∆AB

~X(zmin)
)
·

~dz/|~d2
z|. (b)

(
∆AB

~X(zmin)
)
· ~dx/|~d2

x|.

C.1.3 Translation of the 3rd Chamber

The KL beam direction was measured with a beam profile monitor [42] before the runs
started. The direction of the KL beam was also reconstructed with the spectrometer
by using the KL → π+π− decays, although that direction depends on the translation
of the 3rd chamber ~δ3. I determined the x and y translation of the 3rd chamber δ3x and
δ3y so that the KL direction reconstructed with the spectrometer became consistent
with the direction measured with the monitor.

After the ~δ2, θ̂2, and θ̂3 were determined, I did the tracking process described in
Section 4.1 and reconstructed the two charged particle events. I described the total
momentum of the two charged particles as ~p, and the vector from the production
target to the vertex of the two tracks as ~V . If ~δ3 = ~0, and the events came from the
KL → π+π− decay, the ~p should be equal to the KL momentum, and be parallel to
the ~V , i.e:

~p

pz

−
~V

Vz

= ~0, (C.31)

where pz and Vz are the z-components of ~p and ~V . If ~δ3 6= ~0, the momentum direction
of KL was observed to be different from the real direction. As a result, Eq. (C.31) was
modified to be

~p

pz

−
~V

Vz

∼
~δ3

z3 − z1

. (C.32)

Figure C.3(a) and (b) show the measured px/pz − Vx/Vz and py/pz − Vy/Vz. A sharp
peak was considered to come from the KL → π+π− decays. The peak position was
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Table C.1: Estimation of the chamber displacement.
(translation)
chamber δx[mm] δy[mm] δz[mm]

1st 0± 0.5 0± 0.5 0± 0.5
2nd 0.1956± 0.0009 −1.2398± 0.0006 0.522± 0.011
3rd 0.558± 0.047 −0.526± 0.086 0± 2

(rotation)
chamber θx[mrad] θy[mrad] θz[mrad]

1st 0± 1 0± 0.7 0± 0.7
2nd 1.349± 0.075 1.031± 0.033 0.670± 0.004
3rd −4.67± 0.82 0.78± 0.63 0.513± 0.010

determined by fitting a double-Gaussian as also shown in the figures. Consequently,
δ3x and δ3y were determined from Eq. (C.32).
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Figure C.3: Components of the left-hand side of Eq. (C.32) observed in the data.
The x and y component is shown in (a) and (b), respectively. The peaks in the plots
were considered to originate from the KL → π+π− decays, and their position were
determined by fitting double-Gaussians shown in red lines.

C.1.4 Accuracy

The estimated values of the ~δs and θ̂s are shown in Table C.1. The ~δ1, θ̂1, and δ3z were
assumed to be 0, and their errors are the uncertainties of the measurement with the
ruler and the LASER marking instrument. The errors of δ3x and δ3y are the errors of
fitting which were described in Section C.1.3 and are shown in Fig. C.3. To estimate
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errors of the ~δ2, θ̂2, and θ̂3, I divided the data into 6 subsets. The derivation of those
values were executed for each subset, and the RMS of the 6 results was adopted as the
error of the value.



Appendix D

Verbose Calculation

D.1 Calculation in Chapter4

D.1.1 Double Integral in Eq. (4.6)

As described in Section 4.1.3, I used the tracking method based on [31, 32]. In this
method, the track path was represented by the function in Eq. (4.6) as,

xpath(z) = xpath(0) + x′path(0)z +
1

p

z∫

0

dz

z′∫

0

dz px′′path(z)

ypath(z) = ypath(0) + y′path(0)z +
1

p

z∫

0

dz

z′∫

0

dz py′′path(z). (D.1)

In this section, I will describe how we can estimate the double integrals in the equa-
tions, without knowing the exact form of xpath(z) and ypath(z).

From the equation of motion of a charged particle with a mass m in magnetic field
~B ≡ (Bx, By, Bz),

d2xpath

dt2
=

(
dypath

dt
Bz − dz

dt
By

)
× 1

m
(D.2)

d2ypath

dt2
=

(
dz

dt
Bx − dxpath

dt
Bz

)
× 1

m
(D.3)

d2z

dt2
=

(
dxpath

dt
By − dypath

dt
Bx

)
× 1

m
. (D.4)

194



D.1. CALCULATION IN CHAPTER4 195

The x′path can be rewritten using time derivatives as

x′path ≡ dxpath

dz

=
dxpath

dt

dt

dz

=
dxpath

dt
/
dz

dt
. (D.5)

Similarly,

y′path =
dypath

dt
/
dz

dt
. (D.6)

The x′′path can be rewritten as

x′′path ≡ d2xpath

dz2

=
d

dz

dxpath

dz

=
d

dz

dxpath

dt
/
dz

dt

=

(
dz

dt

)−3 (
dz

dt

d2xpath

dt2
− dxpath

dt

d2z

dt2

)
. (D.7)

By inserting Eqs. (D.2), (D.4), and (D.6) into Eq. (D.7),

x′′path = m−1

(
dz

dt

)−1 (
y′pathBz −

(
1 + x′path

)
By + x′pathy

′
pathBx

)
. (D.8)

The momentum p can be expressed as

p ≡ m

((
dxpath

dt

)2

+

(
dypath

dt

)2

+

(
dz

dt

)2
)

= m
dz

dt

((
x′path

)2
+

(
y′path

)2
+ 1

)
. (D.9)

With Eq. (D.8) and Eq. (D.9), the px′′path, which is the function to be integrated in
Eq. (D.1), can be written as

px′′path =
((

x′path

)2
+

(
y′path

)2
+ 1

) (
y′pathBz −

(
1 + x′path

)
By + x′pathy

′
pathBx

)
. (D.10)

The slopes, x′path and y′path, in the right-hand side of this equation are unknown, but we
can roughly estimate them by interpolating the hit positions on the three chambers
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with a cubic-spline curve. I evaluated the slopes and the magnetic field on every
20-mm intervals on the spline curve, and calculated the px′′path on each interval. An
interpolation with a cubic-spline curve was then taken for the px′′path values. Reminding
a cubic-spline curve is just a set of N polynomial functions of the third order where
N is the number of intervals, we can calculate its double integral analytically without
any numerical calculation. We thus can estimate the double integral in Eq. (4.6). This
estimation was a rough approximation. After once executing the fitting as described
in Section 4.1.3, however, we can calculate the px′′path on each interval more precisely
with using the fitted track path. Iterating the fitting 6 times, the estimation of the
double integral was well converged.

D.1.2 Minimization of χ2 Defined in Eq. (4.7)

We do not need any numerical calculation to minimize the χ2 defined in Eq. (4.7).
This saves a computing time for tracking, which is an advantage of this tracking
method.

Substituting Eq. (4.6), Eq. (4.7) is rewritten as

χ2 =

x wire plane∑
i

(
Xi − xpath(0)− x′path(0)Zi − p−1Dx(Zi)

)2

σ2
di

+

y wire plane∑
i

(
Yi − ypath(0)− y′path(0)Zi − p−1Dy(Zi)

)2

σ2
di

, (D.11)

where Dx(z) and Dy(z) represent the double integrals appeared in Eq. (4.6). The free
parameters are xpath(0), x′path(0), ypath(0), y′path(0), and p−1. Partial differentials of
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the χ2 by those parameters are

∂χ2

∂xpath(0)
=

x wire plane∑
i

−1× 2

σ2
di

(
Xi − xpath(0)− x′path(0)Zi − p−1Dx(Zi)

)

∂χ2

∂x′path(0)
=

x wire plane∑
i

−Zi × 2

σ2
di

(
Xi − xpath(0)− x′path(0)Zi − p−1Dx(Zi)

)

∂χ2

∂ypath(0)
=

y wire plane∑
i

−1× 2

σ2
di

(
Yi − ypath(0)− y′path(0)Zi − p−1Dy(Zi)

)

∂χ2

∂y′path(0)
=

y wire plane∑
i

−Zi × 2

σ2
di

(
Yi − ypath(0)− y′path(0)Zi − p−1Dy(Zi)

)

∂χ2

∂p−1
=

x wire plane∑
i

−Dx × 2

σ2
di

(
Xi − xpath(0)− x′path(0)Zi − p−1Dx(Zi)

)

+

y wire plane∑
i

−Dy × 2

σ2
di

(
Yi − ypath(0)− y′path(0)Zi − p−1Dy(Zi)

)

(D.12)

It should be noted that the right-hand sides of all of these equations are the linear
combination of the parameters. When the χ2 becomes minimum, all the partial differ-
entials should be zero. The parameter set which minimizes the χ2 are then determined
as the solution of these 5 simultaneous equations. Because all of them are linear equa-
tions, we can solve them by using Gaussian elimination. Thus the χ2 is minimized
without any numerical calculation.

D.2 Calculation in Chapter 7

D.2.1 Error of the E Resolution of the Calorimeter

The energy resolution and position resolution of the CsI calorimeter derived in Chap-
ter 7 were expressed with the same functional form, as

f(E) = p1 ⊕ p2√
E[GeV ]

⊕ p3

E[GeV ]
, (D.13)

except that the p3 is fixed to zero for the position resolution. The parameters were
determined by fitting this equation to the data. The error of f can be written with
covariance matrix elements, covij, which were calculated in the fitting process, and
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partial derivatives ∂f/∂pi as

σf (E) =

√∑
i

∑
j

∂f

∂pi

∂f

∂pj

covij (D.14)

where, i, j = 1,2,3. The diagonal elements of the covariance matrix, covii, are defined
as square of errors of parameters. Each partial derivatives are analytically calculated
as

∂f

∂p1

=
p1

f
(D.15)

∂f

∂p2

=
p2

fE[GeV ]
(D.16)

∂f

∂p3

=
p3

fE2[GeV 2]
. (D.17)

D.3 Calculation in Chapter 8

D.3.1 Error of the Function of Momentum Spectrum

The momentum spectrum f(pKL
) was represented with the function in Eq. (8.7),

as

f(pKL
) = A · exp

(
−(pKL

[GeV]− µ)2

2 (σ(pKL
))2

)
, (D.18)

where σ is a function of pKL
, defined as

σ(pKL
) = a (1− (b + cpKL

[GeV]) · (pKL
[GeV]− µ)) . (D.19)

The error of the function was calculated as

σf =

√√√√
5∑
i

5∑
j

∂f

∂pi

∂f

∂pj

covij, (D.20)

where pis (i = 1 ∼ 5) correspond to 5 parameters of f(pKL
), that is, A, µ, a, b, and c,

respectively. The covij is a covariance matrix which was derived in the fitting process,
and its diagonal elements, covii, is the square of the fitting error of the i-th parameter.
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The partial derivatives are calculated as

∂f

∂A
=

f

A

∂f

∂µ
= f

{
pKL

[GeV]− µ

σ2
+

(pKL
[GeV]− µ)2

σ2

b + cpKL
[GeV]

1− (b + cpKL
[GeV]) (pKL

[GeV]− µ)

}

∂f

∂a
= f

(pKL
[GeV]− µ)2

aσ2

∂f

∂b
= f

(
(pKL

[GeV]− µ)2

σ2

µ− pKL
[GeV]

1− (b + cpKL
[GeV]) (pKL

[GeV]− µ)

)

∂f

∂c
= f

(
(pKL

[GeV]− µ)2

σ2

pKL
[GeV] (µ− pKL

[GeV])

1− (b + cpKL
[GeV]) (pKL

[GeV]− µ)

)
(D.21)

D.4 Calculation in Appedix C

D.4.1 Derivation of Eq. (C.26)

Substituting Eq. (C.7) into Eq. (C.16), the ~s′T is written as

~s′T =
~r′3T − ~r1T

z′3T − z1

=
θ̂3~r

wire
3T + ~δ3 + ~r3T − ~r1T(

θ̂3~rwire
3T + ~δ3

)
z
+ z3 − z1

=

(
~sT +

θ̂3~r
wire
3T + ~δ3

z3 − z1

)
1 +

(
θ̂3~r

wire
3T + ~δ3

)
z

z3 − z1



−1

, (D.22)

where the notation ( ~Q)z means a z component of a given vector ~Q. Because
(
θ̂3~r

wire
3T + ~δ3

)
z
¿

z3 − z1, the ~s′T can be approximated as

~s′T ∼
(

~sT +
θ̂3~r

wire
3T + ~δ3

z3 − z1

)
1−

(
θ̂3~r

wire
3T + ~δ3

)
z

z3 − z1




∼ ~sT +
θ̂3~r

wire
3T + ~δ3

z3 − z1

− ~sT

(
θ̂3~r

wire
3T + ~δ3

)
z

z3 − z1

. (D.23)
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where I ignored O((δ/(z3 − z1))
2) term. Substituting Eq. (D.23) into the definition of

~ε in Eq. (C.25),

~εT =
1

z3 − z1

{
θ̂3~r

wire
3T + ~δ3 − ~sT

(
θ̂3~r

wire
3T + ~δ3

)
z

}

∴ (∆AB~ε) =
1

z3 − z1

{
θ̂3

(
∆AB~rwire

3

)− (∆AB~s) δ3z − θ3x

(
∆AB~sywire

3

)
+ θ3y

(
∆AB~sxwire

3

)}
.

(D.24)

I defined ~cx,~cy and ~cz as Eq. (D.4.1), i.e.:

~cTx =



−ywire

3T sTx

−ywire
3T sTy

0


 , ~cTy =




xwire
3T sTx

xwire
3T sTy

0


 , ~cTz =




ywire
3T

xwire
3T

0


 .

Then,

(
∆AB~sywire

3

)
= (∆AB~cx) ,

(
∆AB~sxwire

3

)
= (∆AB~cy) , θ̂3

(
∆AB~rwire

3

)
= (∆AB~cz) θ3z.

(D.25)

Substituting Eq. (D.25) into Eq. (D.24), we obtained Eq. (C.26), i.e.:

(∆AB~ε) =
1

z3 − z1

{(∆AB~cx) θ3x + (∆AB~cy) θ3y + (∆AB~cz) θ3z + (∆AB~s) δ3z} .

D.4.2 Derivation of Eq. (C.28)

Substituting Eq. (C.25) into Eq. (C.20),

(
∆AB

~X ′(z′min)
)

= − (∆AB~s + ∆AB~ε)
(∆AB~s + ∆AB~ε) · (∆AB~r1)

(∆AB~s + ∆AB~ε)2 + (∆AB~r1)

∼ − (∆AB~s + ∆AB~ε)
(∆AB~s + ∆AB~ε) · (∆AB~r1)

(∆AB~s)2
(
1 + 2 (∆AB~s)·(∆AB~ε)

(∆AB~s)2

) + (∆AB~r1) ,

(D.26)

where a value with ε2 is ignored. Because the ~ε is minute, the denominator in this
equation can be approximated as

(
1 + 2

(∆AB~s) · (∆AB~ε)

(∆AB~s)2

)−1

∼ 1− 2
(∆AB~s) · (∆AB~ε)

(∆AB~s)2 . (D.27)
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Using this approximation and ignoring the term with ε2, Eq. (D.26) becomes

(
∆AB

~X ′(z′min)
)

∼ − (∆AB~s + ∆AB~ε)
(∆AB~s + ∆AB~ε) · (∆AB~r1)

(∆AB~s)2

(
1− 2

(∆AB~s) · (∆AB~ε)

(∆AB~s)2

)

+ (∆AB~r1)

∼ − (∆AB~s)
(∆AB~s) · (∆AB~r1)

(∆AB~s)2 + (∆AB~r1)

− (∆AB~ε)
(∆AB~s) · (∆AB~r1)

(∆AB~s)2 − (∆AB~s)
(∆AB~ε) · (∆AB~r1)

(∆AB~s)2

+2 (∆AB~s)
(∆AB~s) · (∆AB~r1)

(∆AB~s)2

(∆AB~ε) · (∆AB~s)

(∆AB~s)2 . (D.28)

Substituting Eq. (C.23) and Eq. (C.24), we obtained Eq. (C.28), i.e.:

(
∆AB

~X ′(z′min)
)

=
(
∆AB

~X (zmin)
)

+ (∆AB~ε) (zmin − z1)

− (∆AB~s)

(∆AB~s)2

{(
2
(
∆AB

~X (zmin)
)
− (∆AB~r1)

)
· (∆AB~ε)

}
.
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