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Abstract

The KOTO experiment aims to observe the rare decay of long lived neutral kaons, KL →
π0νν̄, with the sensitivity of the Standard Model prediction. The detectors of the KOTO
experiment were constructed at J-PARC. The electromagnetic calorimeter is the only detector
to measure energies and hit positions of gamma which are used for the KL → π0νν̄ event
reconstruction.

To guarantee the performance of the calorimeter, an accurate output monitoring method
and a precise energy calibration method are required. I built an output monitoring system using
Laser light source, and determined its performance. For the calibration of the calorimeter, the
calibration sources are limited to the cosmic ray events and KL decay events, because there
are no other detectors which can measure energy or momentum of particles independently. In
addition, the KOTO experiment will run for several years, and thus the calibration has to
be done simultaneously with the data taking to secure the reliabilities of data. Because of
these restrictions, I developed and studied a new calibration method which uses KL → 3π0

decay events and occasional absolute energy calibration runs. This method can calibrate the
calorimeter with an accuracy less than 1%.



Acknowledgements

This thesis could no be completed without enormous support from many people. I would like
to express my appreciation to them on this occasion. First of all, I would like to express my
heartfelt gratitude to my supervisor, Prof. Taku Yamanaka, for giving me a great opportunity
for the research in high energy physics. He always shows me the attitude and the mindset of
researchers by himself. His those words and deeds impressed me deeply. I cannot express all of
my gratitudes enough for giving me a lot of support and advice.

I would like to extend my gratitudes to all of the KOTO collaborators. When I joined
the KOTO experiment, no detectors for the experiment were prepared; the calorimeter was in
FNAL; and there was only a proposal. I was deeply impressed that the proposal became the
detector with their enormous efforts and intentions even though there were many obstacles.
I had worked on the calorimeter construction and the development of the calibration method
of the KOTO experiment. I would like to extend my gratitudes to Prof. N. Sasao, Prof. J.
Comport, Prof. T. Inagaki, Prof. S. Suzuki, Prof, M. Cambell, Prof. Y. W. Wah, Prof. T.
Shinkawa, Prof. T. Komatsubara, Prof. G. Y. Lim, Prof, T. Nomura, Prof. Tajima, Prof. H.
Nanjo, Prof. H. Watanabe and Prof. T. Matsumura for giving me invaluable supports and
advices on analysis. I also want to express sincere gratitude to Prof. N. Nguyen for his advices
about Laser system.

I am deeply thankful to Prof. M. Togawa, and Dr. Y. Ri. They led the calorimeter construc-
tion at the J-PARC. Without them, the calorimeter cannot be built with such a completeness.
I am also grateful to Dr. E. Iwai, T. Shimogawa, Mr. K. Sato and Dr. K. Shiomi for their
instructions and advices on the analysis. I would like to thank Dr. T. Masuda, Mr. H. Yoshi-
moto, Mr, N. Kawasaki, Mr, Y. Maeda, Mr. D. Naito, Mrs. R. Murayama, Ms. Y. Yanagida,
Mr. Y. Nakaya, Mr. Y. Sugiyama, and Mr. S. Banno for their great works on the calorimeter
construction and the beam test.

I also would like thank all of members of the Yamanaka group at Osaka University. I want
to express hearty gratitude to Prof. K. Hanagaki for his advices. I owe special thanks to Dr. H.
Hirose for his kindness and friendship. I would like to express my gratitude to Mr. T. Takagi,
Mr. W. Oakamura, Mr. J. Uchida, Mr. M. Endo, Mr. J. J. Teoh, Mr. S. Higashino, N. Ishijima,
Y. Takashima, Mr. R. Tsuji, Mr. Y. Arai. Ms. M. Isoe, for their kindness and harmonious
relationships. I am deeply thankful to the secretaries of the group, Ms. M. Kawaguchi, Ms.
A. Kamei, and Mrs. K. Kawahara for their help. I want to express my appreciation to the
collaborators once again.

Finally, I would like to express my appreciation to my parents, Lee Byoung-hwa, and Kim
Sun-jin for their supports, endurance, and trust.

I remember what I said in the graduation ceremony of the Japanese language course in the
Osaka University (2003.3). I said, ”In the future, I may hang on the way or wander, but I will
advance towards the goal steadly”. It became true.

Lee Jong-won



ii

Gimhae, R.O.Korea.
July 2014.



Contents

1 Introduction 1
1.1 CP Violation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 CP Violation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 CKM matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 KL → π0νν̄ decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.4 History of KL → π0νν̄ branching ratio measurement . . . . . . . . . . . . 5

1.2 Concept of the KOTO experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Calibration of KOTO CsI calorimeter . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 Requirements on the energy calibration method . . . . . . . . . . . . . . . 9
1.3.3 Energy calibration method for the CsI calorimeter . . . . . . . . . . . . . 10
1.3.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 J-PARC Facility and Detector 12
2.1 J-PARC Facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 KOTO experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 KL beamline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Overview of the KOTO detector . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 CsI calorimeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.4 Other Veto detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.5 Signal readout method and data acquisition system . . . . . . . . . . . . . 18

2.3 Setup for beam test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 CsI Calorimeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Cosmic ray trigger scintillator . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.4 Temporary Charged Veto . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.5 Spectrometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Status monitoring system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.1 Laser gain monitoring system . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.2 Temperature monitoring system . . . . . . . . . . . . . . . . . . . . . . . 21

3 Data conversion 24
3.1 Waveform analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Conversion of waveform to energy and timing . . . . . . . . . . . . . . . . 24
3.1.2 Properties of waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Temperature Effect Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Energy conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 PMT gain stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



CONTENTS iv

4 Initial calibration using cosmic ray events 33
4.1 Cosmic ray events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Data taking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Cosmic ray event analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 3pi0 calibration 39
5.1 Outline of the relative calibration method with KL → 3π0 decay mode . . . . . . 39
5.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.1 Beam event data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.2 Monte Carlo simulation data . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 KL → 3π0 decay event reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3.1 γ reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3.2 KL resonctruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.4 Relative calibration method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.4.1 Data selections for the relative calibration . . . . . . . . . . . . . . . . . . 42
5.4.2 Event level process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.4.3 Test of the event level process . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.4.4 Data set level process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.4.5 Statistical effect on the calibration accuracy . . . . . . . . . . . . . . . . . 47
5.4.6 Effect of the accuracy of the initial calibration method on the final cali-

bration accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.5 Result of the relative calibration method . . . . . . . . . . . . . . . . . . . . . . . 50
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 Absolute energy scale calibration 54
6.1 Purpose and apparatus of the absolute energy scale calibration . . . . . . . . . . 54
6.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2.1 KL beam event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.2.2 Monte Carlo simulation data . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.3 Comparison beam data and MC data . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3.1 Event selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3.2 Comparison beam data with simulation data . . . . . . . . . . . . . . . . 56

6.4 Energy scale derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.5 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7 Nonlinearity correction on signal height 62
7.1 Nonlinearity of waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.2 Evidences of nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.2.1 Nonlinearity derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.2.2 Nonlinearity correction result . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.3 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8 Confirmation of the calibration result 68
8.1 Comparison beam data and MC . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

8.1.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.1.2 Cut conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.1.3 Parameter distribution comparison between the MC data and the beam

even data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.2 KL flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



CONTENTS v

8.3 Effects of the energy calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
8.3.1 Effects on the gamma, π0, and KL . . . . . . . . . . . . . . . . . . . . . . 75
8.3.2 Effects on the KL beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.4 Comparison of the calibration constants with Ke3 calibration result . . . . . . . 76
8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

9 Conclusion 79

Appendix A Ke3 calibration 81

Bibliography 83



List of Figures

1.1 Current CKM unitarity triangle [5] . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Feynman diagrams of KL → π0νν̄ decay . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 The predictions of new physics model on the KL → π0νν̄ branching ratio. . . . . 6
1.4 History of the 90% CL upper limit of Br( KL → π0νν̄). The pink line shows

standard model prediction. The green line shows the Grossman-Nir limit set
from K+ → π+νν̄ decay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Schematic view of KOTO experiment. . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 A schematic view of the π0 reconstruction. . . . . . . . . . . . . . . . . . . . . . . 8
1.7 Front view of the calorimeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 An overview of the J-PARC Facility [12]. . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Plan view of KL Beam line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Schematic view of detector setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Geometry of CsI calorimeter and neighboured VETO detectors . . . . . . . . . . 16
2.5 Structure of CC06 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Schematic view of the experiment setup. . . . . . . . . . . . . . . . . . . . . . . . 19
2.7 Channels in CsI Calorimeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.8 Channel assignments of VME crates and L1 sections . . . . . . . . . . . . . . . . 21
2.9 Front view of temporary charged veto . . . . . . . . . . . . . . . . . . . . . . . . 22
2.10 Schematic view of upstream of Laser gain monitoring system . . . . . . . . . . . 23
2.11 Schematic view of light distribution device of Laser gain monitoring system . . . 23

3.1 The raw data recorded by FADC . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 The difference of the waveform templates in each module. . . . . . . . . . . . . . 25
3.3 [Left]The distributions of ∆. Red line shows the ∆ distribution of small modules,

and blue line shows that of larger modules. [Right]XY distribution of ∆. Two
channels which had apparently different waveform are not included. . . . . . . . 26

3.4 The templates for Laser events and gamma shower events . . . . . . . . . . . . . 27
3.5 Output nonlinearities measured with various measurements. . . . . . . . . . . . . 27
3.6 Changes of waveforms for various pulse heights . . . . . . . . . . . . . . . . . . . 29
3.7 The temperature dependence of MIP during data taking. . . . . . . . . . . . . . 29
3.8 Correlation between reconstructed π0 mass peak value and the calorimeter surface

temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.9 Temperature at the surface of the calorimeter during the data taking. . . . . . . 31
3.10 Temporal variations of pulse height ratio of the Laser event output. . . . . . . . . 32

4.1 A Sample light yield distribution in the crystal . . . . . . . . . . . . . . . . . . . 34
4.2 Sample of a cosmic ray event before noise cut and the fitting cosmic ray events

using Hough transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



LIST OF FIGURES vii

4.3 Sample of cosmic ray event(left) and the distributions of χ2 defined in Eq.
4.1(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Sample of deposited energy distribution . . . . . . . . . . . . . . . . . . . . . . . 36
4.5 ρ− θ distributions of cosmic ray event . . . . . . . . . . . . . . . . . . . . . . . . 37
4.6 The result of cosmic ray calibration and HV adjustment. . . . . . . . . . . . . . . 38

5.1 Clustering method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2 Changes of measured parameters in the fitting . . . . . . . . . . . . . . . . . . . 45
5.3 Calibration test result of a KL → 3π0 event. . . . . . . . . . . . . . . . . . . . . . 46
5.4 The relation between the number of the fitting result on a module and the accu-

racy of the derived calibration constant . . . . . . . . . . . . . . . . . . . . . . . 47
5.5 The convergence of calibration factor in a specific channel. . . . . . . . . . . . . . 48
5.6 Effect of iteration on the final calibration accuracy . . . . . . . . . . . . . . . . . 49
5.7 Statistical Effect on the calibration accuracy. . . . . . . . . . . . . . . . . . . . . 49
5.8 Effect of initial condition on the calibration result. . . . . . . . . . . . . . . . . . 50
5.9 Relation of calibration accuracy and statistics of KL . . . . . . . . . . . . . . . . 51
5.10 Comparison of the calibration constant position distribution of small modules

with the initial calibration result . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.1 Setup of energy scale calibration run . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 The distribution of the reconstructed π0 mass and the gamma energy . . . . . . 56
6.3 The distributions of L1 section energy sum in the energy scale calibration data. 57
6.4 Gamma hit position in the Al target run data . . . . . . . . . . . . . . . . . . . . 58
6.5 Distribution of gamma energy and gamma shape χ2 . . . . . . . . . . . . . . . . 59
6.6 Distribution of transverse momentum and reconstructed π0 mass . . . . . . . . . 59
6.7 Relation between the fitted π0 mass and the energy scale factor . . . . . . . . . . 60
6.8 Effect of Al target position mis-measurement on π0 mass peak value . . . . . . . 61
6.9 π0 mass fitting result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.1 Signal height nonlinearity surveyed with the Laser Monitoring System. . . . . . . 63
7.2 Concept of the nonlinearity survey using KL → 3π0 decay. . . . . . . . . . . . . . 63
7.3 The mass of the π0 with the largest gamma energy calculated with the averaged

decay vertexes of other two π0s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.4 The relation of δ(h) and the max pulse height. . . . . . . . . . . . . . . . . . . . 65
7.5 The nonlinearity derived from the MC. . . . . . . . . . . . . . . . . . . . . . . . . 65
7.6 Distribution of the calibration factor and the max pulse height . . . . . . . . . . 66
7.7 Derived nonlinearity from the 3π0 calibration method . . . . . . . . . . . . . . . 66
7.8 Correlation between the reconstructed π0 mass and the maximum pulse height

in the cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8.1 Distributions of L1 section energy sum for section 1-6. . . . . . . . . . . . . . . . 70
8.2 Distributions of L1 section energy sum for section 7-10. . . . . . . . . . . . . . . 71
8.3 Gamma hit distributions in x (left) and y (center) and gamma energy distribution 72
8.4 Transverse momentum distribution of π0 . . . . . . . . . . . . . . . . . . . . . . . 72
8.5 Distribution of zKL

after applying all cuts . . . . . . . . . . . . . . . . . . . . . . 73
8.6 Distribution of χ2

KL
(left) and reconstructed KL mass before applying cuts on

KL parameters. The data (MC) is shown in red dots (black solid line). The lower
half shows the ratio between two distributions (Beam/MC). . . . . . . . . . . . 73

8.7 KL mass distributions after cut. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
8.8 Effect of the calibration precision on the gamma energy resolution in the MC . . 75



LIST OF FIGURES viii

8.9 Reconstructed mass distribution of π0 and KL . . . . . . . . . . . . . . . . . . . 77
8.10 Distributions of xc.o.e. and yc.o.e . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8.11 Correlation between my calibration result and the Ke3 calibration result . . . . . 78



List of Tables

1.1 Decay modes of KL [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Design values of beam parameters for J-PARC proton accelerator . . . . . . . . . 13

4.1 List of cosmic ray data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1 Data used to collect KL → 3π0events. . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2 Cut conditions on KL for energy calibration. . . . . . . . . . . . . . . . . . . . . 42

6.1 Cut values for the energy scale calibration sanalysis . . . . . . . . . . . . . . . . 55

8.1 Cut parameters for the distribution comparison . . . . . . . . . . . . . . . . . . . 68
8.2 Fitting result for π0 and KL mass distributions . . . . . . . . . . . . . . . . . . . 76



Chapter 1

Introduction

1.1 CP Violation

1.1.1 CP Violation

A broken symmetry between matter and antimatter, CP Violation, is one of the important sub-
jects in particle physics. In Quantum Field Theory (QFT), there are three fundamental symme-
tries, charge conjugation (C), parity (P) and Time reversal (T). However, the CP-symmetry, the
combination of the C and P symmetries, is broken. It is confirmed by cosmological observations,
and results of particles physics experiments, as described bellow.

The amounts of matter and antimatter were balanced in the early Universe, but the current
Universe is matter dominant with few anti-matter. The ratio of broken symmetry between
matter and antimatter can be expressed by the baryon-to-entropy ratio, the ratio between
the net number of baryons and the number of gammas, (nB − nB̄)/nγ . The current value of
the ratio was derived from the cosmic microwave background measurements, and the value
is ∼ 10−10 [1]. To explain why the ratio is not zero, baryogenesis which assumes different
production ratio between baryons and antibaryons is needed. A.D. Sakharov proposed following
three fundamental conditions:

• baryon number violation,

• loss of thermal equilibrium, and

• C violation and CP violation

for the baryogenesis, known as ”Sakharov Conditions” [2].
Of those conditions, the CP violation is observed in weak interactions in particle physics.

The CP violating decay was first observed by V.Fitch and J. Cornin et al. [3]. They observed
that the CP odd state particle, KL, decayed into two charged pions which are in a CP even
state. Currently, it is known that CP violation occurs via a nonzero imaginary phase in the
CKM matrix which describes amplitudes in flavor changes of quarks in the standard model.
The standard model has 3 types of interactions, electromagnetic, weak, and strong nuclear
interaction. Only weak interaction violates CP in the standard model. The estimated baryon-
to-entropy ratio from the standard model physics is ∼ 10−20, and it is largely different from the
cosmological observations. To explain this difference, new physics beyond the standard model
is required.
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1.1.2 CKM matrix

There are six kinds of quarks, up, down, strange, charm, top and bottom. They can be classified
by three generations and two types of charges. Currently, we know that the flavor of quarks
can change to other types via weak interaction in the standard model physics. The interaction
amplitudes between different generations are suppressed. The CKM matrix expresses the inter-
action amplitudes between different flavors of quarks. From a unitarity requirement, there are
four degrees of freedom in the matrix components. They are expressed with three real angles,
θ12, θ13, θ23, and one imaginary phase, δ13. The CKM matrix can be written as

V =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 =

 c12c13 s12c13 s13e
−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13
s12s23 − c12c23s13e

iδ13 −c12s23 − s12c23s13e
iδ13 c23c13

 ,

(1.1)
where cij = cos θij , and sij = sin θij . L.Wolfenstein parameterised the matrix [4] by setting
λ = s12, Aλ

2 = s23, Aλ
3(ρ− iη) = s13e

iδ, as:

V =

 1− λ2

2 λ Aλ3 (ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4). (1.2)

The unitarity of the CKM matrix requires VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. This condition makes

a triangle on the ρ− η plane. This triangle, known as ”Unitarity triangle”, is used to represent
the CKM matrix components. The currently known values of ρ and η are 0.121 ± 0.02 and
0.349± 0.012, respectively [5].
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Figure 1.1: Current CKM unitarity triangle [5]

CP violation in particle interactions occurs by the nonzero imaginary component, δ13 or η.
It, however, cannot explain the amount of matter in the Universe as mentioned.
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If a new physics exists, it may affect the branching ratio of particles. In case of suppressed
decay modes in the standard model, the branching ratio can be large enough to be detected by
experiments. Therefore, the KOTO experiment aims to detect the KL → π0νν̄ decay event,
one of rare decay modes of KL, to search for such new physics.

1.1.3 KL → π0νν̄ decay

The KL → π0νν̄ decay mode has three characteristics.

• The branching ratio is suppressed in the Standard Model.

• The branching ratio can be largely changed by new physics.

• The branching ratio is proportional to the square of CP violation parameter η, and has
small theoretical ambiguity.

Properties of KL particle

The KL particle is one of states of neutral kaons. There are two mass eigenstates of neutral
kaon, |KL⟩ and |KS⟩. They are mixed states of |K0⟩ and |K̄0⟩ which consist of d-quark and
s-quark. CP eigen states, i.e. a CP-odd state and a CP-even state, of neutral kaon are written
as

|K1⟩ =
1√
2
(|K0⟩+ |K̄0⟩),CP− even state (1.3)

|K2⟩ =
1√
2
(|K0⟩ − |K̄0⟩),CP− odd state. (1.4)

The |KL⟩ and |KS⟩ can be written with |K1⟩ and |K2⟩ as,

|KL⟩ =
1√

1 + |ϵ̄|2
(|K2⟩+ ϵ̄|K1⟩) (1.5)

|KS⟩ =
1√

1 + |ϵ̄|2
(|K1⟩+ ϵ̄|K2⟩). (1.6)

The |ϵ̄| indicates the CP asymmetry component of neutral kaons. If CP symmetry is con-
served, the |ϵ̄| must be zero, but the current value of |ϵ̄| is (2.2228± 0.011)× 10−3 [5]. It means
that KL is a mixed-CP state dominated by a CP-odd state, but has a small component of a
CP-even state.

This characteristic makes that KL decays generally into CP-odd states. Decaying into CP-
even states is suppressed as marked as [CPV] in Table 1.1. This makes that KL decays mainly
into a 3π state, and KS decays mainly into a 2π state. This feature causes large difference in
lifetime between KL (5.116× 10−8 sec) and KS (0.8954× 10−10 sec) [5].

KL → π0νν̄ decays in the Standard Model

In the standard model physics, the KL → π0νν̄ decay mode occurs via a Z-penguin diagram
and a W-box diagram which are shown in Fig. 1.2. These diagrams are highly suppressed
by the GIM mechanism. The state of neutral kaon, |K0⟩, consists of strange quark and anti-
bottom quark. Therefore, the KL → π0νν̄ decay diagram contains flavor changes s → X → d
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Table 1.1: Decay modes of KL [5]

Decay mode branching ratio(Γi/Γ)

π±e∓νe [K0
e3] (40.55± 0.11)%

π±µ∓νµ [K0
µ3] (27.04± 0.07)%

π+π−π0 (12.54± 0.05)%

π+π−[CPV] (1.967± 0.010)× 10−3

3π0 (19.52± 0.12)%

2π0[CPV] (8.64± 0.06)× 10−4

2γ (5.47± 0.04)× 10−4

π0νν̄ < 2.6× 10−8 (90%CL )

(X = u, c, t), and s̄ → X → d̄ (X = ū, c̄, t̄). Each quark has a different contribution on the
KL → π0νν̄ decay amplitude,

A(s → dνν̄) =
∑

q=u,c,t

V ∗
qsVqdAq


O(λ5m2

t ) + iO(λ5m2
t )|q=t

O(λm2
c) + iO(λ5m2

c)|q=c

O(λΛ2
QCD)|q=u

(1.7)

The decay amplitude ofKL → π0νν̄ decay mode is the sum of contributions fromK0 → π0νν̄
and K̄0 → π0νν̄. A contribution from a real part of amplitude is canceled, and only an imaginary
part component contributes to the KL → π0νν̄ decay. Because the mass of the top quark is 100
times larger than the charm quark mass, KL → π0νν̄ decay mode is dominated by imaginary
component of top quark mediated diagram.

The branching ratio of KL → π0νν̄ decay is written as

BR(KL → π0νν̄) = κL

(
Imλt

λ5
Xt

)2

, (1.8)

where κL = (2.231 ± 0.013) × 10−10
[

λ
0.2248

]8
and Xt = 1.469 ± 0.017 ± 0.002. The Imλt is

proportional to the η of CKM matrix as shown in Eq. 1.8. The theoretical calculation result of
this branching ratio is BR(KL → π0νν̄)= (2.43+0.40

−0.37 ± 0.06)× 10−11 [6].
If the measured branching ratio of KL → π0νν̄ decay is inconsistent with the branching

ratio which is predicted from the η derived from B meson decays, it means that the KL → π0νν̄
decay mode is affected by the new physics.

New physics in the K → πνν̄ decay

The KL → π0νν̄ decay mode and its iso-symmetrical partner, the K+ → π+νν̄ decay mode, are
sensitive to new physics by their small theoretical ambiguities and their small branching ratios.
The branching ratio of K → πνν̄ decay is sensitive to all diagrams from new physics, and the
branching ratio of the KL → π0νν̄ decay is sensitive to CP violating decay diagrams. With this
feature, the ratio of two branching ratios changes by new physics models [9] as shown in Fig.
1.3.

In case of SM4 which assumes four generations of quarks, there can be two other imaginary
phases in its extended CKM matrix. The model predicts that the branching ratio of the KL →
π0νν̄ decay to be in the green area shown in Fig. 1.3. In case of MFV, Minimal Flavor
Violation, which assumes no CP violation in new physics, the contribution of the new physics
to both branching ratios is given by a function of new physics effect. Therefore the branching
ratios have a clean correlation as shown in an orange line in Fig. 1.3.
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Figure 1.2: Feynman diagrams of KL → π0νν̄ decay

1.1.4 History of KL → π0νν̄ branching ratio measurement

An upper limit on the branching ratio of the KL → π0νν̄ decay mode is < 2.6 × 10−8 (90%
CL) [8] as set by KEK E391a experiment. The branching ratio of K+ → π+νν̄ was measured
to be (1.7+1.15

−1.05) × 10−10 [10], and it gives an upper limit on the KL → π0νν̄ branching ratio,
1.46× 10−9 [7], which is called the Grosman-Nir bound. The history of KL → π0νν̄ branching
ratio is shown in Fig. 1.4.

1.2 Concept of the KOTO experiment

The KOTO experiment aims to search for KL → π0νν̄ decay event. In this section, I will
explain the concept of the KOTO experiment.

The decay products of KL → π0νν̄ decay mode are all neutral particles. Two of them
are gammas, which are decay products of π0. They are detectable particles and their energy
and hit position can be measured. The other two are neutrinos, and they cannot detected
by the detector. The KOTO experiment uses information of only 2 gammas for the event
reconstruction.

There are two types of background events for KL → π0νν̄ decay. One comes from beam line
particles. Another comes from other KL decay modes. The background events from beam line
particles are mainly generated by the interactions between beam particles, mainly neutrons, and
detectors. The main source of the KL origin background events comes from KL → 2π0 decay
mode when the KOTO detector misses gammas or misidentifies two gammas as one gamma from
the KL → 2π0 decay events. To reduce the background caused by missing gammas, there are
detectors surrounding the designed decay volume as shown in Fig. 1.5. In addition, to reduce
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Figure 1.3: The effect of new physics models on the KL → π0νν̄ branching ratio [9]. The
vertical axis and horizontal axis represent the branching ratio of KL → π0νν̄ and K+ → π+νν̄,
respectively. The upper limit on the ratio between branching ratios of KL → π0νν̄ decay
mode and K+ → π0νν̄ is given by a constraint called Grosman-Nir bound [11] which comes
from the iso-spin symmetry. Each label means each new physics model. SM:Standard Model,
SM4:Standard Model with a sequential 4th generation (excluded by Higgs physics), LHT:Little
Higgs Model with T-parity, MFV: Minimal Flavor Violation Model,, RSc: Randall-Sundrum
model.

the missing gamma which passes through the beam hole of the calorimeter, the beamline for
the experiment is designed to have small width and height.

The background events from other KL decay modes are reduced by the following schemes.

• measure gamma energy and position with accuracy.

• count the number of detected particles.

• veto charged particles.

To measure gamma energy and hit position, the calorimeter made of Caesium Iodide (CsI)
crystals is used in the KOTO experiment. These measured values are used for event reconstruc-
tion.

The number of detected particles is one of important properties of KL → π0νν̄ decay
mode. The decay mode has only two gammas in the final state. All other decay modes, except
KL → 2γ, have charged particles or more than two gammas in the final state. If the detector
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Figure 1.4: History of the 90% CL upper limit of Br( KL → π0νν̄). The pink line shows
standard model prediction. The green line shows the Grossman-Nir limit set from K+ → π+νν̄
decay.

Figure 1.5: Schematic view of KOTO experiment.
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is designed to detect all particles except neutrinos, these backgrounds can be easily reduced.
In the KOTO experiment, the decay volume is surrounded by high sensitive gamma detectors.
The background events from KL → 2γ decay mode can be suppressed by requiring that the 2γ
system has a finite transverse momentum.

To veto charged particles, a thin scintillator, hodoscope, is placed just upstream of the
calorimeter. Background events from charged decay modes such as, KL → π±e∓νe, KL →
π±µ∓µµ and KL → π+π−π0, are rejected by this detector.

With this detector setup, the KOTO experiment proposes to observe KL → π0νν̄ decay
events for the first time. The detection power of an experiment for KL → π0νν̄ decay is
represented by a parameter called Single Event Sensitivity (S.E.S) which is defined as

S.E.S. = 1/(NKL
× decay probability× acceptance). (1.9)

The KOTO experiment aims the S.E.S. of 8 × 10−12 [7] for the KL → π0νν̄ decay. With this
S.E.S., two or three KL → π0νν̄ decay events from the standard model are expected to be
detected in this experiment.

1.3 Calibration of KOTO CsI calorimeter

1.3.1 Introduction

Figure 1.6: A schematic view of π0 reconstruction. The dotted line represents the center of the
KL beam.

In the experiment, the π0 from KL → π0νν̄ decay is reconstructed by the following method.
At first, events with two gammas on the calorimeter are selected. The events are also required
that there are no hits in other detectors. The π0 decay position is reconstructed on the center
of the KL beam where it satisfies

M2
π0 = 2E1E2(1− cos θ12), (1.10)

where θ12 is the interior angle between two gamma directions as shown in Fig. 1.6. The π0 decay
position, zπ0 , and the transverse momentum of π0, Pt, which are used to determine KL → π0νν̄
decay events, are affected by gamma energy measurement. The region which is defined by
2000 mm < zπ0 < 5000 mm and 130 MeV < Pt < 250 MeV , is called as signal region.

The calorimeter consists of 2716 pieces of CsI crystals stacked in a cylindrical support struc-
ture as shown in Fig. 1.7. A gamma injected to the calorimeter generates an electromagnetic
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shower. The scintillation light generated by e± in the shower is guided to PMT which is attached
to the crystal, and converted to electronic signal. The waveform of the signal are digitized by
flash ADCs. A crystal and a PMT are paired and constitute a CsI module. The variation of

Figure 1.7: Front view of the calorimeter. In the center of calorimeter, there are beam exist.

light yields of crystals and the gains of PMTs causes the output variation of modules. The
variation can be reduced by choosing an appropriate parings between crystals and PMTs. The
output variation, however, still exists after pairings. This remaining variation is evaluated by
energy calibration.

1.3.2 Requirements on the energy calibration method

The KL → π0νν̄ decay mode is a rare decay mode, and only several events are expected in the
KOTO experiment. If the energy calibration of the calorimeter is done with a poor accuracy,
there will be many modules which are largely mis-calibrated. If a gamma from π0 decay hits
a mis-calibrated module, the measured gamma energy is different from its true energy. In the
reconstruction of the π0, the mis-measured gamma energy shifts the reconstructed π0 vertex and
its transverse momentum. If a beam particle interacts with a detector which is placed upstream
of the decay volume and generates a π0, and if its gamma hits a mis-calibrated module, the π0

can be reconstructed inside the signal region. These backgrounds events cannot be distinguished
from the signal event when the number of such events are limited to several events. These events
can be reduced by having an accurate energy calibration. I set the required accuracy on the
energy calibration to 1%. With this accuracy, the energy shift caused by the mis-calibration is
smaller than the typical energy resolution for gamma (2% for 1 GeV).

To monitor the changes of the calibration constants, the signal outputs of modules should
be monitored with high rate, and the calibration data should be collected simultaneously with
physics data. There are two subjects on the monitoring. The outputs of modules can be
changed temporarily by hardware origin problems. If the electric discharge occurs, the gain
of PMT shifts temporarily. If the PMT gain is not monitored with high rate, those gain
shifts cannot be detected, and they can be the source of accidental background event. The
other subject is a long term gradual change of the output of module. The light yields of
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the CsI crystals are affected by the temperature, and the output of module can be changed
by aging of the calorimeter components. To monitor those changes during the physics data
taking, the calibration data should be collected simultaneously with physics data. If the changes
are larger than the calibration accuracy, the calibration should be done multiple times. To
prevent the lack of events for the calibration accuracy, the calibration data should be taken
with adaptive rate, which is enough for the calibration accuracy and has low trigger occupancy.
To decide the rate, the relation between the calibration accuracy and the size of calibration
data should be determined. In addition, the output of a module is shifted when the component
is damaged and fails to recover, or when the arrangement of the calorimeter components are
changed by accidentally. Even though the outputs of the modules are monitored, the responses
of calorimeter modules are different between the calibration light and the light from the gamma
shower. In this case, the calibration is required for each state.

Also, the nonlinearity of the signal height has to be determined during physics data. If a
nonlinearity exists, the measured gamma energy is shifted from the true gamma energy. To
derive nonlinearity including the calibration constant, the other detector which can measure
the energies or the momenta of particles is required in general. However, because there are no
other detectors to measure the energy in the KOTO experiment, the nonlinearity and the the
calibration constants should be measured with the calorimeter itself.

1.3.3 Energy calibration method for the CsI calorimeter

I have developed the energy calibration method for the calorimeter. It consists of:

• initial calibration using cosmic ray events,

• accurate calibration using KL → 3π0 decay events, and

• energy scale calibration using π0 decay events in special run,

with the output monitoring systems, and temperature monitor. There are several restrictions
and subjects to the energy calibration.

The calibration sources are limited to cosmic ray events and the KL decay events, because
there are no other detectors which can measure energy or momentum of particles independently
in the experiment. Also, the KL decay events should be fully reconstructed using the mea-
sured parameters of the calorimeter. Because of these restrictions and requirements in previous
section, a calibration method using KL → 3π0 decay events on the calorimeter were devel-
oped. Because the KL → 3π0 decay mode is one of main decay modes of KL, the KL → 3π0

decay events can be collected easily, and can be taken with no detector setup change. With
the calorimeter, all of the decay products of KL → 3π0, 6 gamma, are detected and their hit
positions and energies can be measured.

In addition, because there are no other decay modes which are detected as 6 gamma event on
the calorimeter, the collected calibration data is clean. With this characteristics, the calibration
method can calibrate the calorimeter simultaneously during the data taking. The method uses
Lagrangian multipliers with constraints on the KL → 3π0 kinematic conditions. Because the
method is complex and consists of multiple layers of analytic processes, its performances and
limits have to be surveyed in detail.

The method using KL → 3π0 decay requires an initial calibration with an accuracy less than
5%, because the initial output variation affects the calibration accuracy of the method. The
cosmic ray events are selected to use to the initial calibration. For the calibration using cosmic
ray events, an analysis frame is required, and its performances have to be determined.
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The method also requires an energy scale calibration. The calibration using KL → 3π0

decay is insensitive to the energy scale of the calorimeter. A special run is thus required for the
energy scale calibration. For the accurate energy scale calibration, the ambiguities of the energy
scale calibration have to be surveyed, and the calibration result is needed to be confirmed by
other method.

The nonlinearities between the digitized PMT signals and the energy deposit on the CsI
modules have to be determined. The nonlinearity was measured in the past test experiments
which examined the performance of the calorimeter. It, however, was found that the nonlinearity
can be changed by setup. The nonlinearity affects the measured gamma energy, and it changes
the reconstructed π0 position of two gamma events. A nonlinearity derivation method was thus
required for the calorimeter.

With those requirements, I tested and established the energy calibration method, and proved
its ability witch calibrate the calorimeter with an accuracy under 1%.

1.3.4 Outline of the thesis

In this thesis, I will explain the calibration method and its performance of the calorimeter.
Chapter 2 explains the J-PARC facilities and KOTO detectors. Chapter 3 explains the data
conversion method. Chapter 4-6 explains the sub-calibration methods and their performances.
Chapter 7 explains the effect of energy calibration on the parameter distributions. Chapter 8
explains the effect of energy calibration on the parameter distributions. Chapter 9 summarizes
the result of this thesis.



Chapter 2

J-PARC Facility and Detector

In this chapter, I will explain the J-PARC Facility, and apparatus of the KOTO experiment. In
addition, I will explain the setup of the beam test we did to test energy calibration methods.

2.1 J-PARC Facility

Figure 2.1: An overview of the J-PARC Facility [12].

The Japan Proton Accelerator Research Complex (J-PARC) is a high-intensity proton ac-
celerator facility. This facility was built for many experiments in a wide range of fields using
protons, neutrons, neutrinos, and various mesons. As shown in Fig 2.1, the J-PARC accelerator
complex consists of three stages of accelerators: 400-MeV Linear Accelerator, 3-GeV Rapid-
Cycling Synchrotron, and 30-GeV Main Ring. There are three experimental areas using the
proton beam, Material and life science experiment facility, Neutrino experimental facility, and
Hadron hall. The KOTO experiment is placed in the Hadron hall.

The accelerated primary proton beam is slowly extracted from the Main Ring, and trans-
ported to the Hadron hall every 3-6 seconds. The proton beam bombards a production target
(T1 target) which is made of either nickel, platinum, or gold in the Hadron hall. The secondary
particles, such as kaons and pions are produced at the target and enter KOTO KL beam line.
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The designed beam intensity for the Hadron hall is 300 kW for the slow extraction. The
value is equivalent to 2× 1014 protons on target (P.O.T.) per 3 s spill. The detail specifications
of the accelerators are listed in Table 2.1. When I took data in 2012, the beam repetition period
was 6 seconds and the beam power was 3 kW.

Table 2.1: Design values of beam parameters for J-PARC proton accelerator

Beam Parameters

Linac
Ions Negative Hydrogen
Energy for RCS injection 400 MeV
Peak Current 50 mA
Average Beam Current 15mA×500µs
Beam Pulse Length 100µ s
Repetition Rate 50 Hz
RCS
Extraction Beam Energy 3GeV
Repetition 25Hz
Average Beam Current 333 µA
Extraction Scheme Fast
MR
Extraction Beam Energy 30 GeV
Average Beam Current 15µA
Repetition 0.2Hz-0.7Hz
Extraction Scheme Fast/Slow

2.2 KOTO experiment

2.2.1 KL beamline

The plan view of KL beamline is shown in Fig. 2.2.
The KL beam line is extracted at 16◦ from the primary proton beamline. Two collimators

are placed to form a rectangular KL beam and to suppress beam halo. The beam solid angle is
7.8 µsr, and the width of the beam is 10 cm at the exit of the 20 m beamline. The beam flux
was measured in the past beam tests [15] for 2 types of production target materials, nickel and
platinum. The results were 1.94×107KL for Ni Target and 4.19×107KL for Pt target for 2×1014

P.O.T. at the exit of the KL beamline. A 7-cm-thick lead block is placed upstream of collimators
to reduce the number of gammas in the beamline. Hyperons produced at the production target
decay in the 20-m-long beamline and are eliminated. Electrons and other charged particles in
the beam are swept out by a dipole magnet placed between the two collimators. With this
feature, neutrons, KL and decay products of KL remains in the KL beam.

2.2.2 Overview of the KOTO detector

The plan view of the KOTO detector is shown in Fig. 2.3. In the experiment, π0s that decayed
in the region 3∼5 m downstream of beam exit were used for the analysis.

The region is called as decay volume. The decay volume is surrounded by hermetic veto
detectors and the CsI calorimeter. The CsI calorimeter is placed downstream of the decay
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Figure 2.2: Plan view of KL Beam line. Two collimators are mounted on movable stages to
adjust beam direction. The magnet is placed between the two collimators to sweep out charged
particles in the beam line. A gamma absorber is placed upstream of the first collimator. The
tungsten alloy is used at the upstream and down stream edges of the collimators to reduce beam
halo produced at those edges.

volume to detect two gammas from KL → π0νν̄ decay. Other detectors are placed around
the decay volume or in the downstream of the calorimeter to veto extra gammas and charged
particles. In the following subsections, I will explain features of each detector.

2.2.3 CsI calorimeter

Features of CsI calorimeter

In the KOTO experiment, an electromagnetic calorimeter is used to measure the energies and
hit positions of gammas. The calorimeter consists of CsI crystals stacked inside a cylinder as
shown in Fig. 2.4. The geometry of the calorimeter is 2 m in diameter and 0.5 m in length.
The calorimeter has a 15 cm square beam hole at the center to let the KL beam pass through.

The calorimeter consists of three parts, crystals, PMTs, and power supplies. The CsI crys-
tals and PMTs were originally used for the Fermilab KTeV experiment. The calorimeter was
disassembled and shipped to Osaka University. The properties, light yields, and gains of all of
crystals and PMTs were measured at Osaka. I decided pairings of the crystals and PMTs based
on the measurement result.

Two types of pure CsI crystals are used in the calorimeter. They have different sizes; one
is 2.5 × 2.5 × 50cm3 (”small crystal”) and the other is 5 × 5 × 50cm3 (”large crystal”). The
numbers of small and large crystals are 2240 and 476, respectively. The length of the crystal
(50 cm) is equivalent to 27 radiation lengths (X0) and it is long enough to measure the total
energy of gamma shower in the range of 1MeV-3GeV. The sizes of these crystals are smaller
than the Moliere radius of CsI crystal (3.8 cm), and thus enables us to identify two gammas as
close as ∼ 5 cm by analyzing the shower shape. Because the centeral region of the calorimeter
requires a better position resolution than outer region, the small crystals cover the central 1.2
m×1.2 m region and the large crystals surrounded the small crystals, as shown in Fig. 2.4,

Two types of PMTs were prepared for the two types of CsI crystals. On the small crystals,
3/4 inch Hamamatsu R5364 were attached, and on the large crystals, 1.5 inch Hamamatsu
R5330 were attached. They are called ”small PMTs” and ”large PMTs”, respectively. The
mean of PMT gains are 5000 and 8000 for small PMTs and large PMTs, respectively. In front
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Figure 2.3: Plane view of Detector setup. The decay volume is in the middle of a vacuum
chamber. Particle detectors surround the decay volume. The calorimeter is placed downstream
of decay volume, and it is used to detect gammas from KL decays. Other detectors are used to
detect other particles and additional gammas.

of each PMT, a UV transmitting filter (FGUV11) was attached to filter slow components of
CsI scintillation light by cutting off wavelength larger than 400 nm. To compensate for the low
gain, three types of preamplifiers, whose multiplication factors were different, were attached to
PMTs depending on their gains. Silicone cookies were used to optically connect the PMTs and
the crystals. The connection is sustained by pushing the PMTs towards the crystals with a pair
of spring-attached hooks.

For PMT bases, Cocktcroft-Walton bases (CW bases) were developed to operate them in
vacuum. A nominal base with voltage-dividing resistors generates about 700 mW of heat. The
KOTO CsI calorimeter needs 2716 pieces of bases, and it is difficult to cool about 2 kW of heat
in vacuum. The temperatures of PMTs and preamplifiers should be kept low to reduce their
failure risks. The temperatures of CsI crystals should also be kept low, because the light yield
of crystals decreases at higher temperature. The CW bases, thus, are used for the calorimeter
to reduce heat generation. The CW base uses the Cocktcroft-Walton circuit to generate high
DC voltage from a low AC voltage. In case of our CW base, it generates up to 2000V with 5V
supply voltage, and generates only 60 mW of heat per module.

Adjustment of outputs with pairing PMTs and crystals

The sum of pulse heights of all channels is used to trigger events with a large total energy
deposit in the calorimeter. Thus, the ratio between the energy deposit and the pulse height of
a CsI module is required to be uniform across the calorimeter.

For each CsI crystal, the light yield and its position dependence along the crystal length were
measured using a 137Cs RI source. The light yield affects the detection probability and energy
resolution of gamma. The position dependence of light yield also affects the energy resolution
for gammas. The position dependence of light yield in a crystal was adjusted by using different
kinds of Al mylars to wrap the crystals at the KTeV experiment. It was confirmed that the
position dependence of light yield was within ±5% of its mean value in each crystal.

For the PMTs, the signal height linearities and gains were measured. The measurement was
done with a laser calibration system which was used in the gain monitoring system described in
Section 2.4. The nonlinearities of PMTs were confirmed to be less than 2% for the pulse height
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Figure 2.4: Geometry of CsI calorimeter and neighbouring VETO detectors. The CC03 is
placed around the beam hole. The LCV is attached on the inner beam hole surface of CC03.
Outer edge veto is placed between the CsI crystals and cylindrical support structure.

less than 2 V corresponding to 10∼20 GeV.
After the measurements, I mated low-light-yield crystals with high-gain PMTs and vice

versa to minimize the variations of the energy to pulse height ratios. In addition, I adjusted
the high voltage for each PMT between 1200 V and 1750 V to tune the ratios to within ±3%.

2.2.4 Other Veto detectors

Front Barrel and Neutron Collar Counter

The Front Barrel (FB) and the Neutron Collar Counter (NCC) shown in Fig. 2.3 are placed in
the upstream section of the detector system to detect gammas hitting upstream of the decay
volume. The FB is a 2.5 m-long of cylindrical shaped detector, and it consists of 16 modules.
Each modules is made of alternating lead and plastic scintillator plates. The total thickness is
410 mm, and it equals 16 X0 in the radial direction.

The NCC is placed inside the FB, and is made of pure CsI crystals. The NCC has additional
purpose to measure halo neutron flux and its energy spectrum. Each module of the NCC is
segmented into three sections along the beam direction and they are readout individually. With
this configuration, the NCC can distinguish between gammas and neutrons.
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Main Barrel and Barrel Charged Veto

The Main Barrel (MB) is placed in the middle section. It consists of 32 modules, and each
module is made of 44 layers of lead and plastic plates. The length and the thickness of a module
are 5.5 m and 350 mm, respectively. The thickness is equal to 14 X0. The MB wraps the decay
volume and is used to detect extra particles from KL → 2π0, KL → 3π0, KL → π+π−π0, and
other KL decay modes. Barrel Charged Veto is placed on the inner surface of each MB module
to identify charged particles. It consists of one layer of 5 mm thick plastic scintillators.

Charged Veto

The Charged Veto (CV) is placed upstream of the calorimeter to cover the surface of the
calorimeter. It is used to identify charged particles and measure their hit positions. It consists
of 2 planes, Front CV and Rear CV. The Front CV is located 25 cm upstream of the CsI
calorimeter and the Rear CV is located 5 cm upstream of the calorimeter. Each plane of CV
consists of 3mm-thick scintillators.

CC03, Linar Charged Veto, Outer Edge Veto

The Collar Counter #3 (CC03), Linar Charged Veto (LCV), Outer Edge Veto (OEV) are placed
in the same section with the calorimeter. Their locations are shown in Fig. 2.4.

To detect gammas hitting near the beam hole, the CC03 is placed around the beam hole of
the calorimeter. The CC03 consists of 16 pieces of pure CsI crystals. The dimension of each
crystals is 45.5× 18× 500mm3.

The LCV covers the surface of the CC03 facing the beam. The LCV detects charged particles
which enter the calorimeter from the beam hole. It consists of 4 planes of 3 mm-thick plastic
scintillator.

The OEV fills the gap between the calorimeter and the endcap cylinder, to detect gammas
that enter the gap. It consists of 44 modules of different shapes. The OEV is a sampling
calorimeter consisting of lead and scintillator plates.

CC04, CC05, CC06

Figure 2.5: Structure of CC06. The CsI crystals (sky blue in the figure) are used to detect
gammas. The plastic scintillators (green and yellow in the figure) are located upstream of the
CsI crystals to identify charged particles.
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Other collar counters, CC04, CC05 and CC06, are placed downstream of the calorimeter to
detect gammas passing through the beam hole of the calorimeter. They have similar structures
as shown in Fig. 2.5. Pure CsI crystals are stacked in three layers around the beam. The beam
hole sizes are 170 mm square for CC04, 210 mm square for CC05, and 180 mm square for CC06.

Beam Hole gamma Veto (BHPV)

The Beam Hole gamma Veto (BHPV) is placed at the most downstream of other KOTO de-
tectors to detect gammas which escape from the beam hole of the calorimeter. The BHPV
detector consists of 25 Cherenkov counters. Each module has a lead plate and a block of aero-
gel. The lead plate converts gammas into electron-positron pairs which emit Cherenkov light
in the aerogel. The Cherenkov light is guided to PMTs by mirrors and Winston cones.

2.2.5 Signal readout method and data acquisition system

Signal readout

The total KL decay rate is 3× 106 decays per second in the vacuum region in case of full beam
intensity (2 × 1014 P.O.T.). To handle multiple hits under the high decay rate, a waveform
readout was adopted for all the detectors. Signals from all the detector channels are digitized
with Flash ADC (FADC) boards. Data sampling rate is 125 MHz for the calorimeter and
most of other detectors. For BHPV, the sampling rate is 500 MHz. Bessel low pass filters are
installed on the 125 MHZ FADC boards to widen the signal width to 50 ns. With this scheme,
the waveform is measured at around 16 points to achieve a good timing resolution; without it,
the number of sampling points is 3 for a 22 ns-wide raw signal pulse.

DAQ system

The data acquisition (DAQ) system of the experiment consists three levels of trigger systems.
Each FADC board receives 16 analog inputs and sends a local sum of the signals to Level 1
(L1) trigger boards every 8 ns. A master control board for a DAQ system, called MACTRIS,
communicates with the L1 trigger boards and issues L1 triggers based on those local sums. The
trigger is distributed to all the FADC boards. Each board has a memory to store the digitized
waveform for 4 µs. When it receives a L1 trigger, it sends the saved waveform to a L2 trigger
board. The timing and the number of sampling points can be adjusted. For the calibration
test, the number of sampling points was set to 48. For physics runs it will be set to 64.

The Level 2 (L2) trigger board has two 2 GB-sized memories to buffer data and to send
data to a PC farm. The data stored on one memory is sent to the PC farm while other memory
receives data from FADCs. Two memories interchange their roles every beam spill. With this
scheme, the DAQ system can take data continuously. The Level 3 (L3) trigger system on the
PC farm builds events and selects data to be sent to a data storage at KEK. The maximum
DAQ rate is limited by the size of L2 memory, 2GB/spill, and the data transfer speed from L3
to KEK storage, 2GB/s. Each run holds 80 k events.

Trigger scheme

The trigger control board, MACTRIS, selects events for data taking with the following several
schemes. There are two representative trigger schemes.

One of them is a total energy scheme (ET trigger scheme). It uses the sum of pulse heights
from the calorimeter to make a trigger decision. If the sum of all the channels exceeds a given
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threshold, MACTRIS issues a L1 trigger. For this trigger scheme to work properly, the energy
deposit / signal height ratio of all the calorimeter modules need to be uniform.

Another scheme is called section counting trigger scheme. The calorimeter is segmented to
several sections, 10 for the runs used in this thesis, and the sum of pulse heights in each section
is calculated. If the sum exceeds a given threshold, the section is treated as a ”hit section”.
If the number of hit sections is larger than a predefined number, the MACTRIS issues a L1
trigger.

The section counting scheme is more efficient than the ET trigger scheme to collect events
from KL → nγ ( n ⩾ 4 ) decays. This trigger scheme can reduce the trigger rates due to
KL → π±µ∓νµ and KL → π±e∓νe decay modes which have less than four detectable particles.
The trigger rate due to KL → 2π0 and KL → 3π0 decays with missing gammas are also reduced
by this scheme. This scheme was used for this thesis.

2.3 Setup for beam test

To test the calibration method, a special setup was used. The detector setup was different from
the physics run setup. The calorimeter was placed in the air, and upstream and downstream
detectors had not been installed yet. In addition, a dipole magnet called KURAMA, and drift
chambers were placed upstream of the calorimeter to commission the calorimeter.

2.3.1 Geometry

Figure 2.6: Schematic view of the experiment setup.

The arrangement of the experiment is shown in Fig. 2.6. CsI crystal is hygroscope, and if the
crystal is exposed in high humidity, the surface of the crystal is clouded and the light yield of the
crystal is reduced. The calorimeter was thus placed in a dry room where the relative humidity
was kept under 20%. Cosmic ray trigger scintillators were placed above and underneath the
calorimeter. In upstream of the calorimeter, an array of plastics scintillators (shown as ”Tmp.
CV” in Fig. 2.6), instead of the CV, was installed to veto charged particles.

2.3.2 CsI Calorimeter

In the beam test, all the small CsI modules and half of the large CsI modules, which were placed
left and right sides of the small modules, were used. A half of silicone cookies for small CsI
modules were damaged by a previous calorimeter test. The light transparencies for UV of those
silicone cookies were reduced by a half. The PMTs for the large modules in the top and bottom
regions of the calorimeter were not turned on at the beam test. The channels used in this beam
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Figure 2.7: Channels in CsI Calorimeter read out for calibration method test are shown in red.

test are shown in Fig. 2.7. The channel assignment of crates and L1 sections are shown in Fig.
2.8.

2.3.3 Cosmic ray trigger scintillator

I used cosmic rays for the initial calibration of the calorimeter. Two cosmic ray trigger counters
were used to trigger cosmic ray events. Each plane was segmented into five sections along the
beam direction. The size of each section was 10 cm in beam direction, and 2 m in the other
direction to cover the calorimeter. The signals were read out via two PMTs attached at each
end of the scintillator.

2.3.4 Temporary Charged Veto

Different charged veto (Tmp. CV) was placed upstream of the calorimeter, as shown in Fig.
2.9. One CV module consisted of 4-6 pieces of 120 × 5 × 1cm3-sized plastic scintillator bars.
Each bar was read out by a wavelength shifting fiber and a PMT. It was used to veto charged
KL decays.

2.3.5 Spectrometer

The spectrometer was placed upstream of the calorimeter. It consisted of a dipole magnet and
4 planes of wire chambers. It was used for testing the performance of the calorimeter with
KL → π±e∓νe decay events. The test is not directly related to this thesis, but I will refer the
test several times as Ke3 run or Ke3 calibration in this thesis. The detail of the test is written
in Appendix A.
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Figure 2.8: Channel assignments of VME crates (left) and L1 sections (right).

2.4 Status monitoring system

2.4.1 Laser gain monitoring system

The output of PMT may be changed by temperature, optical connections with crystals or other
reasons. A monitoring system utilizing a Laser was prepared for detecting such behaviors of
the calorimeter PMTs. The monitoring system was used in the KTeV experiment. I refreshed
the system and reformed it for the KOTO experiment.

A Nd:Yag Laser (λ = 355 nm) is used as a UV light source. The light from the laser is
distributed to four optical fibres by an optical system shown in Fig. 2.10. The fibers deliver light
to four light distribution devices shown in Fig. 2.11. The light distribution device has a spherical
shape and 750 thin fibres are attached on the surface of the device. In the light distribution
devices, the injected UV light shines a liquid scintillator which is placed at the center. The
liquid is 9-Methylcarbazole ethanol solvent and emits scintillation light with λ =365 nm and
385 nm. The scintillation light is captured by the thin fibers. The other end of each fiber is
attached to the back of a CsI crystal to supply calibration light to each PMT. The repetition
rate was set to 5 Hz for the runs. Each light distribution device supplies 1/4 of all channels of
the calorimeter. The intensity of supplied light is monitored with two PIN diodes which were
attached at the side of the light distribution system.

2.4.2 Temperature monitoring system

Thermocouples are installed to measure temperatures of each detector. Temperature affects
the PMT gains, and the light yield of crystals and scintillators. For example, the light yield
of CsI crystal decrease by 1.4%/◦C [13]. The experiment area is air-conditioned and expected
to have small temperature fluctuation less than 1◦C. The PMTs and their preamps, however,
are main heat sources and affect the temperature of CsI crystals. After PMTs and preamps
are turned on, the temperature of CsI crystal rises until a temperature distribution reaches a
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Figure 2.9: Front view of temporary charged veto. Dotted circle represents the outline of the
CsI calorimeter.

thermal equilibrium. To monitor the temperature of the calorimeter, I attached 48 channels of
thermo-couplers on the front and back of the calorimeter.
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Figure 2.10: Schematic view of upstream part of Laser gain monitoring system. The Laser
beam is divided with mirrors and injected into four primary fibers. The light intensity can be
adjusted with a neutral density (ND) filter.

Figure 2.11: Schematic view of light distribution device of Laser gain monitoring system. The
light is injected into scintillator placed at the center of light distribution device. The light from
scintillator is distributed to PMTs through thin fibers pointing the center.



Chapter 3

Data conversion

3.1 Waveform analysis

3.1.1 Conversion of waveform to energy and timing

In this section, I will explain the methods to convert the waveform recored by FADC to energy
and timing of the pulse. The data consisted ADC counts of 48 sampling points in time per
module. A waveform sample is shown in Fig. 3.1.
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Figure 3.1: The raw data recorded by FADC. Points are recored every 8 ns.

Waveforms from the calorimeter were fitted with templates. The templates were made in
the following way.

• Fit pulse with asymmetry gaussian function and extract pulse height and peak timing.

• Normalize the pulse shapes with the pulse height, and shift the pulse in time to align the
peak timing.

• Collect normalized and shifted waveforms, and calculate mean values of the collected pulse
shape with a 1 ns interval.
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Figure 3.2: The templates of small modules (left) and large modules (middle) are shown. In the
right figure, the typical waveform of small modules (left, black line) and large modules (center,
red line) and their difference (right, blue line) are shown. The difference of templates widens
at the tail region (50 ns in the figure). The waveform of large module is slightly wider than
small module.

• Interpolate between the 1 ns-interval points to define a template shape.

The asymmetric gaussian function is defined as:

y = h× exp

{
−(x− t)2

2σ2(x)

}
+ g (3.1)

σ(x) = p0 + p1 × (x− t). (3.2)

The fit parameters h, t, and g are pulse height, pulse peak timing, and pedestal, respectively.
The fit parameters p0 and p1 are the width of signal and asymmetric parameter, respectively.

The waveform varied between modules, and depended on the pulse height. The template was
thus made for each module of the calorimeter. I used KL → 3π0 decays for making templates,
but the deposit energy spectrum of each CsI module was correlated with the position of each
module. In case of outer modules of the calorimeter, the number of events in high energy region
was not enough to make templates. With this reason, I made a template for each module using
pulses whose heights are in 200 ∼400 ADC counts (20-40 MeV) in the waveform fitting.

3.1.2 Properties of waveforms

Channel dependence of waveforms

Various templates are shown in Fig. 3.2. To quantify channel dependence of the waveform, I
defined ”Difference of waveform”, ∆, using 13 points with 8 ns interval around the peak time
of template as:

∆ =
1

13

6∑
i=−6

∣∣∣∣f(8i+ tpeak)− g(8i+ tpeak)

g(8i+ tpeak)

∣∣∣∣× 100[%], (3.3)

where f(x) represents a template of a module and g(x) represents a standard template for large
or small module. Figure 3.3 shows the variation of templates. The ∆ distribution has a peak at
∼ 0.5%, and has a tail on the high side. The applied voltages and light yields of modules had
a position dependent pattern, but the ∆ had no apparent dependence on the module position.
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Figure 3.3: [Left]The distributions of ∆. Red line shows the ∆ distribution of small modules,
and blue line shows that of larger modules. [Right]XY distribution of ∆. Two channels which
had apparently different waveform are not included.

The shape of waveform thus mainly depends on modules, and less on applied voltage or light
yield of each module.

Light source dependence

The templates were different between calibration Laser events and 3π0 decay events as shown
in Fig. 3.4. The templates of Laser events has undershoots in tail region and narrower width
than the templates of gamma events. This is because the original pulse shapes are different
between the two, and the Bessel filter in the FADC is tuned for the waveforms of gamma event.

Height dependences of waveforms

Nonlinearities on the pulse height was reported by a previous research [16]. The nonlinearity
is represented by a ratio of pulse height recorded by FADC and input signal height. The ratio
was smaller for larger input signal as shown in Fig. 3.5. In this thesis, this result was used to
correct for the nonlinearity.

To check the nonlinearity of each channel, the laser monitoring system was used. The system
can change its light intensity by 3 orders of magnitude, and can scan output of each module
from a few MeV to several GeV equivalent. Using the Laser monitoring system, the waveform
at each light intensity was measured. The waveform widened and delayed at the high light
intensity as shown in Fig. 3.6.

As shown in Fig. 3.5, Laser monitoring system revealed that the FADCs in one VME
crate(#7) has different nonlinearity curves from others. In Chapter 7, I will discuss how to
measure the nonlinearities of CsI modules.
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Figure 3.4: The template pulse shapes are shown for Laser events (red) and gamma shower
events (black).
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Figure 3.5: Output nonlinearities measured with various measurements. The nonlinearity which
was measured in the previous test [16] is shown by dotted black line ”Standard Small”. The
nonlinearities which was measured using the Laser system are shown by solid lines. In the
previous test the nonlinearities did not depend on the crystal size. The nonlinearities using the
laser system, however, shows a crystal size dependence.
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3.2 Temperature Effect Correction

The light yield of CsI crystal has a temperature dependence. The correlation constant is known
as (−1.4±0.1)%/◦C [13]. The correlation constant was derived from the beam data and cosmic
ray event to confirm the value. There were three types of data to measure the correction
constant, cosmic ray data, data for energy scale calibration, and Ke3 calibration data. The
temperature of the upstream surface of the calorimeter was used as a representative temperature.

All cosmic ray data were combined into several periods by run numbers, to measure temporal
changes of the cosmic ray output of all CsI channels. The average of the cosmic ray outputs
of all CsI channels was set as a representative cosmic ray output for the period. The average
temperature for the period was set as a representative temperature. The result is shown in
Fig. 3.7. The temperature dependence of light yield was derived by fitting the graph. The
dependence measured with the cosmic ray events was (−1.36± 0.03)%/◦C.

The dependence also can be derived by using the peak of reconstructed π0 mass distributions
from the data taken for energy scale calibration mentioned in Sec. 1.3. The π0 mass and average
temperature was measured for each run. The dependence was measured to be (−1.4±0.3)%/◦C.

In the analysis of the Ke3 calibration data, an energy of electron was measured by the
calorimeter, and the momentum of electron was measured by the spectrometer. By using the
ratio between the two measured parameters, Ee/pe, the temperature dependence was measured
to be (−1.48± 0.03)%/◦C [17].

The acquired three temperature correlation and the known value were consistent to within
6%. In this thesis, we adopted −1.48%/◦C for the temperature dependence correction to com-
pare the calibration result with the Ke3 calibration result. For the correction, the average
temperature in each run was used.

3.3 Energy conversion

The height of waveform, h, from a calorimeter module, whose ID is i, is converted to energy as:

E = Ctot(i)× Ctemp × h/δ(h), (3.4)

where Ctot is the calibration constant, Ctemp is temperature correction constant for a run, δ(h)
is a nonlinearity correction function. The Ctot consists of the calibration results of

• initial calibration using cosmic ray event,

• 3pi0 calibration using KL → 3π0 decay events, and

• energy scale calibration with special setup.

The Ctot for a calorimeter module, Ctot(i), is written as:

Ctot(i) = Cinit(i)× C3π0(i)×∆E . (3.5)

Here, Cinit is the calibration result of the initial calibration. Its unit is MeV / ADC count.
C3π0 is the calibration result of the 3pi0 calibration. ∆E is the calibration result of energy scale
calibration, and it is referred as energy scale in this thesis. C3π0 and ∆E are dimensionless
values.

For the data which is used in the 3pi0 calibration, only Cinit in the Ctot is applied on the
energy conversion. For the data which is used in the energy scale calibration, Cinit and C3π0

were applied.
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Figure 3.6: Changes of waveforms for various pulse heights. The changes of waveform of Laser
event for different pulse height regions (left) and the correlation between timing delay and the
pulse height (right) are shown.
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Figure 3.7: The temperature dependence of the representative cosmic ray outputs during data
taking. [Left, Top]The surface temperature of the calorimeter vs run numbers. [Left, Bot-
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temperature for before (left), and after (right) applying temperature correction of (−1.48 ±
0.03)%/◦C. The red lines show fitted linear function.

3.4 PMT gain stability

The laser events collected at 5 Hz were used to monitor the stability of the PMT gains. The gain
stability was defined by ratio between signal heights of a CsI channel and a reference CsI channel
(module number 22). The ratio was collected each run, and its mean was used to represent
the PMT gain in the run. To reduce the effect of nonlinearity, I selected channels whose pulse
heights were within 2000-10000 counts, and its signal height nonlinearity was corrected. The
ratio of each channel was normalized with the ratio from the run 4221. I confirmed that the
temporal PMT gain variations were less than 0.5% on average, and 0.3% in RMS, as shown in
Fig. 3.10.
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Chapter 4

Initial calibration using cosmic ray
events

4.1 Cosmic ray events

To keep the accuracy of the 3pi0 calibration, the calorimeter is needed to be calibrated roughly
before applying the 3pi0 calibration. If the calibration is roughly calibrated with an accuracy
less then 5%, the accuracy of the 3pi0 calibration is not affected by it. Cosmic ray events were
used in the initial calibration to secure the initial calibration accuracy to less than 5%.

The initial calibration constants to convert ADC counts to the energies of the modules were
derived from the cosmic ray events. The energy deposit of a cosmic ray is 14 MeV for a small
crystal, and 28 MeV for a large crystal when it penetrates the crystal vertically. The energy
deposit is calculated from dE/dx|min=1.243 MeV/gcm2, the density of CsI (ρ = 4.510g/cm3),
and path length within the CsI crystal for every event.

The calibration method using cosmic rays has following merits. Because the method does
not require proton beam, the calibration time is not bound to the beam operation time. It can
also calibrate all the channels of the calorimeter simultaneously.

There are also demerits. The first demerit is that the dE/dx of the cosmic ray depends on
the energy of the cosmic ray particle. The energy of cosmic ray should be larger than 1 GeV to
penetrate 2 m of CsI crystals. The dE/dx of muon increases with energy larger than 300 MeV.
As the muon passes through the calorimeter, the muon loses its energy, and the energy deposit
decreases. The energy deposit, calculated in the first paragraph, is not accurate. I, however, did
not consider the position dependence in the initial calibration. The dependence was confirmed
with the final calibration result. Another demerit using cosmic ray in the calibration is the
position dependence of the light yield in the CsI crystal. The light yield depends on the hit
position in a crystal as shown in Fig. 4.1. The energy deposition process between cosmic rays
and the gammas from KL decays are different. Gammas generate electromagnetic showers and
deposit energy near the front surface of the calorimeter, but cosmic rays deposits energy at
where it pass through. This difference gives different effective light yields for cosmic ray events
and for gamma events.

4.2 Data taking

The setup for the cosmic ray trigger is shown in Chapter 2. I required the coincidence of two
signals from the top and bottom cosmic ray trigger scintillators. The cosmic ray event data was
collected with the beam event data simultaneously. Table 4.1 shows the number of cosmic ray
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Figure 4.1: A Sample light yield distribution in the crystal ID 2511. Many crystals are made of
two 25-cm-long crystals. It causes a large light yield change at the 25 cm from the CsI upstream
surface. This was measured using RI source.

Table 4.1: List of cosmic ray data set.

Run Number Data type Total number of events

3893-3898 NA 241k

3972-4157 Ke3 270k

4161-4229 3π0 109k

4241-4352 3π0 259k

4361-4682 Ke3 229k

4527-4624 3π0 222k

4687-4738 3π0 48k

events collected during the beam time.

4.3 Cosmic ray event analysis

The incident position of a cosmic ray in a crystal is calculated from the position of triggered scin-
tillators. In each event, I used the signals whose pulse heights were larger than 30 ADC counts
in the calorimeter module; equivalent to 3 MeV. With this low threshold, accidental events,
and noise were mixed in the cosmic ray events. To reduce the noise and to improve tracking
accuracy, I used two tracking algorithms, the Hough transformation and the χ2 minimization.
The Hough transformation is one of line-seeking algorithms. The method converts the x and y
position of CsI modules which have signals to ρ(= x cos θ + y sin θ,−1000 < ρ < 1000 mm) for
various θ(0 ⩽ θ < π). If a straight track exists, there is a peak in the ρ−θ distribution as shown
in Fig. 4.2. The track is reconstructed from the ρ and θ values of the peak. The method is less
sensitive to noise, but has a limited tracking precision. After Hough transformation, I removed
noise hits farther than 5 cm from the track. After removing noise hits, I reanalysed the event
with a pseudo-χ2 minimization to improve tracking precision. The pseudo-χ2 minimization
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Figure 4.2: Sample of cosmic ray event before noise cut (left), and the fitting cosmic ray events
using Hough transformation (right). A crossing of two dashed red line is the peak of ρ − θ
distribution, and derived line is shown in the left figure as a blue line.

method uses χ2 defined as:

χ2 =
∑
i

d2i
w2
i

,with (4.1)

di = xi cos(θ) + yi sin(θ)− ρ, (4.2)

where i is the calorimeter module index, and wi is the width of the module. The ρ and the
θ, where χ2 is minimized, represents the track of the cosmic ray. An example of pseudo-χ2

minimization is shown in Fig. 4.3, and the distribution of derived ρ and θ are shown in Fig.
4.5.

After tracking, the output of each channel is normalized by the path length in the crystal
and collected for each channel. The output distribution of each channel was fitted with Landau
function as shown in Fig. 4.4. The peak values of the fitted Landau function and the peak of
the output distributions were different by 4%, and the distribution of the difference was 1% in
RMS, but this difference was not considered in the initial calibration. The ratio between the
most probable value of the fitted Landau function and expected MIP energy deposit, i.e. 14
MeV for small and 28 MeV for large module, was set as the initial calibration constant, Cinit.

In the initial calibration, the initial calibration constants were aligned by changing the high
voltage. The result is shown in Fig. 4.6. For most of the modules, the output of each module for
the cosmic ray events was aligned to 14 MeV / 1500 ADC counts with a 3% precision. For half
of the small modules whose silicone cookies were damaged, their HV were set to the applicable
maximum voltage of 1750 V, to increase output. Therefore the output of cosmic ray events
were not aligned, and they had wide range of values with peak at 14 MeV / 1000 ADC counts.
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ρ

θ

Figure 4.3: Sample of cosmic ray event (left) and the distributions of χ2 defined in Eq. 4.1(right).
The star mark in the right figure shows where χ2 is minimum, and derived line is shown in the
left figure as yellow line.

Height[cnt]

0 100 200 300 400 500
0

20

40

60

80

100

120

140

Sample Distribution #1099

Landau peak/Histogram Peak

0.9 0.95 1 1.05 1.1

N
/0

.0
01

25

0

50

100

150

200

250

300

350

400
Landau peak / his Peak

Figure 4.4: Sample of energy deposit distribution (left) and the ratio between fitted Landau
peaks and peak of energy deposit distribution (right).



CHAPTER 4. INITIAL CALIBRATION USING COSMIC RAY EVENTS 37

[mm]ρ

-1000 -500 0 500 1000

N
/2

5[
m

m
]

0

100

200

300

400

500

600

700

800

]°[θ

-100-80 -60 -40 -20 0 20 40 60 80 100

°
N

/2

0

500

1000

1500

2000

2500

[mm]ρ

-1000 -500 0 500 1000

]°[θ

-100

-80

-60

-40

-20

0

20

40

60

80

100

Figure 4.5: ρ−θ distributions of cosmic ray events. [Left]:Distribution of ρ from χ2 minimization.
[Middle]:θ distributions. [Right]:2D-distribution of ρ and θ.

4.4 Result

The initial calibration method for the calorimeter was established. Using two types of line-
seeking algorithm, the correct cosmic ray events were collected. The initial calibration constants
were derived by fitting the distribution of energy deposit with Landau function. I succeeded in
calibrating all module of the calorimeter, with 241k cosmic ray events.
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Figure 4.6: The result of cosmic ray calibration and HV adjustment. [Top left]The distribution
of the peaks of fitted functions before HV adjustment. HV of all channels were set to 1750 V.
The x-axis value was converted from the FADC count sum of the waveform. [Top right]The
xy-distribution of peaks of MIP’s energy deposit. The outputs of the modules with damaged
silicone cookies are half of others. [Bottom left]The distribution of the peaks of fitted functions
after HV adjustment. [Bottom right]The xy-distribution of peaks of MIP’s energy deposit after
HV adjustment.



Chapter 5

3pi0 calibration

5.1 Outline of the relative calibration method with KL → 3π0

decay mode

To secure the performance of the calorimeter, a calibration method whose calibration accuracy
is less than 1% is required. Also, the method is required to be done simultaneously with data
taking. To achieve the goals, I studied a calibration method using KL → 3π0 decay events.

A KL → 3π0 decay event is detected as a 6 gamma event on the calorimeter. No other
KL decay modes have 6 gammas in the final state. The method uses Lagrange multiplier with
kinematic parameters which are measured by the calorimeter. KL → 3π0 decay events have 2
degrees of freedom that allows to calculate the energy with energies and position of other five
gammas. The calibration constant is derived by using the fitted gamma energies and the initial
energies of all calibration data.

To apply this method in the energy calibration, I studied its performance and features
using Monte Carlo (MC) simulation data. In particular, the statistical effect on the calibration
accuracy was surveyed to determine required statistics for the calibration.

The 3pi0 calibration consists of two processes, one is at the event level, and the other is
at the data set level. The process at the event level is based on a kinematic fitting method
using Lagrange multipliers. The process at data set level determines the calibration constant
for each module by collecting the result of the event-level process. I will explain the features of
the calibration method in the following sections.

5.2 Data

5.2.1 Beam event data

The section counting method described in the Section 2.2 was used to collect KL → 3π0 events.
The data was taken under several conditions. The summary of the beam event data used to
collect the KL → 3π0 events is listed in Table 5.1.

5.2.2 Monte Carlo simulation data

The MC simulation data was prepared to test the 3pi0 calibration, and to compare distributions
with the beam data. A total of 2 × 1010 MC KL → 3π0 decay events were generated. In the
MC data, the section counting method was simulated by converting the deposit energy to pulse
height using the calibration constants obtained with the initial calibration method.
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Table 5.1: Data used to collectKL → 3π0events. The Acpt. Ratio. shows the trigger acceptance
ratio, which is (the number of accepted triggers)/(the number of requested triggers). In the
trigger condition, the preset energy threshold on the L1 section, required number of hit sections
in the trigger decision, and veto condition are listed. [A]:Data are used in the 3pi0 calibration
test. [B]:Data used to compare the beam events and the MC events.

L1 section trigger Charged Veto Run Number Beam Power P.O.T. Acpt.Ratio

200MeV×4section On [A] 4161-4229 3kW 4.01E16 0.31

200MeV×4section On [A] 4221-4227 5kW 4.79E15 0.24

150MeV×5section On [A] 4241-4352 3kW 9.24E16 0.53

150MeV×5section On [A] 4527-4624 3kW 7.78E16 0.52

150MeV×5section Off [B] 4672-4738 3kW 1.75E16 0.32

5.3 KL → 3π0 decay event reconstruction

In this section, I will explain the method to reconstruct KL → 3π0 decay events, which is used
in the calibration. The KL → 3π0 reconstruction method consists of 3 steps, for gamma, π0,
and KL. The reconstruction method for π0 was described in the Chapter 1. Here, I will explain
the method for gamma and KL.

5.3.1 γ reconstruction

In the KL → 3π0 reconstruction, the signals of the CsI modules whose deposit energies were
over 3 MeV were used in the analysis. The selected signals were clustered by the scheme shown
in Fig. 5.1.

Figure 5.1: Clustering method. 1. Set a channel as a cluster seed (red in the figure). 2. Find
channels (shown in blue) in the set range (red dotted square). 3. For each clustered channel,
find channels (shown in green) in the set range (blue dotted square). 4. Repeat the steps 2-3
until other channels cannot be added as a clustered channel. After clustering, clusters whose
sizes are larger than 1 are defined as ”clusters”.
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The energy and position of each cluster were derived from the following equations,

Ecl =
i<clustersize∑

i=0

ei, (5.1)

xcl =

∑i<clustersize
i=0 eixi∑

ei
, (5.2)

ycl =

∑i<clustersize
i=0 eiyi∑

ei
, (5.3)

where ei, xi, and yi are the energy, x, and y positions of the i-th crystal, respectively.
The energy of cluster, Ecl, is different from the initial gamma energy because the modules

with energy deposits less than energy threshold, Eth = 3 MeV, were ignored in the clustering.
The Ecl was converted to gamma energy, Eγ , by

Eγ = f(Eth, Ecl, ws, wl)× Ecl, (5.4)

where ws (wl) is the fraction of energy that small (large) crystals have in Ecl. The energy
correction function is given as [18]:

f(Eth, Ecl, ws, wl) =1 + ws ×
(
p0 +

p1√
Ecl/1000

− p2 × log (E/1000)
)

+wl × (p3 +
p4√

Ecl/1000
− p5 × log (E/1000)

)
.

(5.5)

where E and Ecl are in MeV. Here, p0 = 0.0135769, p1 = 0.0516771, p2 = 0.00738265, p3 =
−0.0200259, p4 = 0.0532812, and p5 = −0.00951445, are used.

The position was corrected by the average energy deposit depth of the gamma shower, Lγ ,
and incident angle of the gamma, θγ . The Lγ is derived from another MC, and written as

Lγ = X0 × (p0 + p1 × log (Eγ/1000)). (5.6)

Here, X0 = 18.5, p0 = 6.49003, and p1 = 0.99254.
The position of gamma was corrected by,

xγ = xcl − Lγ × sin θγ × xcl/
√

x2cl + y2cl, (5.7)

yγ = ycl − Lγ × sin θγ × ycl/
√

x2cl + y2cl. (5.8)

The θγ is calculated in the π0 reconstruction with the reconstructed π0 position and xcl and ycl.

5.3.2 KL resonctruction

The gammas were paired and reconstructed as π0s as mentioned in the Section 1.3. As a result,
the π0 z vertex, vzπ0 , and its error, σzπ0 , were derived. The KL vertex was reconstructed with
informations of gammas and reconstructed π0 as:

zKL
=

∑i<Nπ0

i=0 vziπ0/σ2ziπ0∑i<Nπ0

i=0 1/σ2ziπ0

, (5.9)

xKL
=

zKL
− zT

zCsI − zT

i<6∑
i=0

(Eγixγi)/

i=6∑
i=0

Eγi, (5.10)
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yKL
=

zKL
− zT

zCsI − zT

i<6∑
i=0

(Eγiyγi)/

i=6∑
i=0

Eγi. (5.11)

Here, zT and zCsI are the z positions of the production target and the calorimeter, respectively.
In case of 6 gamma events, there are 10 combinations to make three gamma pairs. The

reconstructed KLs are qualified with χ2
KL

, which is defined as:

χ2
KL

=

i<3∑
i=0

(vziπ0 − zKL
)2/σ2

ziπ0
. (5.12)

The combination which had minimum χ2
KL

was selected as the correct combination.

5.4 Relative calibration method

5.4.1 Data selections for the relative calibration

In the energy calibration, I applied cut conditions listed in Table 5.2.

Table 5.2: Cut conditions on KL for energy calibration.

Cut parameter Cut value

KL χ2
z < 10

Rec. KL z position 2000 < zKL
< 5000 mm

|MKLrec. −MKLPDG| < 10 MeV/c2

|Mπ0rec. −Mπ0PDG| < 6 MeV/c2

Distance between gamma > 150 mm

Gamma energy > 100 MeV

5.4.2 Event level process

In the 3pi0 calibration, the kinematic fitting method was used [14]. In this method, one of six
gammas is selected as a calibration target. The kinematic fitting method aims to determine
the KL decay position, and then to derive the energy of the selected gamma. The method uses
17 measured parameters, i.e. six x and y positions, and energies of five gammas which were
measured by the calorimeter. The six kinematic conditions on the KL → 3π0 decay, which are
described later, are also used in the fitting. The energy of the selected gamma and the KL

vertex were set to be unknown, and they were derived by fitting. In the fitting, the measured
parameters were allowed to change within their resolutions. The derived gamma energy was
used to calculate the calibration constant, as described below.

The measured parameters and unknown values were set to vectors, a0 and v0, respectively,
as:

a0 = (xγ1, yγ1, Eγ1, xγ2, yγ2, Eγ2, · · · , xγ6, yγ6), (5.13)

v0 = (xKL
, yKL

, zKL
, Eγ6). (5.14)

Here, xγi, yγi, and Eγi are the x and y positions, and the energy of the i-th gamma,
respectively. The momentum of the i-th gamma is defined as:

pi =
xi − vKL

|xi − vKL
|
Ei, (5.15)
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where xi = (xi, yi, zCsI), and vKL
= (xKL

, yKL
, zKL

).
There are the six constraints on the KL → 3π0 decay.

• Reconstructed π0 mass

(Eγ1 + Eγ2)
2 − (p1 + p2)

2 −M2
π0 = 0 (5.16)

(Eγ3 + Eγ4)
2 − (p3 + p4)

2 −M2
π0 = 0 (5.17)

(Eγ5 + Eγ6)
2 − (p5 + p6)

2 −M2
π0 = 0 (5.18)

• Reconstructed KL mass

(
∑
i

Eγi)
2 − (

∑
i

pi)
2 −M2

KL
= 0 (5.19)

• Center of energy ∑
xi · Eγi − xKL

zKL
− zT

zCsI − zT
·
∑

Eγi = 0 (5.20)∑
yi · Eγi − yKL

zKL
− zT

zCsI − zT
·
∑

Eγi = 0 (5.21)

The equations from Eq. (5.16) to Eq. (5.21) were set as elements of vector h := (h1, h2, · · · , h6).
With a0, v0, and h, the following two matrices can be defined,

D =
∂h

∂a
|a=a0 (5.22)

E =
∂h

∂v
|v=v0 . (5.23)

In common case, the constraints h are not satisfied with the measured a0 and v0. i.e.
h|a=a0,v=v0 ̸= 0. The fitting method aims to find the most adaptable v which satisfies the
following equation,

h|a=a0,v=v0 +D(a− a0) + E(v − v0) ≈ 0. (5.24)

The χ2 defined as:

χ2 = (a− a0)
tV −1

a0
(a− a0) + 2λt(h+D(a− a0) + E(v − v0)) (5.25)

was used to evaluate the quality of the fitting. Here, λ is a vector of Lagrange multipliers, and
the matrix Va0 is defined as:

Va0 =


σ2
x1

0 0 · · ·
0 σ2

y1 0

0 0 σ2
E1

...
. . .

 . (5.26)

Then, the v is calculated by following equations. Here, VD and VE are defined as VD =
(DVa0D

t)−1, and VE = (EtVDE)−1.

λ0 = VD(D(a− a0) + h) (5.27)

v = v0 − VEE
tλ0 (5.28)

λ = λ0 + VDE(v − v0) (5.29)

a = a0 − Va0D
tλ (5.30)
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In the method, the process from Eq. (5.22) to Eq. (5.30) were repeated to find the minimum
χ2 by updating variables a0 and v0 by a and v, respectively. The v, where χ2 is minimum,
was selected as the fitting result. The 4th element of v gives the fitted energy of the selected
gamma, and the ratio

ζ = v|minχ2(4)/v0 initial(4) (5.31)

is used to derive calibration constants.
This method was applied to all 6 gammas in the KL → 3π0 decay. At each end of the fitting

for the selected gamma, the variables and the matrixes were refreshed before fitting the next
selected gamma in the event.

5.4.3 Test of the event level process

In the event level process, the values of the measured parameters, a0, were updated. To deter-
mine their changes in the iteration, a following parameter was defined:

∆a = (a− a0)/σa0 , (5.32)

where, a0 is initial value of measured parameter as previous subsection, a is updated value in
the event level process, and σa0 is the energy or position resolution of each parameter. The ∆
distribution for each parameter is shown in Fig. 5.2. In the result, the changes of measured
parameters are limited, but the selected gamma energy changes significantly.

To confirm that the calibration result converged to an ideal value, I tested the calibration
method by changing the energy of a selected gamma within ±10%. The energies of other gamma
were not changed. The result is shown in Fig. 5.3. The fitting results converged to a value
within 1% in RMS. I confirmed that the effect of the selected gamma energy is small on the
fitting result. The fitting results, however, did not converge into the expected value, 1.

If a gamma energy is displaced from its true value by the energy resolution, then it affects
the fitting result. I thus consider that this effect shifts the converged value away from 1. The
effect is reduced by taking the average of fitting results from multiple events in the data set
level process.

5.4.4 Data set level process

Data used for the test

To evaluate the features of the calibration method, I prepared MC data with various calibration
constants. The calibration constants for each module was defined randomly with a gaussian
with a width of 3% in σ. Each output of a CsI module was divided by its calibration constant.

Derivation of calibration constants

The calibration constant cannot be determined precisely with a single event alone. In the data
set level process, the fitting method was applied to all the KL → 3π0 events in the data set.
The fitting results were acquired from each gamma of the KL → 3π0 decays.

The fitting result should be 1, if all the modules were calibrated correctly. If some modules
in the gamma cluster are mis-calibrated, ζ deviates from 1. The effect of mis-calibrated module
to ζ is proportional to the deposit energy in the module on average. The module which has the
largest energy deposit in the cluster has half of the cluster energy on average. I used the fitting
result, ζ, as the energy correction scale factor for the module with the largest energy deposit.
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Figure 5.2: Changes of the measured parameters in the fitting. [Top, Left]∆ distributions for
gamma energies. [Top, Middle]∆ distributions for gamma x position. [Top, Right]∆ distri-
butions for gamma y position. [Bottom, Left]∆ distributions for the selected gamma energy.
[Bottom, Middle]∆ distributions for x position of the selected gamma. [Bottom, Right]∆ dis-
tributions for y position of the selected gamma. The RMSs of ∆ distributions were less than 1
for measured parameters, but RMS of the ∆ distribution for the selected gamma energy (v(4))
was larger than other parameters.
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Figure 5.3: Calibration test result with a KL → 3π0 event. Each plot corresponds to each
gamma in the KL → 3π0 decay. The black dots show the χ2 before fitting as a function of the
ratio between a changed energy and an initial energy of the selected gamma. The red dots show
the ratio between a fitted energy and correct energy of a selected gamma.

The cut shown in Eq. 5.33 is applied on the largest energy deposit and other energies in the
gamma cluster to restrict effect of other modules on the fitting result.

e1/ecl > 0.25 & ei/ecl < 0.25. (5.33)

Here, ei is the i-th largest energy deposit of the cluster member module, and ecl is the cluster
energy. If the gamma cluster passed the cut condition, the ζ is collected into histogram for each
module.

After applying the fitting method on all the KL → 3π0 decay events in the calibration data
set, the average of the ζs in the histogram was set as the calibration constant for the module.
The relation between the number of events in the histograms and the accuracy of the calibration
constant is shown in Fig. 5.4. It was surveyed for various data set sizes with the MC data. If
the histogram has more than 144 events, the accuracy of the calibration constant is expected
to be better than 1.5%. The calibration constant of a module is updated if its histogram has
more than 144 events.

Iteration

The calibration constant of a module is affected by the calibration constants of surrounding
modules. The data set level process was thus iterated until the accuracy of the calibration
constants converged. The effect of iteration is shown in Fig. 5.5. In the figure, the following
features of the iteration method can be found.

• The shape of ζ distribution changes to gaussian-like.
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Figure 5.4: The relation between the number of the fitting result on a module and the accuracy
of the derived calibration result. The different error bar colors represent different sizes of the
data set.

• The change of the calibration constant is reduced by iteration.

• The number of collected ζs used for calibration increases by iteration.

• The derived calibration constant converged to a value slightly different from the true value.

Effect of iteration on the final calibration accuracy

The effect of iteration on the final calibration accuracy is evaluated by comparing the calibra-
tion constants after the n-th iteration, Cn, for calibrated modules with the true calibration
constants, Ctrue. The RMS of the Cn/Ctrue is defined as the accuracy of the n-th iteration.
The distributions of Cn/Ctrue and the accuracy are shown in Fig. 5.6. The calibration accu-
racy improved by the first several iterations. I decided to use the calibration constant of the
10th-iteration as the final calibration constant of 3pi0 calibration, C3π0 .

5.4.5 Statistical effect on the calibration accuracy

To study how the calibration accuracy depends on the number of KL events, I tested five cases
of the number of MC KL decay events. The relation between the number of KL events and
the final calibration accuracy is shown in Fig. 5.7. The result shows that the accuracy of the
calibration is strongly related with the number of events used for the calibration. This means
that if there is enough statistics, the calibration can be calibrated with accuracy less than 1%.

5.4.6 Effect of the accuracy of the initial calibration method on the final
calibration accuracy

The accuracy of the initial calibration method using cosmic ray and the overall energy scale
factor can affect the final calibration accuracy.

I studied the effects for various initial calibration accuracy cases, 1%, 3%, 5%, and 10%.
The result is shown in Fig. 5.8. The final calibration accuracy increases by 0.35% if the
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Figure 5.5: The convergence of calibration factor in a specific channel. [Top, Left]Raw distri-
bution of ζ after different numbers of iteration. [Top, Right]The average of ζ vs the number of
iterations. [Bottom, Left]The number of collected ζ in a module vs the number of iterations.
[Bottom, Right]The number of iterations vs the derived calibration constant for the module.
The calibration constant in the figure is normalized by the initial calibration constant.
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RMS.
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Figure 5.7: Statistical Effect on calibration accuracy. [Left]The changes of accuracy by iteration
for various numbers of KL events. Each color of point means different number of events used
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KL, Black:6 × 108 KL). [Right]The relation between the final calibration result at the 10th
iteration and number of KL events. The fitted function shows that the calibration accuracy is
dominated by the statistics of KL events.



CHAPTER 5. 3PI0 CALIBRATION 50

Adjusted Scale Factor[%]

-6 -4 -2 0 2 4 6M
ea

n 
C

ha
ng

es
 o

f C
al

ib
ar

tio
n 

R
es

ul
t[%

]

0

0.05

0.1

0.15

0.2

0.25

Initial Output Variation[%]

2 4 6 8 10

C
al

ib
ra

tio
n 

P
re

ci
si

on
[%

]

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Figure 5.8: Effect of initial condition on the calibration result. [Left]Effect of overall scale factor
on the calibration result. [Right]Effect of initial output variation on the calibration result. The
x axis shows the RMS of initial output variation, and the y axis shows the finical calibration
accuracy.

initial calibration accuracy was changed from 1% to 10%. The result shows that the calibration
accuracy is not affected by the initial calibration accuracy, if the initial calibration is done with
less then 3% accuracy.

I studied the effect of the energy scale factor, which cannot be calibrated with the relative
calibration method. I assumed various cases of energy scale factors, ±1%, ±3%, and ±5%. The
effect is evaluated with the RMS of the changes of the calibration result from the neutral case.
The effect of the overall energy calibration constant is 0.24% if the overall energy scale was
changed by ±5%.

With these results, I confirmed the effect of the initial calibration accuracy on the final
calibration result is small compared to the final calibration accuracy.

5.5 Result of the relative calibration method

The reliabilities of the calibration method was confirmed in the previous sections.
The calibration method was applied to the beam event data. I used the data set [A] shown

in Table 5.1, for calibrating the beam event data.
The calibration accuracy with the beam data was derived by using the data itself. The

calibration data was divided to halves or quarters, and calibrated independently. The calibration
constants from a set was divided by those from the other set, and the RMS of the ratios was
divided by

√
2 to evaluate the calibration accuracy of a data set. The derived accuracies agreed

with the expected accuracy which is derived with the MC data, as shown in Fig. 5.9.
The calibration result has a module position dependence as shown in Fig. 5.10. The cali-

bration constant derived from the relative calibration method is smaller for the modules which
is placed in lower positions. I considered that the position dependence comes from the sys-
tematic error of the initial calibration method. High energy cosmic rays deposit more energy
than low energy cosmic rays above 300 MeV. Because the cosmic ray loses its energy in the
calorimeter, the energy spectrum of the cosmic rays slightly depends on the module positions.
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Figure 5.9: Relation between the calibration accuracy and the number of KLs of MC (black
dots) and beam data (red triangle). The ”1/4 of Data” and ”1/2 of Data” show the calibration
accuracy from the comparison of the calibration constants between divided data set. The ”All
Data” shows the RMS/

√
2 of the ratio between the result of 3pi0 calibration and the result of

Ke3 calibration result (3pi0/Ke3).
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In the MC cosmic ray event, the deposit energy on a module has a position dependence of
(1.29 ± 0.068) × 10−5 MeV/mm. This position dependence of MIP peak height was not con-
sidered in the initial calibration method. Therefore, the calibration constant from the relative
calibration includes the position dependence. The result of the relative calibration method had
(1.30±0.29)×10−5 MeV/mm of y position dependence, and it was consistent with the position
dependence of cosmic ray energy deposit.

The calibration constants had a module type dependence. The calibration constants of
large modules were 3.2% larger than those of small modules on average. The energy deposit
of cosmic ray event were also different by 3.9% between the two module types. The difference
of the calibration constants by the module size (small/large) comes from systematical effect in
the fitting of energy deposit distribution. Because the distribution of energy deposit changed
by the thickness of the detector, the peak position of the fitted landau function depends the
modules size.
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Figure 5.10: Comparison the calibration constant position distribution of small modules with
other result. [Top, Left]The peak of MIP energy deposit distribution for small modules (black)
and large modules (red). [Top, Middle]The distribution of the calibration constant from the
Ke3 calibration method. All calibration constants are normalized by the initial calibration
result. [Top, Right]The distribution of calibration constant from the relative calibration method.
[Bottom, Left]The peak of MIP energy deposit distribution of modules vs module y position.
[Bottom, Middle] The calibration constant from Ke3 calibration method vs module y position.
[Bottom, Right]The calibration constant from relative calibration method vs module y position.
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5.6 Summary

In this chapter, I confirmed the reliabilities and abilities of the 3pi0 calibration method. The
accuracy of the 3pi0 calibration is affected by the accuracy of the initial calibration, but the
effect is negligible if the accuracy of the initial calibration is better than 5%. The number
of events used for the 3pi0 calibration dominates the accuracy of the 3pi0 calibration. The
calibration constant of each channel can be derived with an accuracy less than 1% with 2×1010

KLs.



Chapter 6

Absolute energy scale calibration

6.1 Purpose and apparatus of the absolute energy scale calibra-
tion

Relative differences of the calibration constants for CsI modules are aligned by the 3pi0 cali-
bration. However, the method cannot determine the absolute energy scale of the CsI modules,
because the relative calibration method is insensitive to the energy scale as shown in the previ-
ous chapter. The reason of the insensitivity comes from the π0 reconstruction method. In the
KL reconstruction, the π0 is reconstructed with the equation, m2

π0 = 2E1E2(1 − cos θ12). The
π0 decay position is determined by the energies and the positions of the two gammas with fixed
π0 mass; 134.966 MeV. If the energy scale ∆E , which is defined as ∆E ≡ Etrue/Emeasure, is
not equal to 1, it changes θ12. In the KL → 3π0 decay, for all three π0s, each π0 reconstruction
vertex and thus the KL decay position are shifted. There is, however, no method to find the
correct θ12 from the given information. Therefore, as long as θ12 is not fixed, the gamma energy
scale cannot be determined.

If the π0 decay position is fixed, the θ12 is fixed automatically with gamma positions from
the calorimeter. If the material is placed in the KL beam, then the beam particles, neutrons and
KLs, react with the nuclei of the material, and π0 is generated. A 20×20×1 cm3 sized Al plate
with a trigger scintillator was placed in the KL beam, 2622mm upstream of the calorimeter as
shown in Fig. 6.1. The reconstructed π0 mass, mπ0 , can be written using ∆E as:

m2
π0 = 2E0

1E
0
2(1− cos θ12)/∆

2
E ∼ M2

π0/∆
2
E , (6.1)

where E0
i is true energy of i-th gamma and Mπ0 = 134.966 MeV/c2. Because the mπ0 is

proportional to the ∆−1
E , the absolute energy scale is calibrated by measuring π0 mass with the

events with 2 gammas in the calorimeter.

6.2 Data

6.2.1 KL beam event

In the trigger, I required at least 2 L1 sections with the energy sum larger than 250 MeV, in
coincidence with a signal from a trigger scintillator attached on the downstream side surface of
Al target. The data was taken for 3 hours in total, and 1.6 × 105 events were collected. The
total P.O.T. for the energy scale calibration was 1.16× 1015 producing 1.22× 108 KL.
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Figure 6.1: Setup of energy scale calibration run

6.2.2 Monte Carlo simulation data

Two types of MC simulation data were generated to test the energy scale calibration. The
events originated from neutrons and other beam particles except KL were generate using the
beam seed generated by Geant3 beam line simulation. The KL origin events were generated
based on measured KL flux and energy spectrum. I generated neutron and KL MC events
equivalent to 6.31× 1014 P.O.T. and 1.91× 1015 P.O.T., respectively. The P.O.T ratio between
beam data and MC were 1.84 for neutron and 0.607 for KL, respectively.

6.3 Comparison beam data and MC data

6.3.1 Event selection

Table 6.1: Cut values for the energy scale calibration sanalysis

Cut Parameter Value

Number of triggered L1 Block ≥ 2

Number of gamma cluster =2

γ position(Fiducial) |xγ | > 150 mm or |yγ | > 150 mm

γ position(Fiducial)
√

x2γ + y2γ < 850 mm

γy |yγ | < 550 mm

Eγ1 >350 MeV

Eγ2 >250 MeV

χ2
γ <50

All cut values are listed in Table 6.1. Every cut value was determined with MC data. I
required 2 gammas on the calorimeter for a π0 reconstruction. I required the γ hit position to
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be away from the beam hole and outer edge of the calorimeter by more than 10 cm. I required
one gamma to have energy larger than 350 MeV, and the other to have energy larger than 250
MeV. These cut values were decided to suppress background. The distribution of the gamma
energy and the reconstructed π0 mass are shown in Fig. 6.2.
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Figure 6.2: The distribution of the reconstructed π0 mass and the gamma with larger energy
(left) and smaller energy (right)

6.3.2 Comparison beam data with simulation data

The parameter distribution were compared to check the consistency between the beam event
data and the MC data. For all the parameters, the ratio of the parameter distribution between
the beam event and the MC event varied by 10-20%.

The distribution of the L1 section energy sum is shown in Fig. 6.3. The ratio between MC
data and the beam event data fluctuates up to 20%.

The distribution of gamma hit position is shown in Fig. 6.4. The consistency between the
MC data and the beam event data improved after applying all the cuts, in particular, at the
central region of the calorimeter.

In case of the gamma energy distribution, the beam data was suppressed in the high energy
region over 1GeV, and was enhanced in the low energy region as shown in Fig. 6.5. In case of
the gamma shape χ2 distribution, the beam data has smaller value than the MC data. This
tendency was also found in the KL → 3π0 event data.

The distribution of the transverse momentum of the reconstructed π0 is shown in Fig. 6.6.
In case of reconstructed π0 mass distribution, the distributions are similar between the data sets.
The ratio between the π0 mass peak component, |mπ0 − 134.966| < 5 MeV/c2, and background
components, |mπ0 − 134.966| ≥ 5 MeV/c2, were different, but the ratio between the data and
MC distributions agree within ±5% in the 100-200 MeV/c2 region.
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Figure 6.3: The distributions of L1 section energy sum in the energy scale calibration data.
The L1 section energy sum was expressed in ADC counts, and the ratios, energy/ADC counts,
were different for all sections. Therefore the thresholds for L1 sections were set by different
value in ADC counts. The distribution of L1 section energy sum of section #5 (left) and
section #10 (right) are shown. Black dots show beam event data, and blue lines show MC data.
The section #5 was assigned for nominal small modules, and the section #10 was assigned for
cookie-damaged modules.
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Figure 6.4: Gamma hit position of Al target run data. [Top]x (left) and y (right) distributions
before applying cuts. [Bottom] x (left) and y (right) distributions after applying cuts. Black
dots show beam event data, and blue lines shows MC data. The dots shown in the lower half
shows the ratio between beam event data and MC data.
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Figure 6.5: Distribution of gamma energy (left) and gamma χ2 (right; before applying gamma χ2

cut). Black dots show beam event data, and blue lines shows MC data. Their ratio (Data/MC)
are shown in the lower half.
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Figure 6.6: Distribution of reconstructed transverse momentum (left) and π0 mass (right).
Black dots show beam event data, and blue lines show MC data, and their ratio (Data/MC)
are shown in the lower half.



CHAPTER 6. ABSOLUTE ENERGY SCALE CALIBRATION 60

6.4 Energy scale derivation

The parameter distributions from the MC and the beam events are slightly different, but the
difference on the π0 mass distribution was smaller than other distributions. I, therefore, used
the MC data to test the energy scale calibration method, and to derive the energy scale.
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Figure 6.7: Relation between the fitted π0 mass and the energy scale, (1/∆E). The error bar
shows the sigma of the π0 mass distribution.

I studied the effect of the energy scale on the reconstructed π0 mass distribution using the
MC event data. The π0 mass was derived by fitting the π0 mass distribution with a gaussian.
The result is shown in Fig. 6.7. The derived relation was,

Mπ0
rec.

Mπ0
rec.|∆E=1

= 1.036×∆−1
E − 0.036. (6.2)

The error in the Al plate position measurement also affects the reconstructed π0 mass. In
this case, the true value of the θ12 and the derived θ12 from π0 reconstruction is different, then
it shifts the reconstructed π0 mass. The effect of the position mis-measurements is surveyed by
changing π0 reconstruction position in the MC data. In the MC data, the 1 cm thick Al plate
was located at the 2322 mm upstream of the calorimeter, but the π0 reconstruction position was
changed from 2322-250 mm to 2322+250 mm. The dependence of the reconstructed π0 mass
on the π0 reconstruction position is shown in Fig. 6.8. The effect of the position measurement
error is estimated to be 0.36%/cm on the reconstructed π0 mass, and the same amount on the
energy scale factor. The measurement accuracy of the Al target position is expected to be less
than 1 cm, because we used a Laser distance measurement equipment whose accuracy is better
than 3 mm. As a result, the effect of the position measurement error on the energy scale factor
is limited to less than 0.36%.

6.5 Result

The π0 mass distribution is fitted with the function :

F (x) := p0 + p1 × (x− p2)
2 +

p3

p5
√
2π

× exp
(x− p4)

2

2p25
. (6.3)
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Figure 6.8: Effect of Al target position mis-measurement on π0 mass peak value. The error var
shows the width of the π0 mass distribution.

In the function, the quadratic term was introduced to fit the background shape. The peak of
the gaussian function is used as the reconstructed π0 mass. The fitting result is shown in Fig.
6.9.
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Figure 6.9: π0 mass fitting result from the beam event data (left) and the MC data (right).

The fitted π0 masses were 133.9 MeV/c2 and 134.3 MeV/c2 for the beam event data and
the MC data, respectively. The overall energy scale factor, ∆E , was derived by using Eq.6.2,
and the value was 1.004.



Chapter 7

Nonlinearity correction on signal
height

7.1 Nonlinearity of waveform

In the experiment, the modules with their energy deposits between 1 MeV to 2 GeV are used
in the analysis. In this wide range, there are nonlinearities in the signal height. Here, the
nonlinearity is defined as the ratio between the digitized FADC counts and the energy deposit
in the module, and it is normalized by the ratios of low signal height region, less than 2000
counts. Such nonlinearities must be measured to correctly measure the gamma energies. The
nonlinearity was measured in the past calorimeter test with a function generator. The result is
shown in Fig. 3.5. The derived nonlinearity was ∼ 15% at the maximum FADC counts (16000)
in signal height.

The nonlinearity, however, depends on the pulse shape or the VME crate in which FADCs are
seated. In this chapter, I will explain the characteristics of the nonlinearity of the calorimeter,
and how to measure the nonlinearity with gammas.

7.2 Evidences of nonlinearity

The nonlinearity was determined with several methods.
The first method used the Laser monitoring system. The system can adjust the intensity

of the calibration light by a factor of several hundreds for all calorimeter modules at the same
time. For the laser events, a different linearity definition is used. The nonlinearity of a module,
δ(hi), at the pulse height, hi, is defined as:

δ(hi) =
h′i/h

′
j

hi/hj
, (7.1)

where h′j and hj are less than 4000 counts, and subscripts i and j denote module IDs of the
calorimeter. The result is shown in Fig. 7.1. From this figure, following points were found.

• The nonlinearity appeared where the signal height is larger than 4000 counts. (∼400
MeV)

• The nonlinearity measured with Laser is different from the nonlinearity measured with a
function generator.
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• The nonlinearities of small and large modules are different. This result is different from
the result measured with a function generator. In the result from the function generator,
the difference between modules were negligible.

• The modules whose FADC boards are in a specific crate has larger nonlinearities than
other modules.
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Figure 7.1: Signal height nonlinearity surveyed with the Laser Monitoring System for various
modules: small modules (black), small modules where FADC are inserted in a specific VME
crate (red), and large modules (green).

The second method uses KL → 3π0 decays. If a π0 has an energetic gamma over 1GeV in
its decay products and there is a nonlinearity on the gamma energy of the π0, the reconstructed
decay position is shifted from the decay vertex of other π0s. I set the average position of the
two π0 decay positions to the KL decay position, and recalculated the mass of π0 that has
an energetic gamma. The concept is shown in Fig. 7.2. If gamma energy is shifted from its
true value at high energy, the reconstructed π0 mass with fixed decay position will be shifted
from its true value, 134.966 MeV. The result is shown in Fig. 7.3. The result shows that the

Figure 7.2: Concept of the nonliearity survey using KL → 3π0 decay.
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Figure 7.3: The mass of the π0 with the largest gamma energy calculated with the averaged
decay vertexes of other two π0s, is shown as a function of the maximum gamma energy. Black
dots show the MC data with no nonlinearity, and red dots show the beam event data.

nonlinearity of the MC data and the beam event data is slightly different.
The results of these methods cannot be used in the nonlinearity calibration. In case of the

Laser event, the nonlinearity is different for the different pulse shape, thus, the nonlinearity
from the laser event cannot be applied to the beam event nonlinearity. In case of the method
using 3π0 decays, the performance of the method is not accurate enough for the nonlinearity
function derivation. I decided to use the 3pi0 calibration to measure the nonlinearity.

7.2.1 Nonlinearity derivation

I tested the 3π0 calibration method for nonlinearity derivation. In the 3π0 calibration method,
the calibration factor, ζ, gives the optimum gamma energy for the event. If the ζ depends
on the maximum signal height of gamma clusters, it means that there is a nonlinearity in the
gamma energy.

Assuming that the difference of two gamma energies only comes from the module with the
largest pulse height, and other channels have no nonlinearity because they have low energies
(hi < 4000 counts), the nonlinearity δ(h) can be derived from Eq. 7.5.

ζ = E′/E (7.2)

E = β ×
∑n

i=1 ei(h) ∼ βe1(h) + β
∑n

i=2 ei (7.3)

E′ − E = β(e1 − e1(h)) (7.4)

δ(h) := e1/e1(h) = 1 +
(ζ−1)

∑n
i=2 ei

e1(h)
(7.5)

Here, ei(h)(ei) denotes the i-th largest energy block in the gamma cluster with (without) non-
linearity, and β is an energy correction constant to convert from cluster energy to gamma
energy. The parameter ζ is the calibration factor of the gamma. Event by event, the ζ has large
ambiguity of about 6%, but the error on the averaged ζ is reduced by statistics.

The method was tested using a MC data. I applied nonlinearity, δ(h) = 1+ p× (h/10000)2,
on the MC data. Here, h is the pulse height, p is the nonlinearity at the 10000 counts in pulse
height. Two cases of nonlinearities, p=0.02 and p=0.05, were tested. The result is shown in
Fig. 7.4. The nonlinearity was derived by fitting the distribution with gaussian in multiple
pulse height regions. The derived nonlinearity is shown in Fig. 7.5. The difference between
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the reconstructed nonlinearity and the applied nonlinearity was less than 1% for the full height
range.
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Figure 7.4: The relation of the δ(h) and the max pulse height with 2% nonlinearity (left) and
5% nonlinearity (right) assumed for all modules. Red line shows the average nonlinearity by
pulse height.
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Figure 7.5: The nonlinearity derived from the MC test data for 2% (black dots) and 5% (red)
nonlinearities. The left plot shows the derived nonlinearity. The right plot shows the difference
between the derived nonlinearity and the applied nonlinearity.

The distributions of the calibration factor and the pulse height for MC without nonlinearity
and the beam event data are shown in Fig. 7.6. The nonlinearity function was derived by
slicing the distribution in pulse heights, and fitting the peak of the distributions with gaussian
function. The result is shown in Fig. 7.7. The nonlinearity between measured points were
interpolated with a spline curve, and the result is shown in Fig. 3.5.

The merit of this method to measure the nonlinearity is that the data can be collected
simultaneously with the physics trigger. It can monitor nonlinearity during data taking. The
method also has a limit. This method cannot be applied to large modules and the part of
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Figure 7.6: Distribution of the calibration factor and the max pulse height. [Top left] Small
modules, MC. [Top middle] Small modules in crate #7, MC. [Top right] Large modules, MC.
[Bottom left] Small modules, beam data. [Bottom middle] Small modules in crate #7, beam
data. [Bottom right] Large modules, beam data. Red dots show the mean values of calibration
factor at the pulse height.
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Figure 7.7: Derived nonlinearity from 3π0 calibration method for common small modules (left),
specific small modules (middle), and large modules (right). Red dots represent nonlinearity
from the beam data, and black dots represent nonlinearity from the MC.
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small modules read out by FADCs in crate #7, because the flux and spectrum of gamma in
them are limited. For these modules, the Laser monitoring system can be used to measure the
nonlinearities although it gives slightly different nonlinearities from the 3π0 calibration method.

7.2.2 Nonlinearity correction result

To confirm that the derived nonlinearity function is correct, the π0 mass peak of the energy
scale calibration data was used. Ideally, the π0 mass peak position should not depend on the
signal height of each calorimeter module. The relation between the π0 mass and the largest
pulse height in gamma cluster is shown in Fig. 7.8. The mass of the beam event data has a
dependence on the pulse height. In the MC data, there is no large dependence.

After applying the nonlinearity correction functions, the dependence of π0 mass of the
beam event data was reduced to < 1%. For most of small modules, I used the nonlinearity
correction function derived with the 3π0 calibration method. For some small modules with a
large nonlinearity, and large modules, I used nonlinearity correction function derived from the
Laser monitoring system.
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Figure 7.8: Correlation between the reconstructed π0 mass and the maximum pulse height in
the cluster. [Left]2D distribution of π0 mass and the maximum pulse height. [Right]π0 peak
value vs the max pulse heights, using the ordinary nonlinearity correction function (black), the
correction function derived with 3π0 calibration method( green), and MC with no nonlinearity
(red).

7.3 Result

In this chapter, I explained the pulse height nonlinearity of the calorimeter module, and how
to derive the nonlinearity from the various data. The result using π0 mass shows that the
nonlinearity calibration method using the kinematic fitting method with 3π0 event can calibrate
the pulse height nonlinearity with a precision less than 1%. This method can monitor the
nonlinearity of the calorimeter during physics data taking.



Chapter 8

Confirmation of the calibration
result

8.1 Comparison beam data and MC

In this section, I will explain the effect of the calibration on the data analysis. I will show the
parameter distributions of MC and beam data, and how the energy calibration changed those
distributions.

8.1.1 Data

I used the KL → 3π0 decay data set, which is tagged as [B] in Table 5.1. The total P.O.T. for
this data set was 1.75 × 1016, and the average DAQ acceptance ratio was 0.321. The effective
P.O.T. was thus 5.6× 1015.

The 4 × 109 KL decay events have been generated for the MC event data. These events
correspond to 3.4 times the data set in effective P.O.T..

8.1.2 Cut conditions

Table 8.1: Cut parameters for distribution comparison.

Cut parameter Value

Number of triggered L1 Block > 4

|Tevent − Tγ | < 5ns

The number of gamma 6

∆Tγ <2 ns

γ position(Fiducial) |xγ | > 150 mm or |yγ | > 150 mm

γ position(Fiducial)
√

x2γ + y2γ < 850 mm

γ Energy Eγ >200 MeV

π0Pt < 140 MeV/c

χ2
KL

< 50

KL z position 1500 < zKL
< 5000 mm

KL Mass |Rec.KLMass−KLMass| < 20 MeV/c2

The timing of the most energy deposit in an event was defined as the timing of event, Tevent.
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The gamma timing, Tγ , is defined with the energy, ei, and the timing, ti, of the modules included
in the gamma cluster as:

Tγ =
Σiti

√
ei

Σi
√
ei

1) . (8.1)

The timing difference between gammas is defined as:

∆Tγi = Σi̸=j
i |(Tγi − Tγj)|/5, (8.2)

where i and j are indexes of gammas. The cuts listed in Table 8.1 are applied on the Tγ and
∆Tγi.

I also applied other cuts listed in Table 8.1 on both data sets. I required the γ hit positions
to be away from the beam hole and outer edge of the calorimeter. This is because the γ energy is
not reconstructed correctly if the γ hits near the boundaries. I cut on the transverse momentum
of the pions, and the χ2

KL
, and the KL mass.

8.1.3 Parameter distribution comparison between the MC data and the
beam even data.

L1 section energy sum

The distribution of energy sum in each L1 section is shown in Fig.8.1 and Fig.8.2. For most
sections, the ratios between the beam data and the MC data are flat. From the result, I
determined that the hardware trigger scheme was simulated properly in the MC data.

Gamma parameters

The distribution of hit positions and energy spectrum of gammas after applying cuts on the
number of triggered L1 sections, and the gamma hit positions are shown in Fig. 8.3. In the
distributions, there is no large difference between the beam event data and the MC data.

π0 parameters

Figure 8.4 shows the transverse momentum of π0, Pt, after applying all gamma cuts. The
difference between the beam data and the MC data is large at the region Pt > 140 MeV/c. Due
to kinematics, the transverse momentum should be less than 140 MeV/c for KL → 3π0 decays.
However, π0s which were reconstructed with mis-paired gammas can have higher transverse
momenta. I consider that the accidental gamma is the cause of the large difference in high Pt

region, because tighter timing cut reduces the high Pt events.

KL parameters

The reconstructed z position of KL, zKL
, is shown in Fig. 8.5. The ratio between the beam

data and the MC data lies within 0.85-0.95.
The χ2

KL
and reconstructed KL mass distributions after applying cuts on the transverse

momentum of π0 are shown in Fig. 8.6. Because χ2
KL

distribution has a large disagreement

between the beam event data and the MC data, a loose cut was applied on the χ2
KL

.
In case of KL mass, the beam data has more events in the tail region than the MC data.

Because the tail region is suppressed by tightening timing differences between gammas, I con-
sider that the excess comes from accidental gammas. For a KL flux measurement, I required
that the reconstructed KL mass is within 20MeV/c2 of the nominal mass.

1)√
e is used as a weight to derive gamma timing temporally. To derive correct gamma timing,

√
ei should be

replaced by the inverse square of the timing resolution of each module.
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Figure 8.1: Distributions of L1 section count sum for section 1-6. The black line shows MC
data, and red dots shows beam event data. The lower half shows the ratio between the two
distributions (Beam/MC).
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Figure 8.2: Distributions of L1 section count sum for section 7-10. The black line shows MC
data, and red dots shows beam event data. The lower half shows the ratio between the two
distributions (Beam/MC).
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Figure 8.3: Gamma hit distributions in x (left) and y (center). The right plot shows the gamma
energy. The black line and the red dots in the distributions shows the MC data and the beam
data, respectively. The lower half shows the ratio between the two distributions (Beam/MC).
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Figure 8.4: Transverse momentum distributions of π0 after applying all gamma cuts on beam
data (red dots) and MC ( black solid line). The lower half shows the ratio between two distri-
butions (Beam/MC).
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Figure 8.5: Distribution of zKL
after applying all cuts. Red dots represent beam data, and black

solid line represents MC. The lower half shows the ratio between two distributions (Beam/MC).
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(left) and reconstructed KL mass before applying cuts on KL

parameters. The data (MC) is shown in red dots (black solid line). The lower half shows the
ratio between two distributions (Beam/MC).
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8.2 KL flux

The KL yield per P.O.T. is derived from a previous beam survey [15]. In this thesis, I used the
value to scale MC data distributions. However, the ratio of number of events between the beam
events and MC events is 0.277, which is 5.5% smaller than expected value, 0.293.

I consider that the accidental gammas influenced the number of reconstructed the KL → 3π0

events. The accidental gamma, coming from other KL decay or generated at the T1 target, may
reduce the measured KL flux in 2 cases. In the first case, an accidental gamma hit calorimeter
simultaneously with the 6 gammas from KL → 3π0 decay. In this case, the event is removed by
the cut on the number of gammas. In the second case, only 5 of 6 gammas from the KL → 3π0

decay and an accidental gamma hit the calorimeter simultaneously. The accidental events can
be reduced by tightening the timing cut, but the number of KL → 3π0 events was also reduced.
To evaluate the KL flux properly, I loosened the timing cut on ∆Tγ to 3 ns. The loose timing
cut increased the rate of accidental gamma events, and decreased the number of KL → 3π0 in
the 6 gamma events. The effect is compensated by the number of KL which is reconstructed
with 7 gamma event. The KL reconstruction method for 7 gammas is basically the same with
the case of 6 gammas, but the only difference is that it selects 6 gammas combination from 7
gamma event which gives minimum χ2

KL
.

After applying all cuts, the number of 6 gamma events is 8500 in data and 30739 in MC.
In case of 7 gamma event, the cut condition for the number of gamma was changed to 7, and
there were 242 data events and 538 MC events. The mass distribution for each case is shown
in Fig. 8.7.
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Figure 8.7: KL mass distributions after cut. [Left]Reconstructed KL s from 6γ events for MC
data (black) and beam data (red). [Right]Reconstructed KL s from 7 gamma events for Mc data
(black) and beam data (red). The distributions from MC data is scaled by 0.293 in integral.

The number of reconstructed KL is calculated as:

Ndata = Ndata(6γ) +Ndata(7γ)−NMC(7γ)×
Ndata(6γ)

NMC(6γ)
. (8.3)

The result was 8593, and the ratio of the number of KLs between beam data and MC was
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calculated to be 0.280. The KL flux from this result is 4.01 × 107KL/2 × 1014 P.O.T.. The
derived value was 4% smaller than the measured value. The number of KL is slightly smaller
than expected, but the effects on the calibration precision is negligible.

8.3 Effects of the energy calibration

8.3.1 Effects on the gamma, π0, and KL
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Figure 8.8: Effect of the calibration precision on the gamma energy resolution in the MC. The
energy resolutions for 0.5%, 1%, 2%, and 5% of calibration precision for various gamma energies
are shown on the left. The energy dependence of the energy resolution was fitted by a function,
f(E) = p0 ⊕ p1√

E
⊕ p2

E . The energy resolution at 1GeV for various calibration precision and

the contributions of the fitting parameters, p0 (black line), p1(red line), p2 (green line), on the
energy resolution are shown on the right. The constant term (p0) was linear with the calibration
precision.

The calibration precision affects the gamma energy resolution as shown in Fig. 8.8. The
gamma events were generated for various energies up to 1200 MeV, and their energies were
smeared by changing the output of modules with calibration precision from 0.5% to 5%. For the
ranges, the energy resolution for the 1GeV gamma changed from 1.1% to 2.7%. If the calibration
is properly done, the gamma energy resolution should be improved. It is determined with the
reconstructed π0 and KL mass distributions. I compared the reconstructed mass distributions
in three cases, the MC data, the beam event data before and after applying results of 3π0

calibration and energy scale calibration. The mass distributions are shown in Fig. 8.9. The
results of fitting the mass distribution with gaussian are listed in Table 8.2. The results show
that the mass resolution is improved after applying all calibration results.

8.3.2 Effects on the KL beam

The energy calibration affects the reconstructed beam position. The center of energy of 6
gammas, shown in 8.4 and Eq. 8.5 are used to find the KL beam center at the calorimeter
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Table 8.2: Fitting result for π0 and KL mass distributions with gaussian function. The units of
numbers are in MeV/c2.

Data type Rec. π0 mass σmπ0 Rec.KL mass σmKL

MC 135.06± 0.02 2.88± 0.03 497.49± 0.04 3.09± 0.03

Data(Before applying Cal. result) 135.05± 0.04 3.63± 0.06 497.09± 0.05 3.66± 0.05

Data(After applying Cal. result) 135.06± 0.03 2.94± 0.03 497.40± 0.04 3.15± 0.04

surface.

xc.o.e =

∑6
i=1 xγiEγi∑6
i=1Eγi

(8.4)

yc.o.e =

∑6
i=1 yγiEγi∑6
i=1Eγi

(8.5)

Before applying the 3π0 calibration results, the average value of xc.o.e and yc.o.e of the beam
event data were at -3.7 mm and -5.8 mm, respectively. After applying the 3π0 calibration result,
the center of xc.o.e and yc.o.e changed to 0.2 mm and -4.6 mm, respectively. In the data taking,
the beam was only shifted to -5 mm in y. This result shows that the beam position can be
corrected by the energy calibration.

8.4 Comparison of the calibration constants with Ke3 calibra-
tion result

I compared my calibration result and the result of the Ke3 calibration result. The Ke3 calibra-
tion result was derived by using a ratio of energies and momenta of electrons fromKL → π±e∓νe
decay. The energies are measured by the calorimeter, and the momenta are measured by the
spectrometer. The Ke3 calibration method is explained in the Appendix A.

The correlation and the ratio distribution of the calibration results between my calibration
using KL → 3π0 decays and the Ke3 calibration are shown in Fig. 8.11. The two calibration
results matched less than 0.2% in the mean value, and 1.6% in width. With this result, I
confirmed that the energy scale calibration was done properly.

8.5 Summary

In this chapter, I studied the effects of the energy calibration on the parameter distributions.
The parameter distributions of the MC data and the beam event data agreed better after
applying calibration result. This result shows that the calibration was successfully done.

In addition, I measured the KL flux, and showed that it is consistent with the previous
measurement result. I also showed that the reconstructed beam position is corrected by the
energy calibration.
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Figure 8.9: Reconstructed mass distribution of π0 (left) and KL(right). The distribution from
the MC (black solid line), and beam data before (red triangle) and after (green triangle) applying
calibration results are shown.
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Figure 8.10: Distributions of xc.o.e. (left) and yc.o.e (right). The distribution from the MC (
black dashed line), and beam data before (red triangle) and after (green triangle) applying
calibration result are shown.
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Conclusion

The KOTO experiment at J-PARC aims to observe the KL → π0νν̄ decay. To achieve and keep
the performance for measuring gamma energy and position, an accurate monitoring system and
calibration method are required.

For those requirements, I built a system to monitor temperatures and PMT output of the
CsI calorimeter, and I confirmed that they worked properly as required. For the calibration
method, I tested the three calibration methods, the initial calibration, 3π0 calibration, and
energy scale calibration. For the initial calibration method using cosmic ray, its calibration
precision was determined to 3%. I showed that the result of the initial calibration depends
on the module position and size. In the 3π0 calibration method, I determined its performance
and features. I showed that its calibration accuracy is related to the number of KL → 3π0

decay events, and the calibration accuracy achieved less than 1% with 2× 1010 KLs in the KL
beam. With the energy scale calibration using π0s produced in an Al target in the KL beam,
the energy scale was corrected. The calibration result agreed with the Ke3 calibration result
less than 0.2% in mean value, and 1.6% in width. With the result, I confirmed the energy scale
calibration was properly done.

I also developed a nonlinearity correction method using the 3π0 calibration method. I
showed that the dependence of the reconstructed π0 mass on the pulse height reduced by
applying the nonlinearity reconstruction result on the data. With this method, the nonlinearity
can be monitored during physics data taking. These results shows that the calorimeter can be
calibrated with its own data including the nonlinearity without other detectors.

I proved that the calibration constant of each channel can be monitored with an accuracy
of less than 1% during a long data taking period with the calibration method and monitoring
systems. It guarantees that the performance of the calorimeter can keep its performance during
several years of data taking.
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Appendix A

Ke3 calibration

For the performance test of the calorimeter, the spectrometer was set upstream of the calorime-
ter. The spectrometer consisted of 4 planes of wire tracking chambers and a dipole magnet.

The KL → π±e∓νe decay events were used for the test. The spectrometer measures the
momentum of charged particles from the KL → π±e∓νe decay event. The momentum is com-
pared with the measured energy by the calorimeter. In case of electron, the ratio between the
momentum and energy, Ee/pe,should be 1, and for other particles, pions and muons, the ratio
should not be 1.

The electron events were selected, the calibration constant of each module was derived by χ2

minimization. The momentum of electrons was can be considered as the true energy of electron,
Etrue. Then the χ2 can be written as:

χ2 =

All event∑
i

(Ei
cal − Ei

true)
2

σ2
E

. (A.1)

Here, i is event index, Ei
cal is the energy measured by the calorimeter, and σE is energy resolution

at the Ei
cal. The Ei

true and Ei
cal can be written with the inverse of calibration constants,

c(= e/e0), measured energy deposit of modules, e, and true energy deposit of modules, e0.

Etrue = β
∑
j

e0j , (A.2)

and
Ecal = β

∑
j

e0jcj = β
∑
j

ej . (A.3)

Here, j is the module index of the cluster member, and β is energy conversion constant which is
derived from the energy correction function, Eq. 5.5. Hereafter, the event index, i, is omitted.

The χ2 is minimized where the its partial derivative of calibration constants meets the
condition,

∂χ2

∂cj
= 2×

All event∑
i

ej
∑

k ckek − ejEtrue

σE2
= 0. (A.4)

Then, it can be expressed as matrix form with definition,

Djk =

All event∑
i

ejek
σ2
E

, (A.5)
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and

Ej =

All event∑
i

ejEtrue

σE2

, (A.6)

as: ∑
k

Djkck = Ej , or Dc = E (A.7)

The c is derived as:
c = D−1E. (A.8)

The inverse of c are set as the calibration constant.
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