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Abstract

The KOTO experiment was designed and is being prepared at J-PARC (Japan Proton Accel-
erator Research Complex), to observe the rare decay of long lived neutral kaons, KL → π0νν̄,
with the sensitivity of the Standard Model prediction. An electromagnetic calorimeter for the
KOTO experiment was upgraded to have a finer granularity and waveform readout capability.
We measured the performance of the calorimeter, and reproduced the obtained performance
based on the first principle. We also developed a new analysis method to discriminate incident
angles by using shower shape information obtained with the finer granularity. By applying the
new method, one of the backgrounds, the KL → γγ decay in the beam halo, was estimated to
be suppressed by a factor of 50, and the total number of background events was estimated to
be reduced to less than the number of signal events predicted by the Standard Model.
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Chapter 1

Introduction

The KOTO experiment is an experiment dedicated to observe the rare decay of long-lived neutral
kaons, KL → π0νν̄. We start with the introduction about the KL → π0νν̄ decay and the KOTO
experiment. We will then move on to the purpose and the outline of this thesis.

We have successfully achieved to build the Standard Model (SM) in particle physics. The
Standard Model can represent almost all the processes. It can even describe CP violation in
the weak interaction naturally. The Standard Model, however, cannot describe all the phenom-
ena. For example, the CP violation is one of the requirements to make the matter-dominant
universe[1], but the amount of the CP violation explained by the Standard Model is not large
enough to make the matter-dominant universe. It also cannot explain the galaxy rotation curve,
which requires some additional mass called ”dark matter”. We thus believe there is a new
physics beyond the Standard Model; we should examine the Standard Model, and search for the
new physics. The KL → π0νν̄ decay is a good probe for such purposes.

1.1 KL → π0νν̄ decay

Figure 1.1 shows a Feynman diagram of the KL → π0νν̄ decay. The decay process is mediated
by the second order diagrams of the electroweak interactions with the conversions within three
generations in the quark sector: s → t → d. In the Standard Model, the Lagrangian of the
charged current in the weak interaction is given by:

LCC =
g√
2
[ūiVijdjW

− + d̄jV
∗
ijuiW

+] , (1.1)

where ui = (u, c, t) are left-handed up-type quarks, di = (d, s, b) are left-handed down-type
quarks, and W± are the weak bosons. The Vij is the 3×3 unitary Cabibbo-Kobayashi-Maskawa
(CKM) matrix which connects the up-type quarks with the down type quarks:

V =

 Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 . (1.2)

Wolfenstein parameterized the matrix through an expansion in powers of λ = |Vus| = 0.22[2]:

V ∼

 1 − λ2/2 λ Aλ3(ρ − iη)
−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1

 , (1.3)
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where η is a real number coefficient which represents an imaginary part of the CKM parameters.
The long lived neutral kaon, KL, is approximately represented by a superposition of the K0 and
K0:

|KL> ∼ 1√
2
(|K0> −|K0>) . (1.4)

The amplitude of the KL → π0νν̄ decay can then be expressed as:

A(KL → π0νν̄) ∼ 1√
2
(A(K0 → π0νν̄) − A(K0 → π0νν̄))

∝ V ∗
tdVts − (V ∗

tdVts)∗

∝ 2iη . (1.5)

The branching ratio of the KL → π0νν̄ decay is thus proportional to η2, and the decay is induced
directly by the CP violation in the weak interaction.

d̄

s d

ν

ν̄

d̄
W−

t

Z0

Figure 1.1: A Feynman diagram of the KL → π0νν̄ decay.

The branching ratio of the KL → π0νν̄ decay is represented in the Standard Model as [3]:

Br(KL → π0νν̄) = 6.87 × 10−4 × Br(K+ → π0e+ν) × A4λ8η2X2(xt) , (1.6)

where xt is the square of the ratio of the top quark to the W boson masses, xt = m2
t /m2

W , and
X(xt) is the Inami-Lim loop function with higher order QCD corrections[4]. We can calculate the
branching ratio with an exceptional precision, because the contributions from the long distance
interaction are negligibly small, and the hadronic matrix elements are extracted directly from
experimental measurements of the branching ratio of the decay: K+ → π0e+ν. The theoretical
uncertainty in the branching ratio of the decay is only 1-2 % [5]. Based on the Standard Model
calculation with the measured CKM parameters, the branching ratio of the KL → π0νν̄ decay
is predicted to be[6]:

Br(KL → π0νν̄) = (2.43 ± 0.39) × 10−11 . (1.7)

The uncertainty is dominated by the currently measured CKM parameters. If we measure the
branching ratio, we can thus determine η directly with a good precision.

As shown in Fig. 1.1, the KL → π0νν̄ decay occurs via loop diagrams. If a non-SM particle
propagates in the loop, the branching ratio of the KL → π0νν̄ decay may be different from the
Standard Model prediction. Because the decay directly violates the CP symmetry, the deviation

2



1.2. KOTO EXPERIMENT AT J-PARC 3

of the branching ratio from the Standard Model prediction also implies new sources of the CP
violation. One of major models of new physics beyond the Standard Model is Minimal Super-
symmetric Standard Model (MSSM), which is the minimal extension to the Standard Model,
including supersymmetry (SUSY). The general MSSM can have new CP violation sources, and
can enhance the branching ratio of the KL → π0νν̄ decay to a few times 10−10[7]. It is about
10 times larger than the SM prediction.

A decay mode, B0 → J/ψKS , can also determine the CP violation phase with a small
uncertainty in B meson system. The CP violation arises from B0 − B0 mixing and it is called
indirect CP violation. In the general MSSM, the amount of CP violation in KL → π0νν̄ decay
can be different from the one in the indirect CP violation.

In the Minimal Flavor Violation (MFV) hypothesis, there are no additional CP violation
phases, and the flavor mixing can be explained only by the CKM matrix in the Standard Model.
Deviations of the branching ratio from the SM prediction, thus, is small (∼20 %) in MFV
models[8, 9]. Because there are no additional CP violation phases, the amount of CP violation
in KL → π0νν̄ decay should be the same as the one in the indirect CP violation.

By measuring the branching ratio of the KL → π0νν̄ decay and comparing the size of the CP
violation with the SM and other experimental results, we can distinguish and constrain many
theories. To measure the branching ratio of the KL → π0νν̄ decay, the KOTO experiment was
designed and is being prepared at J-PARC.

1.2 KOTO experiment at J-PARC

In order to reach the sensitivity of the SM prediction, we adopted a step-by-step approach. The
E391a experiment at KEK-PS was performed as a pilot experiment for the KOTO experiment.
We successfully established a basic experimental method, and obtained the upper limit[10, 11]:

Br(KL → π0νν̄) < 2.6 × 10−8 (90 % C.L.) . (1.8)

By comparing the upper limit to the SM prediction (Equation 1.7), we have to improve the
experimental sensitivity by 3 orders of magnitude. Because the result of the E391a experiment
was limited by the number of KL’s available, we planed the KOTO experiment to use a high
intensity proton beam of J-PARC. In the following subsections, we describe the experimental
method of the KOTO experiment, and its background sources.

1.2.1 Experimental method

Figure 1.2 shows a conceptual view of the experiment. A decay volume for KL is surrounded
by particle detectors. The signature of a KL → π0νν̄ decay is that there are two photons from
a π0 decay and no other visible particles in the final state. An electromagnetic calorimeter is
placed downstream of the decay volume to detect the two photons. All the KL decay modes
except KL → π0νν̄ and KL → γγ have at least two charged particles, or two or more extra
photons in the final state. These decays can be rejected by detecting additional particles by the
surrounding detectors for vetoing them. The KL → γγ decays can be rejected by requiring a
finite transverse momentum for the two photon system. In case of the KL → π0νν̄ decay, the
two photon system has a finite transverse momentum, because the undetected two neutrinos
take some momentum away.

We reconstruct the KL → π0νν̄ decay from two photons in the calorimeter with the assump-
tion that the two photons come from a π0 decay on the z-axis. Figure 1.3 shows a schematic
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calorimeter

KL γ

ν

Figure 1.2: A conceptual view of the KOTO experiment.

view of the π0 reconstruction. Once we find two photons in the calorimeter, the invariant mass
of the two photons is represented by:

m2
π0 = 2E1E2(1 − cosθ12) , (1.9)

where mπ0 is the π0 mass, Ei is energy of the i-th photon, and θ12 is the angle between the
momenta of the two photons. The cosθ12 is derivered from:

(r1 − r0) · (r2 − r0) = x1x2 + y1y2 + (z1 − Zvtx)(z2 − Zvtx)
= |r1 − r0||r2 − r0| cos θ12 , (1.10)

where ri = (xi, yi, zi) is the incident position of the i-th photon in the calorimeter, and r0 =
(0, 0, Zvtx) is the decay vertex of the π0. The decay vertex position, Zvtx, is calculated using
these equations.

E1

E2

r2 (x2,y2,z2)

r1 (x1,y1,z1)

r0 (0,0,Zvtx)

θ12

Figure 1.3: A schematic view of the π0 reconstruction.
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1.3. DETECTOR UPGRADES 5

1.2.2 Background sources

We reconstruct the KL → π0νν̄ decay with the assumption that the two photons come from a
π0 decay on the z-axis. If the two photons are not from a π0 decay, or if the two photons are
not coming from the z-axis, we mis-calculate the decay vertex position, Zvtx, and such an event
might be a background source. An η(→ γγ) or π0 produced by the interaction between detector
materials and neutrons in the beam halo (halo neutron), and KL → γγ decay in the beam halo
(halo kaon) are such cases as shown in Fig. 1.4.

calorimeter

KL
π0?

γ
beam halo

calorimeter

π0?

γbeam halo
neutron

η,π0
detector materiala)

b)

Figure 1.4: Schematic views of backgrounds caused by beam halo particles: a) η(→ γγ) or π0

produced by the interaction between detector materials and halo neutrons, b) KL → γγ decay
of the halo kaon.

Other backgrounds from KL decays are caused by missing extra particles for some reasons.
The major reason is simply the detection inefficiency of the detectors. Another reason that only
applies to photons is to reconstruct two nearby photons in the calorimeter as one photon. This
is called ”fused cluster”.

1.3 Detector upgrades

We give a brief description about the detector upgrades of the KOTO experiment. We are reusing
the E391a detector with a number of upgrades. In those upgrades, this thesis will describe a
study about the upgrades of a calorimeter and readout system. Details of the upgrades and
other apparatus will be described in the next chapter.

1.3.1 Upgrade of electromagnetic calorimeter

The calorimeter for the E391a experiment consisted of 7 cm square CsI crystals. We replaced
the crystals with smaller crystals to improve granularity and get more shower shape information

5



6 CHAPTER 1. INTRODUCTION

of photons, as shown in Fig. 1.5. With the more information, we can reconstruct the incident
position and angle more accurately, and identify shower shapes more precisely.
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Figure 1.5: Schematic views of the improvement of the granularity of the calorimeter. The figures
show the activities with 7 cm (left) and 2.5 cm (right) square crystals for the same events, in
which 300 MeV photons hit the calorimeter with the 20◦ polar angle and 45◦ azimuthal angles.
The squares in each figure correspond to crystals, and the color shows the deposit energy in
each crystal in MeV.

Because the observable values from the calorimeter are the only information for signal-like
events, performance of the calorimeter is crucial to discriminate signals from backgrounds. As
described in Section 1.2.2, the reconstructed decay vertex position for backgrounds caused by
halo kaons and neutrons are different from the real position. As shown in Fig. 1.4, this makes
the incident angle of photons derived from the mis-reconstructed vertex different from the true
incident angle. By improving incident angle resolution, we can suppress such backgrounds.
Backgrounds caused by the fused cluster are also suppressed by the upgrade, because the shower
shape of the fused cluster is different from the shape of a single photon.

1.3.2 Upgrade of readout system

Figure 1.6 shows a conceptual view of our waveform readout. If we simply read a signal from
a CsI crystal with a 125 MHz FADC, only 1 or 2 samples can be taken on the rising edge and
we cannot measure its timing precisely. If we put a Bessel filter before the digitization, signals
are widened and several samples are recorded on their rising edges. The width of the widened
pulse shape is about 27 ns in σ. By using the filter, we can measure their energy and timing
more precisely.

The energy and timing resolutions obtained with the waveform readout might be different
from the resolution obtained with normal ADC and TDC. Because it is our first time to use the
Bessel filter for such an application, it is important to study and understand the performance
obtained with the waveform readout.
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1.4. PURPOSE AND OUTLINE OF THIS THESIS 7

100ns
100ns

Figure 1.6: A conceptual view of our waveform readout with a Bessel filter. Figure on the left
shows a signal from CsI crystal recorded by an oscilloscope. The black dots show an example
of a 125 MHz sampling. Figure on the right shows a recorded pulse shape by FADC with the
filter.

1.4 Purpose and outline of this thesis

Purposes of this thesis are the following:

1. Reveal and understand the performance of the upgraded calorimeter obtained with the
waveform readout.

2. Fully utilize the upgraded calorimeter for suppressing backgrounds.

3. Estimate the realistic number of signal and background events, and evaluate the sensitivity
of the KOTO experiment.

The KL → γγ decay, in particular, was not considered as a background source in the proposal
of the KOTO experiment. Because the KL → γγ decay has no extra photons in the final state
except two photons in the calorimeter, the decay in the beam halo can be a serious background
source and only rejected by the calorimeter. We developed a new method to suppress the
KL → γγ background, and estimated the number of the background events.

The outline of this thesis is the following. We first describe the apparatus of the KOTO
experiment in Chapter 2. Next, we describe a beam test that we held to evaluate the performance
of the calorimeter in Chapter 3. In Chapter 4, we then describe a study about the estimation
method of the performance obtained with the waveform readout, and compare the estimation
with the results obtained with data in the beam test. Next, we describe some new analysis
methods for the upgraded calorimeter in Chapter 5. We estimate the expected number of signal
and background events based on the new studies, and reestimate the sensitivity of the KOTO
experiment in Chapter 6. We describe discussions on the improvement on the timing resolution
and the experimental sensitivity in Chapter 7. At the end, we will conclude this thesis in Chapter
8.
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Chapter 2

Apparatus of the KOTO experiment

In this chapter, we describe the apparatus of the KOTO experiment at J-PARC.
Protons in the J-PARC synchrotron are accelerated up to the kinetic energy of 30 GeV, and

extracted to the experimental area for 0.7 seconds in every 3.3 seconds. The period during the
extraction is usually called ”spill”. The KL particles are generated by primary protons striking a
target, and the KL particles are transported through a neutral beam line to the KOTO detector.

Section 2.1 describes the neutral beam line. Section 2.2 explains the detector system of the
KOTO experiment.

2.1 Beam line

Figure 2.1 shows an overview of the beam line. A common target is placed in the proton beam
line and consists of five Ni disks with the total thickness of 53.9 mm. The target and the neutral
beam line set on a same axis, and the neutral beam line is located 16◦ from the primary proton
beam line in a horizontal plane. The beam line consists of a pair of collimators, a sweeping
magnet, and a γ absorber, and it is 21 m long. The first collimator is 400 cm long, and the
second collimator is 500 cm long. They are made of iron, except for the 50 cm long region at the
upstream end, which are made of tungsten. The magnet is placed between the two collimators
to sweep out charged particles, and its magnetic field is 2 Tesla with the current of 2.2 kA. The
γ absorber is made of 7 cm long lead.

Figure 2.2 shows estimated neutron profiles[12]. As described in Section 1.2.2, the beam halo
is one of the background sources. The halo neutron flux is suppressed by 5 orders of magnitude
than the core neutron flux, which corresponds to 10 times improvement from the E391a. It
helps to suppress backgrounds.

Figure 2.3 shows data and Monte-Carlo KL momentum spectra at the exit of the beam
line, which is 21 m downstream from the target[13]. Because the spectra vary between different
Monte-Carlo packages, we use the measured spectrum in this thesis. Based on the measurement,
the estimated number of KL at the exit of the beam line is 1.94 × 107 per spill with 2 × 1014

protons on target.

2.2 KOTO detector

Figure 2.4 shows a detector overview of the KOTO experiment. As described in Section 1.2.1, the
decay volume is surrounded by hermetic particle detectors. The downstream side is covered with

8



2.2. KOTO DETECTOR 9

Figure 2.1: A schematic view of the neutral beam line. A common target in the proton beam
line and the neutral beam line set on a same axis, and the neutral beam line is located 16◦

from the primary proton beam line in a horizontal plane. The beam line consists of a pair of
collimators, a sweeping magnet, and a γ absorber, and it is 21 m long. The KOTO detector is
placed just downstream of the second collimator.

Figure 2.2: The estimated neutron profiles in horizontal(left) and vertical(right) axes[12]. The
red histogram shows the result with the final design, black histogram shows the result before
the final optimization.

9



10 CHAPTER 2. APPARATUS OF THE KOTO EXPERIMENT

Figure 2.3: The KL momentum spectra at the exit of the beamline, 21 m downstream from
the target[13]. Dots show the data, and histograms show the simulation results obtained with
FLUKA(solid line), GEANT3(dots) and GEANT4(dashed line).

an electromagnetic calorimeter to measure the energies and incident positions of two photons
from a π0. All other detectors are used for vetoing extra particles.

In the following subsections, we give a description about the electromagnetic calorimeter,
data acquisition system and other veto counters.

Figure 2.4: A side view of the KOTO detector. The decay volume at the middle of the detector
is surrounded by hermetic particle detectors. There is a calorimeter at the downstream of the
decay volume. The other detectors are used for vetoing extra particles.

10



2.2. KOTO DETECTOR 11

2.2.1 Electromagnetic calorimeter

As described in Section 1.3.1, the electromagnetic calorimeter for the KOTO experiment was
upgraded. There were two major purposes of the calorimeter upgrade. One of them was to
improve granularity in order to get more shower shape information of photons. It helps to
distinguish the fused clusters generated by two nearby photons. The other purpose was to
increase the thickness of the calorimeter. It helps to reduce the shower leakage in order to
improve the energy measurement. It also helps to reduce the photon detection inefficiency
caused by photons punching through the calorimeter.

Figure 2.5 shows a front view of the CsI calorimeter for the KOTO experiment. To satisfy
the above purposes, 496 pieces of the E391a crystals with the dimension of 7 × 7 × 30 cm3

were replaced by 2240 crystals with the dimension of 2.5× 2.5× 50 cm3 (”small” type) and 476
crystals with the dimension of 5 × 5 × 50 cm3 (”large” type). Those are pure CsI crystals used
at the Fermilab KTeV experiment.

1906
1900mm

Figure 2.5: A front view of the CsI calorimeter for the KOTO experiment. It consists of 2240
”small” crystals and 476 ”large” crystals. The calorimeter is 50 cm long in depth.

Each crystal is wrapped with a 13 µm thick Aluminized mylar. Each small(large) crystal
is viewed from the downstream by a 3/4(1.5) inch Hamamatsu R5364(R5330) PMT through a
4.6 mm thick silicone cookie and UV transmitting filter. Since these crystals and PMTs will
be operated in vacuum, the heat generated by their HV bleeder should be suppressed. We
developed a custom Cockcroft-Walton base (CW base) to supply HV to PMTs with a smaller
heat generation (60 mW in the CW circuit1).

The gain of each PMT is monitored by a laser calibration system. A 355 nm wavelength
laser is emitted to 9-Methylcarbazole liquid scintillator. The pulse shape from the scintillator is
similar to the pulse shape of the CsI crystal. The light yield from the scintillator is monitored by
a PIN photo diode. The light from the scintillator is also distributed to the downstream surface
of all the crystals through quartz fibers. By tracking the PMT output of the liquid scintillator
light normalized by the PIN photo diode output, we can monitor the gain of each PMT.

1 90 mW at preamplifier in the CW base

11



12 CHAPTER 2. APPARATUS OF THE KOTO EXPERIMENT

2.2.2 Data acquisition system and readout

The estimated decay rate of KL in the KOTO detector is about 3 MHz with the full intensity,
2 × 1014 protons on target per spill. To take data effectively with the high intensity beam at
J-PARC, the data acquisition (DAQ) system should also be upgraded. Figure 2.6 shows an
overview of the DAQ system. Signals from all the detectors are digitized by Flash ADC (FADC)
boards, and the digitized waveform data is stored in the boards temporally for 4 µs. Each
FADC board receives 16 analog inputs, calculates local sum of them and sends the sum to one
of Level1(L1) trigger boards every 8 ns. A master control board of this DAQ system called
MACTRIS communicates with the L1 trigger boards, generates L1 triggers based on those sum,
and sends them to the FANOUT boards. The FANOUT boards fan-out the triggers and also
clock signals to each FADC board. When a FADC board receives a trigger, the board sends
corresponding waveform data to a so called Level2(L2) trigger board. The L2 trigger board has
dual memories on it, and keeps storing data sent from the FADC boards during a spill after
some event selections. The stored data is sent to an event building system during the next spill.

clock&
triggers

triggered
waveform

local sum

Flash ADC

VME

MACTRIS

L1 trigger

Fanout

L2 trigger

clock&
triggers

local sum digital I/O

Event builder / L3 decision
data

Storage

clock

clock

Figure 2.6: An overview of the DAQ system for the KOTO experiment. Signals from all the
detectors are read out by Flash ADC boards. A MACTRIS board generates triggers based on
the digitized signals from FADCs with L1 trigger boards. The corresponding data for a trigger
is sent to an event building system through L2 trigger boards after some event selections.

The estimated L1 trigger rate is 200 kHz. With the upgraded DAQ system, we can take data
without any dead time. It is suitable to take data under the high intensity beam. Furthermore
data are stored in a pipeline (digital delay) during the trigger generation. This eliminates delay
cables, and prevents the signal from blunting. It is a big advantage for detecting small pulses in
veto counters.
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2.2. KOTO DETECTOR 13

As described in Section 1.3.2, we decided to record waveform with FADC. The FADC was
required to have 14 bit dynamic range for the calorimeter, and the total number of channels is
about 3800. To achieve the required specification at a reasonable cost, we decided to put the
Bessel filter before digitization, and record the output with 125 MHz FADCs.

Figure 2.7 shows a photograph of the FADC board and the circuit diagram of the Bessel
filter. The FADC board was developed at the University of Chicago. On the front-panel, it
has 16 analog input channels, digital I/O to receive clock signals and triggers, and 2 pairs of
optical links to send data to L1 and L2 trigger boards. There are 10-pole Bessel filters between
the connectors for analog inputs and FADC chips. The digitized waveforms are processed by an
FPGA2 chip on it.
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Figure 2.7: A photograph of the FADC board (right) and the circuit diagram of the Bessel filter
(left). The FADC board was developed at the University of Chicago. It has 16 analog input
channels. Input signal is passed to the Bessel filter, and the output from the filter is recored by
125 MHz FADC.

2.2.3 Other veto counters

The KOTO experiment has the following veto counters as shown in Fig. 2.4.
Figure 2.8 shows a schematic view of detectors in the upstream section. There are Front

Barrel (FB) and Collar Counter 02 (CC02) to suppress KL decays that occur upstream of the
decay volume. The FB consists of 16 modules that are made of 59 layers of alternating lead and
plastic scintillator plates (16 X0 thick and 2.75 m long). The CC02 is made of pure CsI crystals
as shown in Fig. 2.9, and it is placed at the entrance of the main decay volume, surrounding the
neutral beam. The CC02 is prepared not only to detect photons from KL decays, but also to
measure the flux and energy spectrum of halo neutrons.

Figure 2.10 shows a schematic view of detectors in the middle section. Main Barrel (MB)
surrounds the side of the decay volume. The MB consists of 32 modules, and each module
consists of an existing module for the E391a experiment and an additional module for upgrade.

2 Field-Programmable Gate Array (FPGA) is an integrated circuit which we can configure after manufacture
with a Hardware Description Language just like softwares.
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14 CHAPTER 2. APPARATUS OF THE KOTO EXPERIMENT

Figure 2.8: A schematic view of detectors in the upstream section. The FB and CC02 are placed
upstream of the decay volume.

Figure 2.9: A schematic view of CC02. The CC02 is segmented into multiple crystals along
both the longitudinal and perpendicular directions, to measure the flux and energy spectrum of
halo neutrons.

14



2.2. KOTO DETECTOR 15

The module for E391a is a lead and plastic scintillator sandwich calorimeter. The thickness of
each scintillator plate is 5 mm. The lead plates for the inner 15 layers are 1 mm thick each,
and the outer 29 layers are 2 mm thick. The total thickness of the existing modules is 14 X0,
and the length is 5.5 m. We plan to add 5 X0 thick modules inside the existing modules. In
the most inner part of the Main Barrel, a pair of 5 mm thick plastic scintillators are placed to
identify charged particles.

Figure 2.10: A schematic view of detectors in the middle section. The MB surrounds the side
of the decay volume.

Figure 2.11 shows a schematic view of Charged Veto (CV). The CV is placed in front of the
CsI calorimeter to detect charged particles hitting the calorimeter. It consists of two layers.
One of them is placed on the upstream surface of the calorimeter, and the other is placed 25 cm
upstream of the calorimeter. Each layer consists of 3 mm thick plastic scintillators.

Figure 2.12 shows a schematic view of detectors in the downstream section. The CC03 and
Liner CV (LCV) are placed along the beam hole of the calorimeter. The CC03 is made of pure
CsI crystals to detect photons. The LCV is made of 3 mm thick plastic scintillators to detect
charged particles. Outer Edge Veto (OEV) surrounds the calorimeter to fill gaps between the
calorimeter and the support structure. It consists of alternating lead and plastic scintillator
plates.

Downstream counters, CC04-CC06, surround the neutral beam to detect photons passing
along the beam. Those will be made of pure CsI crystals.

Beam Hole CV (BHCV) is set at 4 m downstream of the CsI calorimeter, and consists of 3
mm thick plastic scintillators to detect charged particles in the beam core.

15



16 CHAPTER 2. APPARATUS OF THE KOTO EXPERIMENT

Figure 2.11: A schematic view of CV. It consists of two layers. The CV is placed in front of the
CsI calorimeter.

Figure 2.12: A schematic view of detectors in the downstream section. The CsI calorimeter is
placed downstream of the decay volume. The CC03 and LCV are placed along the beam hole
of the calorimeter. The OEV surrounds the calorimeter to fill gaps between the calorimeter and
the support structure.
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2.2. KOTO DETECTOR 17

Beam Hole Photon Veto (BHPV) is placed at the downstream end of our detector system,
and starts at 6.3 m downstream of the calorimeter. To suppress shower components going back
to other veto counters, BHPV is placed in a radiation shield. The BHPV consists of 25 Cerenkov
counter modules shown in Fig. 2.13. Each module is composed of a lead plate, a stack of aerogel
tiles, a mirror, a Winston cone, and a PMT. The lead plate converts photons to electrons and
positrons, and the aerogel tiles emit Cerenkov light with the electrons and positrons. The mirror
and the Winston cone guide the Cerenkov light to the PMT. By using Cerenkov light, BHPV is
not sensitive to heavy particles in the beam core.

Pb
Aerogel

30cm

Winston-type funnel

5 inch PMT

mirror
Beam

Figure 2.13: A schematic view of BHPV module. The module consists of a lead plate, a stack
of aerogel tiles, a mirror, a Winston cone, and a PMT.
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Chapter 3

Performance evaluation of the CsI
calorimeter

We held a beam test at the Research Center for Electron Photon Science (LNS at that time) in
the Tohoku University, to reveal the basic performance of the CsI calorimeter: energy resolution,
timing resolution and position resolution. We measured those resolutions for different beam
energies and different incident angles.

In the following sections, Section 3.1 first describes the apparatus of the beam test. Next,
Section 3.2 describes a study of the pulse shape analysis. Section 3.3 describes the basic energy
calibration, and Section 3.4 describes the energy calibration with beam. Section 3.5 and 3.6
describe energy and timing resolutions, respectively. At the end, Section 3.7 describes the
summary of this chapter.

3.1 Experiment

Figure 3.1 shows a photograph of the beam test apparatus. The beam test apparatus consisted
of a e+ beam, a scintillating fiber position detector and a CsI array. The position detector was
placed just upstream of the CsI array to define the incident positions of incoming e+s. The CsI
array and the position detector are mounted on a table to change the incident angle and position
of the e+s. A dry room was prepared to keep the CsI crystals dry.

We define the coordinate system as the following. The positive z-axis points in the beam
direction, the positive y-axis points up, and the x-axis is defined to satisfy the relation of the
right-hand system: x = y × z.

We will explain the e+ beam, the scintillating fiber position detector, the CsI calorimeter,
the data acquisition system and the run conditions in the following subsections.

3.1.1 e+ beam

The LNS had a circular accelerator, and it provided e−s with energies up to 1.2 GeV. By
inserting thin carbon fibers in the beam line, photons were generated by Bremsstrahlung. The
photons were transported to the laboratory where we held the beam test. The photons hit a
20 µm thick Au foil converter, and generated e±s. Figure 3.2 shows the e+ beam line in the
laboratory[14]. The size of the e± beam was defined by a Pb collimator located downstream of
the foil. A dipole magnet was located just downstream of the collimator to select e+s and to
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positron beam

CsI array

Figure 3.1: A photograph of the beam test apparatus. The beam test apparatus consisted of a
e+ beam, a scintillating fiber position detector and a CsI array. The CsI array was mounted on
a turntable on the X-stage. The X-stage was placed in a dry room.

analyze their momenta. The e+s with a selected momentum were transported to the second Pb
collimator through a vacuum pipe placed at 30◦ in a horizontal plane with respect to the initial
photons. The collimated e+s passed through the air to the experimental area. The experimental
area was located about 5 m downstream of the second collimator.

The repetition cycle of the e+ beam was 14 seconds and the duty factor was 50 %. The beam
intensity was about 1.3 kHz during the beam test. The highest e+ beam energy available was
840 MeV. The beam energy range was similar to the energy range of photons expected at the
KOTO experiment. The beam profile was about 20 mm wide in σ in x and y directions.

3.1.2 Scintillating fiber position detector

A detector made of scintillating fibers was placed in front of the CsI crystals in order to measure
the incident position of each e+. Figure 3.3 is a photograph of the position detector. It consisted
of two layers for x&y views, and each layer consisted of 48 scintillating fibers. The cross section
of each fiber was 1 mm square. The overlapped area of the two layers was 48 mm square. The
light from the fibers was detected by Hamamatsu H8711-10 multi-anode PMTs.

The typical light yield was 6-8 photoelectrons per Minimum Ionization Particle (MIP). Signals
from the fibers were discriminated at a threshold of 1-2 photoelectrons to measure the timing
of the hit.

The position resolution of the CsI calorimeter will be evaluated with this position detector
in Section 5.1.
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Figure 3.2: A schematic top view of the e+ beam line[14]. The beam line consists of a 20 µm
thick Au foil as a target, a pair of Pb collimators, and a dipole magnet labeled RTAGX in this
figure. The strength of the magnetic field of the dipole magnet was 1.2 T at a maximum. The
e+ beam size was defined by the hole with the diameter of 20 mm in the second collimator.
Photographs are the Au foil and the first Pb collimator, the dipole magnet, and the second Pb
collimator.

Figure 3.3: A photograph of the scintillating fiber position detector and the CsI array. The
position detector was placed just in front of the CsI crystals (black elements with white labels).
It consisted of two layers for x&y views, and each layer consisted of 48 scintillating fibers.
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3.1.3 CsI calorimeter

We stacked 12 × 12 small crystals to build a calorimeter with the size of 30 cm × 30 cm in
xy-plane and 50 cm long. The size was determined to contain full electromagnetic showers from
e+s. Each crystal was viewed by a R5364 PMT with a CW-base through a 4.6 mm thick silicone
cookie and a UV transmitting filter. Signals from each crystal were recorded by the 125 MHz
FADC, and 48 sampling points were recorded for every trigger. All these components are the
ones that are used at the KOTO experiment described in Section 2.2.1.

The CsI array and the PMTs were placed in a dark box to keep them in dark and in a
stable temperature, as shown in Fig. 3.4. To change the incident angle and position of e+ beam,
the box was fixed on a turntable, and the turntable was mounted on an X-stage. Because the
light output of a CsI crystal depends on its temperature, and the surface of a CsI crystal is
easily damaged by humidity, temperature and humidity in the dry room were controlled. The
temperature and humidity in the box and the dry room were monitored as shown in Fig. 3.5.
The temperature at the the upstream surface of the CsI crystal was stable within 1 ◦C during
the data taking. It was important because most of the light from the e+ showers were emitted
near the upstream surface of the CsI crystal. The relative humidity in the dry room was mostly
kept below 20 %.

The gain of each PMT was also monitored by an LED flasher system. Figure 3.6 shows a
schematic view of the LED flasher gain monitoring system. Basic idea of the system is the
same as the laser calibration system for the KOTO experiment. An LED which emits a light
of 375 nm in wavelength was fixed at one end of a small tube. On the other end of the tube, a
PIN photodiode and 144 quartz fibers were placed. The LED flashed at 1 Hz, and its output
was monitored with the PIN photodiode. The other end of each fiber was attached on the
downstream surface of a crystal to distribute the light from the LED. By tracking the PMT
mean output normalized by the PIN photodiode output periodically, we monitored the gain of
each PMT. The LED output was stable within 1 %. The details on the PMT gain correction
will be described in Section 3.3.1.

We also prepared trigger counters to take cosmic ray events for the energy calibration. Figure
3.7 shows the the location of the trigger counters. The counters consist of four plastic scintillators
with the size of 35×1×6 cm3 each. We attached two PMTs on left and right-hand sides of each
scintillator. Two of the four scintillators were placed 157 mm above the top surface of the CsI
array, and the rest of the two scintillators were placed 248 mm below the bottom surface of the
CsI array. Both scintillators were placed about 125 mm downstream of the upstream surface of
the CsI array.

3.1.4 Data acquisition system

We took data in a similar way as the KOTO experiment. Figure 3.8 shows an overview of the
DAQ system for the beam test. Signals from each PMT were recorded by the 125MHz FADC
boards and stored temporally for 4 µs. The FADC board recording outputs of the central 16
crystals calculated the local sum of the 16 channels and sent the sum to a L1 trigger board every
8 ns via an optical fiber. The L1 trigger board compared the sum with a given threshold and
made a trigger signal. When the CAMAC system for the position detector was busy, the system
sent a busy signal to the L1 trigger board and the trigger signal was blocked by the busy signal.
If not, the trigger signal was sent to the fanout board via VME 9U backplane. The trigger and
a 125MHz clock signals were distributed to each FADC board. When a FADC board received
a trigger, the board sent the corresponding waveform data to a L2 trigger/readout board via
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22 CHAPTER 3. PERFORMANCE EVALUATION OF THE CSI CALORIMETER

Figure 3.4: The CsI calorimeter used for the beam test and the dark box on the turntable. The
cover of the dark box is not shown in this figure.
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Figure 3.5: Temperature(top) and humidity(bottom) in the dry room and the dark box. The
dots in the top figure show the temperature at the upstream(black) and downstream(red) surface
of the CsI array, around the PMTs/CW-bases(blue) and in the dry room(magenta). The black
dots in the bottom figure show the relative humidity in the dry room.
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Figure 3.6: A schematic view of the LED flasher system to monitor the gain of each PMT. The
LED output was monitored with a PIN photodiode. The light from the LED was distributed to
each crystal through a quartz fiber.
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Figure 3.7: The location of the trigger counters for cosmic rays. Figure on the left(right) shows
the side(front) view of the setup.
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an optical fiber. At the beam test, the L2 board was read out via VME backplane without any
selections.

The energy threshold for the trigger was about 45 MeV, and the DAQ rate was 300-500
Hz limited by the synchronization between the VME and CAMAC system, and the speed of
event-by-event-readout.

CAMAC
TDC

DAQ system for CsI (VME)scintillating fibers

PMTCsI

clock&triggers

CAMAC DAQ BUSY

triggered
waveform packet

local sum

sum > thres?

trigger 125MHz
clock

125MHz
clock

Flash ADC

L2 trigger/readout

Fanout

L1 trigger

readout

ET

Figure 3.8: An overview of the DAQ system for the beam test.

3.1.5 Run

We took data for various combinations of energies and incident angles. The e+ energy was set at
{100, 200, 300, 460, 600, 800} MeV, and the incident angle was set at {0◦, 10◦, 15◦, 20◦, 30◦, 40◦}.
We will write a combination of the energy and incident angle as (800 MeV, 40◦). We took 30k
events for each run, and made 10 runs for each (E, θ). The position of the CsI array on the
X-stage was adjusted for every combinations to contain the full shower. The position of the
scintillating fiber detector was also adjusted to detect the incident positions of e+s.

We also had two kinds of special runs. One of them was a special run for measuring the
timing resolution. A light-rich scintillator was placed upstream of the CsI array to define the
timing of each event. We attached two PMTs on left- and right-hand sides of the scintillator.
Signals from the PMTs were recorded by a 500MHz FADC developed for the KOTO experiment.
The 500MHz FADC used a common 125MHz clock which was synchronized to other 125MHz
FADCs. We set the e+ incident angle at 0◦ and took 30k events for each energy. The obtained
timing resolution will be described in Section 3.6.

The other special run was for energy calibration with beam. In the normal runs, almost all
the deposit energy was contained in the central crystals in the CsI array. If we only use such
data for energy calibration, the obtained calibration constants might be biased. To suppress
biassing, we changed the beam incident position along the x-axis. In this special run, crystals
next to the both sides of the central crystals contained more energy. We took data at (600 MeV,
0◦) for this special calibration run. The energy calibration with beam data will be described in
Section 3.4.

We also took some cosmic ray data for energy calibration during night. The LED events for
the gain monitoring were recorded while taking beam and cosmic ray data.
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3.2 Pulse shape analysis

The waveform readout, and the usage of the Bessel filter were new attempts for us to take data.
We thus first studied the pulse shape itself.

In the following subsections, we describe an error on each sampling point, and how to fit the
pulse shapes.

3.2.1 Error on each point

We studied an error on each sampling point. We first assumed that an error on each sampling
point is represented by the amount of ground noise alone. To evaluate the validity of this
assumption, we fit the pulse shape with an ”Asymmetric Gaussian”:

A(t) = |A| Gaussian(t, µ, σ)
where σ(t) = a (t − µ)4 + b (t − µ)3 + c (t − µ)2 + d (t − µ) + σ0 . (3.1)

We fitted the pulses in range -150 ns < t− tpeak < 45 ns, where tpeak is the peak timing. Details
of the fitting procedure are described in the next subsection. Figure 3.9 shows the correlation
between the fitted pulse height and the reduced χ2 of the fitting. The mean χ2 value for the
pulse heights below 4000 counts is centered at 1, showing that the assumed error is appropriate.
The behavior of the χ2 for the pulse heights larger than 4000 counts will be explained in Section
3.3.3.

fitted pulse height[cnt]

χ
2 /
ND
F

Figure 3.9: Correlation between the fitted pulse height and the reduced χ2 of the fitting. Pulse
shapes were fitted with the Asymmetric Gaussian shown in Equation 3.1. An error on each
sampling point was set at the amount of the ground noise. The red line shows a fitting function
of the correlation just for a study.
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3.2.2 Fitting

We fitted pulse shapes to reconstruct energy and timing of incoming e+s. There were following
two requirements for the fitting.

1. The pulse shape can slightly depend on its pulse height, and also depend on its readout
channel.

2. The shape to be used for fitting should be fixed to the shape depending on its pulse height
and its readout channel.

We set the first requirement, because we found that the pulse shape slightly depends on the
pulse height. Figure 3.10 shows the normalized pulse shapes for different pulse height ranges.
The pulse shape in the tail region varies with the pulse height. We also found that pulse shapes
depend on channels as shown in Fig. 3.11. Pulse shapes are different between channels at their
tail parts, in particular, even for the same pulse height range. A few channels have totally
different tail shapes.
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Figure 3.10: The pulse shapes of one channel for different pulse height ranges. The pulse heights
are normalized to 1. The pulse shape in the tail region varies with the pulse height.

We set the second requirement, because we found that we can achieve a better performance
by fixing the shape parameters. Figure 3.12 shows the timing difference between two selected
crystals. The pulse shapes were fitted by using the Asymmetric Gaussian shown in Equation 3.1.
We achieved a better timing resolution on fitting the pulse shapes with fixed shape parameters
(except pulse height and timing).

We tried various functions1 to fit the pulse shapes. It was, however, difficult to parameterize
pulse shapes properly for every channel and wide pulse height ranges. At the end, we decided
to use templates of pulse shapes to fit them.

The templates were made from pulse shapes in real data, and they were prepared for each
channel and multiple pulse height ranges. They reproduce pulse shapes in detail even at the
tail part and are suitable to be used for fitting. The good reproduction in the tail region also

1Appendix A
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Figure 3.11: The pulse shapes of different channels for one pulse height range. Pulse shapes are
different between channels at their tail parts, in particular. A few channels have totally different
tail shapes.
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Figure 3.12: The distribution of the timing difference between two selected crystals for around
5 MeV(left) and 100 MeV(right). When fitting the pulse shapes, the fitting parameters except
pulse height and timing were fixed for the black histogram, and floated for the red histogram.
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helps to separate overlapped pulses. The performance of overlapped pulse separation will be
discussed in Section 5.4.

The templates were made in the following way.

1. Fit the Asymmetric Gaussian to pulse shapes.

2. Normalize the pulse shape by the fitted pulse height, and shift the pulse shape in time to
align the peak timing.

3. Average the normalized pulse shapes for every channel and every pulse height range.

The pulse height range was divided logarithmically into 10 sections {20, 39, 75, 146, ..., 4000,
6500, 10000}. Because the time difference from the peak timing to the closest sampling point
after the peak is uniform within 8 ns (125 MHz), we can know the mean height for a finer
span than 8 ns. The typical shape was sampled for every ns. The pulse shape between the
sampled points was interpolated with a spline curve. The span, 1 ns, is fine enough compared
to the width of pulses. Figure 3.10 and 3.11 show exmaples of the templates. Figure 3.13
shows the correlation between the fitted pulse height and the reduced χ2 of the fitting with the
templates. The pulse height range is fine enough to resolve the pulse height dependence of the
pulse shape. The behavior of the reduced χ2 for the pulse heights larger than 4000 counts will
be also explained in Section 3.3.3.
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Figure 3.13: The correlation between the fitted pulse height and the reduced χ2 of the template
based fitting. The dashed brown lines show the boundaries of the pulse height ranges for the
templates.

Here, we will describe the fitting procedure in detail. First, the pedestal was determined for
every event by averaging the first 6 sampling points. If the time difference between the peak
timing and the 6th sampling point was less than 58 ns, the last 6 of the 48 sampling points were
used to decide the pedestal. Next, a rough pulse height and timing of the pulse were decided
by scanning all the sampling points. If the pulse height was greater than 10 FADC counts (∼
0.5 MeV), the corresponding template was prepared for fitting based on the channel ID and the
roughly decided pulse height. The pulse shape was fitted between -150 ns and 45 ns relative to
the roughly decided peak timing. The pulse shape was fitted again using the fitted pulse height
and timing to select another template and fitting range.
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3.3 Energy calibration

In this section, we will describe the energy calibration procedure. In the following subsections,
we will explain a correction for PMT gain drifts, an energy calibration with cosmic rays, and
the energy non-linearity found in the beam test data.

3.3.1 Gain correction

We first corrected the PMT gains for their drifts during the run. As described in Section 3.1.3,
we prepared the LED flasher system to monitor the drifts of PMT gains. The light output of
the LED was monitored with a PIN photodiode. The same PIN diode is used for the laser
calibration system for the KOTO experiment, and characteristics of the PIN diode had been
studied. The PIN photodiode is a photosensor which can measure light outputs without an
internal amplification. Because there is no gain fluctuation of the PIN photodiode, we can
measure the LED light output reliably with the PIN photodiode. By tracking the ratio of the
PMT mean output to the PIN photodiode output for the LED light pulses periodically, we can
monitor and correct the gain of each PMT. The LED light output was stable within 0.5% during
the data taking as shown in Fig. 3.14.
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Figure 3.14: The relative output of the PIN photodiode for the LED light pulses used for PMT
gain monitoring. The LED output was monitored by the PIN photodiode to be used at the
KOTO experiment. We started our main data taking at 4/13 11:00 AM, and the LED output
was stable within 0.5% after then.

We first checked the validity of using the LED flasher system for correcting the gains, with
one PMT whose gain was unstable. Figure 3.15 shows the relative ratio of the PMT output
to the PIN photodiode output for the LED light pulses. The ratio fluctuated up to ∼ 50 %
along the time. Because the LED light output was stable (and normalized), the fluctuation was
caused by the drift of the PMT gain. We divided the data taking time into multiple periods,
and corrected the PMT gain for each period using the LED output. Figure 3.16 shows the pulse
height distributions of cosmic ray events in two separated days with and without the PMT gain
correction. With the PMT gain correction, the two pulse height distributions in different days
became consistent with each other. This shows that the PMT gain correction works at least for
∼10-20 % deviations.
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Figure 3.15: The relative ratio of the PMT output to the PIN photodiode output for the LED
light pulses.
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Figure 3.16: The pulse height distributions of cosmic ray events taken in two separate days
with(right) and without(left) the PMT gain correction. The gain of this PMT was unstable
according to the LED gain monitoring system.
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The ratios of the outputs of the rest of the PMTs to the PIN photodiode output for the LED
light pulses were much stable within a few %. Figure 3.17 show the relative ratios of the outputs
of certain PMTs to the PIN photodiode for the LED light pulses. To check whether it is still
valid to correct gains for such smaller deviations with the LED flasher system, we evaluated the
PMT gain correction in the following two ways.
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Figure 3.17: Typical gain histories of PMTs in the middle(top) and near outside(bottom) of the
array monitored with the LED. The black dots show the relative ratios of the outputs of the
PMTs to the PIN photodiode for the LED light pulses for each period, and the red dots show
the averaged values over stable periods to be used for the gain correction. The outputs of most
of the PMTs were stable within a few % during the data taking.

One way is to check the widths of the total energy distributions in the beam data. The
energy calibration constant for each channel was temporally fixed to the value determined with
the cosmic ray events in the last day. Figure 3.18 shows the widths of the energy distributions
with and without the gain correction. Most of the widths became narrower with the PMT gain
correction.

The other way is to compare the pulse height distributions of cosmic ray events between two
separate days, with and without the PMT gain correction. We fitted the distributions of each
channel to the Landau function, calculated the difference of the most probable values (MPV) of
the function between the two days, and normalized the difference by the statistical error of the
difference. Figure 3.19 shows the distribution of this value for each channel with and without
the PMT gain correction. Ideally, the mean value should be 0, and the width of the distribution
should be 1. Although it is still within the statistical errors, the gain correction moved the mean
and width closer to the ideal values.

Based on the above two evaluations, we applied to PMT gain correction with the LED flasher
system for the following data analysis. As was shown in Fig. 3.17, we used the correction factors
averaged over stable periods.
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Figure 3.18: The widths of the energy distributions of all the beam data for each day. The
black(red) dots correspond to the widths without(with) the gain correction. Energies were
calibrated with cosmic ray events taken on the last day, 4/17. Assuming the gain drifts along
the time, the gain correction should be more effective for the earlier dates. Most of the widths
became narrower with the PMT gain correction.

mean : -0.14±0.12 → -0.04±0.11
sigma : 1.22±0.14 →  1.06±0.13
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Figure 3.19: The differences of the most probable values of the pulse height distributions of
cosmic ray events in separate two days normalized by the statistical error for each channel. The
black(red) histogram shows the distribution without(with) the PMT gain correction. Although
it is still within the statistical errors, the gain correction moved both the mean and width of the
distribution closer to the ideal values, 0 and 1, respectively.
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3.3.2 Calibration with cosmic rays

We calibrated energies with cosmic ray events. As was shown in Fig. 3.7, we prepared the trigger
counters for cosmic rays. The expected energy distribution for each crystal was estimated with
Monte-Carlo simulation. We fitted the Landau function to the distributions both for Monte-
Carlo and data. According to the Monte-Carlo simulation, the most probable value of the
Landau function was 13.7 MeV. We thus assigned the most probable value of data to be the
13.7 MeV.

3.3.3 Non-linearity

An energy non-linearity was found in data. Figure 3.20 shows the correlation between the
maximum pulse height in all the crystals and the total energy for events in the (800 MeV, 0◦)
data. Figure 3.21 shows the same correlations for various beam energies. These plots indicate
that the pulse heights for larger energy deposit are not linear to the energy deposit.
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Figure 3.20: Correlation between the maxi-
mum pulse height in all the crystals and the
total energy for events in the (800 MeV 0◦)
data. Black dots represent the mean total en-
ergies for different pulse height ranges.
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Figure 3.21: The maximum pulse height de-
pendence of the total energy for various beam
energies. The vertical scale of the smallest
height range for 300 MeV data was adjusted
to 1, and the vertical scale for the larger beam
energy was adjusted to the smaller beam en-
ergy.

To confirm that there is a non-linearity, we did another measurement. Figure 3.22 shows
a schematic view of the measurement. In this setup, typical pulse shape from the PMTs was
generated by the function generator, and fed into the pre-amplifier in the CW-base. The signal
from the pre-amplifier was recorded with the 125MHz FADC. We changed the output pulse
height of the function generator, and took data for multiple pulse heights. Figure 3.23 shows
the correlation between the observed pulse heights and the relative ratios of the observed charge
to the height of the function generator output. This measurement also showed a non-linearity.

There are three amplifiers on the passage of signals before digitization, as was shown in
Fig. 3.22. We suspect that some of these amplifiers introduced the non-linearity, but we have
not identified which.
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Figure 3.22: The setup to measure the non-linearity with a function generator (bottom). There
are three amplifiers on the passage of signals before digitization.
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Figure 3.23: Correlation between the observed pulse height and the relative output. The relative
output was the ratio of the observed charge to the height of the function generator output. A
non-linearity is also observed.

Because the measurement with the function generator showed the non-linearity, we confirmed
that the non-linearity exists in the beam test data. The non-linearity observed with the function
generator emerges around 4000 FADC counts in pulse height, as shown in Fig. 3.23. The behavior
of the reduced χ2 for the pulse height larger than 4000 counts found in Fig. 3.9 in Section 3.2.1
is explained by the non-linearity. Because we suspect the non-linearity was caused by the
saturation of some amplifiers, the output pulse shape from the amplifiers were deformed and
expected to be saturated when the non-linearity occurred. This also gives an explanation for
the behavior of the reduced χ2 for the pulse heights larger than 4000 counts shown in Fig. 3.13.
Because the templates were made based on the averaged pulse shape in each height range, the
pulse shapes for relatively smaller or larger heights in a pulse height range are expected to be
different from the template, and the reduced χ2 for such pulses become larger.
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3.4 Calibration with e+ beam

The energy calibration should be done by taking the non-linearity into account. It means that
the calibration constants should be energy dependent. The basic procedure is the following.

1. Determine a calibration constant for each channel with cosmic ray events (pulse height ∼
240 FADC counts).

2. Using the beam data, correct the calibration constant in a larger pulse height region to treat
the non-linearity. Correction factors were determined for different pulse height ranges.

3. Fit the correction factors with a proper function to inter-/extra-polate the correction
factors.

The new calibration method treating the non-linearity was developed and tested with Monte-
Carlo simulation.

In the following subsection, we first explain a χ2 based energy calibration method for the case
if there is no energy non-linearity. Next, we describe a new method to estimate the precision of
the obtained calibration constants. We then extend the χ2 based energy calibration method to
take the energy non-linearity into account. Finally, we confirm the methods with the beam test
data.

3.4.1 χ2 based calibration method

First, we describe the calibration method for the case if there is no energy non-linearity. It
means there is only one energy calibration constant for each channel to cover the entire energy
range. A total deposit energy for an event, Etot, can be represented by the following formula:

Etot =
ch∑
i

Ciei (3.2)

where ei is the energy deposit calibrated with cosmic rays in the i-th channel, and Ci is a
correction factor for the i-th channel. We can define χ2 as:

χ2 =
evnt∑

j

(
Ebeam −

∑ch
i Cieji

σ

)2

(3.3)

where Ebeam is the mean beam energy, and eji is the energy deposit in the i-th channel of
the j-th event, calibrated with cosmic rays. Because the error, σ, is independent of events, we
set σ = 1. The correction factor, Ci, was tuned to minimize the χ2 value. We checked the
performance of this method with Monte-Carlo events. We varied the deposit energies in each
channel with a fixed ratio within ±8 %, and corrected those energies to minimize the χ2. Figure
3.24 shows the distributions of the reconstructed total energy for 600 MeV e+ samples before
and after the calibration. This study shows that the method works.
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Figure 3.24: Performance check of the χ2 based calibration method. We varied the deposit
energies in each channel with a fixed ratio within ±8 %, and corrected those energies to mini-
mize the χ2 in Equation 3.3. The black histogram shows Monte-Carlo true distribution of the
reconstructed total energy, the red histogram shows the distribution with varied energies, and
the blue histogram shows the distribution with energies calibrated by the method.

3.4.2 Method to estimate the precision of the calibration constants

If we use the beam data for energy calibration, the precision of the calibration constant for each
channel depends on the crystal, because the beam did not hit the CsI array uniformly, and the
mean deposit energy for each crystal was different. The constants for outer crystals obtained
with the beam is less precise than the constants obtained with cosmic rays due to poor statistics.
The precision depends on the shower shape and the beam shape of e+s. We chose the calibration
constants between the two methods with the following method.

We developed a new method to estimate the precision of the calibration constants based on
the beam test data, and tested the method with Monte-Carlo simulation. A calibration constant
is represented in Equation 3.2. Summing energies over all the events, the previous formula can
be represented by the following formula:

NEbeam ≡
N∑
j

Etot
j

=
∑

i

Ci

N∑
j

eji

= N
∑

i

Ciēi , (3.4)

where N is the number of events, and ēi is the mean deposit energy in the i-th channel. If we
focus on Cj , Equation 3.4 can be turned into:

NējCj = N(Ebeam −
∑
i̸=j

Ciēi) . (3.5)
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If ēj <<
∑

i̸=j ēi, then
∑

i̸=j Ciēi ∼ Etot, and Equation 3.5 can be turned into:

NējCj ∼ NEbeam −
N∑
k

Etot
k . (3.6)

The expected precision of the constant, σCj , is then:

σCj ∼
σ(

PN
k Etot

k )

Nēj

=
√

N × σEtot

Nēj
, (3.7)

where σEtot is the width of the total deposit energy distribution. If ēj >>
∑

i̸=j ēi, then Nēj ∼∑N
k Etot

k and
∑

i̸=j Ciēi ∼ 0, and Equation 3.5 can be turned into:

Cj

N∑
k

Etot
k ∼ NEbeam , (3.8)

the expected precision of the constant, σCj , is then:

σCj ∼ NEbeam ×
σ(

PN
k Etot

k )(∑N
k Etot

k

)2

=
NEbeam∑N

k Etot
k

×
σ(

PN
k Etot

k )∑N
k Etot

k

∼
√

N × σEtot

Nēj
. (3.9)

The precision of the constant, σCj , is therefore expected to be represented as:

σCj ∼
√

N × σEtot

Nēj

= σEtot ×
1

ēj

√
N

. (3.10)

We checked the validity of this correlation. Figure 3.25 shows the correlation between the
estimated precision by Equation 3.10 and the difference between the calculated and the true
energy scales. The estimated precision was proportional to the difference observed. We can thus
estimate the precision of calculated correction factors and select which correction factor to apply
for each channel. Figure 3.26 shows an example of the selection of the correction factors based
on the expected precision. Without any selection, constants for crystals outside the blue box
were over-tuned. By using calibration constants based on the beam data only for the crystals
whose estimated precision of the constant is less than 2 %, constants for all the crystals were
tuned properly.
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Figure 3.25: Correlation between the estimated precision by Equation 3.10 and the difference
between calculated and true energy scales.
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3.4.3 Extension for treating non-linearity

The χ2 based energy calibration method was extended to take the non-linearity into account.
Because the non-linearity emerges if the pulse height is larger than about 4000 FADC counts
as shown in Fig. 3.21, we assumed that the pulse heights below 3000 counts were linear to the
incident energies. The pulse height region was divided logarithmically into 12 sections between
3000 and 8000 counts. A constant for the pulse heights below 3000 counts was also prepared.
We then decided those constants in the following way.

1. Decide constants for the smallest pulse height range with the events whose maximum pulse
heights are less than 3000 counts. The χ2 is represented as:

χ2 =
evnt:hMax≤h0∑

j

(Ebeam −
ch∑
i

C0ieji)2 , (3.11)

where hMax is the maximum pulse height in all the crystals in an event, hk is the upper
boundary of the k-th pulse height range (h0 = 3000), and Cki is a correction factor for the
k-th pulse height range of the i-th channel. The correction factors, C0i, were determined
to minimize the χ2 value.

2. Decide constants for the next pulse height range (C1i) with the events whose maximum
pulse heights are less than h1 and larger than h0 in the same manner. The χ2 is represented
by the following formula:

χ2 =
evnt:hMax≤h1∑

j

(Ebeam −
ch:h≤h0∑

i

C0ieji −
ch:h0<h≤h1∑

i

C1ieji)2

=
evnt:hMax≤h1∑

j

(Eelse
j −

ch:h0<h≤h1∑
i

C1ieji)2 . (3.12)

The correction factors, C1i, were determined to minimize the χ2 value.

3. Update constants for smaller ranges. Iterate this manner down to the smallest range (C0i).

4. Iterate the manner (2 and 3) up to the maximum pulse height range. The correction
factors are thus determined or updated in the following order: C0i → C1i → C0i → C2i →
C1i → C0i → ....

We tested the extended method with Monte-Carlo simulation. Figure 3.27 shows the obtained
correction factor for each pulse height range. Basically it worked, but the obtained correction
factors for larger pulse height ranges tend to be slightly larger than the true values.

This effect was caused by the finite dependence of the total energy deposit upon the energy
deposit in one channel whose ratio to the total energy deposit is large. Let us think about a
simple case in which all the deposit energies are contained in only two crystals, c1 and c2, and
mostly contained in c1. Even if the energy in c2 fluctuates (by photon statistics, for example),
its effect on the measured total energy deposit is negligible. On the other hand, if the energy in
c1 fluctuates, it directly affects the total energy deposit. This is also the case in which all the
deposit energies are contained in multiple crystals. The total energy deposit is generally affected
by the energy fluctuation of a crystal whose energy fraction to the total energy deposit is large.
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Figure 3.27: Examples of correction factor for each pulse height range obtained with the extended
method. The black dots shows calculated correction factors for different pulse height ranges,
and the blue line shows the true pulse height dependence. Figure on the left(right) shows the
case which the constants are independent(dependent) of the pulse height. The obtained values
for larger pulse height ranges tend to be slightly larger than the true values.

Figure 3.28 shows the correlation between a deposit energy for each crystal and the total deposit
energy of the event. Total deposit energy has some dependence if a single crystal contains most
of the beam energy. According to a Monte-Carlo study, the dependence is almost determined by
the energy resolution such as photon statistics. Because we are calibrating energies to obtain the
energy resolution itself, the dependence should be thus estimated from data. We also found that
the dependence for higher beam energy can be estimated from lower beam energy data. The
dependence in 600 MeV data looks similar to the one in 460 MeV data when we normalize the
deposit energy of each crystal by the beam energy, as shown in Fig. 3.29. Because we assume that
smaller pulse height is linear to its incident energy, the dependence for lower beam energy can be
obtained. With the obtained dependence, we corrected Ebeam in Equation 3.12 as a function of
hMax in the calibration. We call it ”smearing correction”. As shown in Fig. 3.30, the deviation
of the energy scale for larger pulse height was resolved with the correction. Figure 3.31 shows
the difference between the calculated correction factors, Ci, with the ”smearing correction” and
Monte-Carlo true values for various pulse heights.

3.4.4 Confirmation with data

We also confirmed these developed calibration methods with data. As described in Section 3.1.5,
we took some data dedicated to energy calibration. In addition to the data, 3 runs for each pair
of (600 MeV, 30◦), (600 MeV, 40◦) and (800 MeV, 40◦) were used for energy calibration.

Figure 3.32 shows the total energy deposit obtained with calibration constants made with
cosmic ray events and with the χ2-based correction. Figure 3.33 shows the total energy deposit
calculated with and without the ”smearing correction”. The fact that the distributions becomes
narrower with the corrections shows that these χ2-based and smearing corrections work correctly.
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Figure 3.28: Correlation between a deposit energy in each crystal and the total deposit energy
of the event. The black dots show the mean total energy for deposit energies in crystals. Total
energy has some dependence when a crystal contains most of the beam energy.
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Figure 3.30: Obtained correction factor versus pulse height range, with(right) and without(left)
the ”smearing correction”. The black dots show correction factors for different pulse height
ranges and the blue line shows the true pulse height dependence. Figures on the top(bottom)
show the case which the constants are independent(dependent) of the pulse height. The smearing
correction works in large pulse height ranges.
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Figure 3.31: The difference between the calculated correction factors and Monte-Carlo true
values for various pulse height ranges. The black(red) line shows the difference without(with)
the smearing correction for a) all the pulse height ranges, and b) large pulse height ranges
(> 6000).
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total energy[MeV]

data, 30deg
460MeV
cosmic rays
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Figure 3.32: The distributions of total energy deposit for (460 MeV, 30◦) e+s. The black
histogram was made with constants obtained with cosmic rays, and the red histogram was made
with constants obtained with the χ2-based method.
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Figure 3.33: The distributions of total energy deposit for (800 MeV, 0◦) e+s. The black his-
togram was made with constants obtained with cosmic rays, and the red(blue) histogram was
made with constants obtained with the χ2-based method without(with) the smearing correction.
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44 CHAPTER 3. PERFORMANCE EVALUATION OF THE CSI CALORIMETER

To inter-/extra-polate the obtained constants, the constants were fitted with a proper func-
tion:

C(h) =
{

C0 (h 6 h0)
C0 + a(h − h0)b (h > h0)

}
, (3.13)

where h is the pulse height. The expression of the function was decided using the obtained
result of the check measurement. Figure 3.34 shows the total energy deposit for 800 MeV e+s
with 0◦ incident angle, with and without the inter-/extra-polation function. Although the (800
MeV, 0◦) data gives the largest deposit energy in one crystal in this beam test (up to 10000
counts in pulse height), we did not use the dataset for the energy calibration to confirm the
validity of the calibration method. Even the correction factors for the largest height ranges were
obtained by the extrapolation, the energy resolution for the dataset was improved. It indicates
that the correction factors for other smaller pulse height ranges (< 7000 − 8000) obtained by
these procedures were not over-tuned to the data used in the calibration, and the function is
reasonable (Equation 3.13).

data, 0deg, 800MeV
(max height>6500)

cosmic rays
χ2 method
w/ smearing correction
function

total energy[MeV]

Figure 3.34: The energy distribution for (800 MeV, 0◦) e+s. Correction factors only for the
pulse heights < 7000− 8000 were determined by the calibration with beam data, and correction
factors for the pulse heights > 7000 − 8000 were extrapolated by the function (Equation 3.13).
To check the validity of the extrapolation by the function, the events in this plot were required
to have the maximum pulse height larger than 6500 counts. The black histogram was made
with constants obtained with cosmic rays, the red histogram was made with constants obtained
with the χ2-based method with the smearing correction, and the blue histogram was made
with constants obtained with the inter-/extra-polation function made from the constants for the
smaller pulse height ranges.

These are the procedures of the energy calibration with beam data. With the new calibration
method with corrections, energy non-linearity was almost suppressed. If the e+s hit the center
of a crystal, the crystal contains a large fraction of the incident energy. Its visible energy suffers
from the non-linearity, and the measured total energy deposit of those events becomes smaller.

44



3.4. CALIBRATION WITH E+ BEAM 45

Such effect is smaller for events in which e+s hit the edge of a crystal. By suppressing the
non-linearity, the hit position dependence of mean total energy should become smaller. Figure
3.35 shows the hit position dependences of the mean total energy for (600 MeV, 0 ◦) data, with
and without the correction for the non-linearity. This also shows that the observed non-linearity
is suppressed.
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Figure 3.35: The hit position dependences of the mean total energy for (600 MeV, 0 ◦) data
with(right) and without(left) the correction for the non-linearity.

We further checked the result with the temperature dependence of the CsI light yield. We
selected a dataset in which the temperature deviation was relatively large. Figure 3.36 shows the
temperature dependence of the total energy for (800 MeV, 40◦) data. By fitting, we obtained
the dependence: −0.93 ± 0.08 %/◦C. It is consistent with the value −0.95 ± 0.03 %/◦C, which
was independently measured after the beam test[15].
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Figure 3.36: The temperature dependence of the total energy for (800 MeV, 40◦) data. The
fitted slope was −7.1 ± 0.6 MeV/◦C, and it corresponds to −0.93 ± 0.08 %/◦C.
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3.5 Energy resolution

We next evaluated the energy resolution of the calorimeter. The energy in each crystal was
calculated base on the pulse height.

There are two ways to calculate energy from the pulse shape recorded by FADC. One way
is to calculate energy based on the pulse height, and the other way is to calculate energy based
on the sum of the heights over 48 sampling points. We can expect to achieve better precision
with the pulse height based method because of the following two reasons. One of them is that
energies based on the pulse heights are less sensitive to the ground noise than energies based on
the sums of the heights (SOH). The SOH is calculated with:

SOH ≡
N∑
i

hi

=
N∑
i

di − N × hGND , (3.14)

where i is an index of sampling point, N is the number of recorded samples (= 48), hi is the
height of the i-th sampling point, di is the recorded raw value of the i-th sampling point and
hGND is the pedestal constant used for the event. The error of the sum of heights caused by the
ground noise is then:

σSOH = N × σhGND
. (3.15)

Because the value of the sum of heights is about 10 times of the fitted pulse height (hpeak), the
ratio of the error to the value of the sum of heights, σSOH/SOH, is:

σSOH

SOH
∼ N

10
× σhGND

hpeak
, (3.16)

and it means energies based on the sums of heights are more sensitive to the ground noise than
energies based on the pulse heights. The other reason is that energies based on the pulse heights
are less sensitive to the peak timing within the 48 recorded samples. If the pulse comes later,
some of its tail region can be out of recorded range. Energies based on the sums of heights can
thus suffer from the timing.

On the other hand, we believe the mean value of the sums of the heights should represent
their mean value of charge correctly. We then found that the pulse shape has a slight charge
dependence as shown in Fig. 3.37. Therefore, we decided to use pulse heights to calculate
energies with the correction of the charge dependence. Figure 3.38 shows the distributions of
deposit energy based on the pulse height with a correction of the charge dependence, and the
sum of heights. We can achieve better energy resolution with the pulse height based calculation.

Based on the energy calculation for each channel, we then checked the energy resolution of the
calorimeter. We added energy deposits in crystals exceeding 0.6 MeV threshold to make total
energy. Because the distributions of total energy are asymmetric, we first fitted the distributions
with a lower order Asymmetric Gaussian:

A(E) = |A| Gaussian(E,µ, σ) (3.17)
where σ(E) = a (E − µ) + σ0 ,
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Figure 3.37: The ratio of the pulse height to the sum of heights is shown as a function of the
pulse height.

data, 30deg
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Figure 3.38: The distributions of deposit energy based on the pulse height(blue) and the sum of
heights(red) for (460 MeV, 30◦) data. The black line shows the distribution obtained with the
constants by cosmic rays and the sum of heights based calculation just for the comparison.
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48 CHAPTER 3. PERFORMANCE EVALUATION OF THE CSI CALORIMETER

a is an asymmetry parameter, and σ0 is a typical width. We then defined energy resolution,
σE/E, as σ0/µ. Figure 3.39 shows the obtained energy resolution for various energies and
incident angles. The re-calibration with beam improves the energy resolution. We checked the
energy resolutions with and without an incident position cut. The incident position cut required
a single hit on each layer of the scintillating fiber position detector, to suppress shower leakage.
The energy resolution obtained with the cut, however, can suffer from an error of the calibration
constant for a certain channel, because the incident position was limited within 4 crystals by
applying the incident position cut. Nevertheless the energy resolution was almost independent
of the incident position cut and incident angle. The obtained energy resolution was better than
the designed value of the KOTO experiment.

We parametrized the obtained energy resolutions for the incident angle of 0◦ with the function:

σE

E
=

p0√
E

⊕ p1

E
⊕ p2 (E : GeV). (3.18)

To suppress the effect of the non-linearity, the data point for (800 MeV, 0◦) was excluded from
the fitting. As shown in Fig. 3.40, we obtained p0 = 1.26 ± 0.03 %, p1 = 0.13 ± 0.03 % and
p2 = 0.76 ± 0.09 %.200 400 600 800
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Figure 3.39: The obtained energy resolutions for various energies and incident angles. Incident
position was not limited for the figure on the left, and limited by the scintillating fibers for the
figure on the right. The black dashed lines are obtained with the calibration with cosmic rays,
the red dashed lines are the function at KTeV experiment[16] (though they only used more than
3 GeV photons), the blue dashed lines show the designed value of the KOTO experiment.

3.6 Timing resolution

We also evaluated the timing resolution of each channel. Timing of each crystal was defined by
the peak timing of the fitted pulse shape. We used two different methods to evaluate the timing
resolution.
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Figure 3.40: The obtained energy resolutions were parameterized with Equation 3.18. The black
dots and line show the obtained energy resolutions and the fitting function for the incident angle
of 0◦, respectively. The data point for (800 MeV, 0◦), shown as a black circle, was excluded from
the fitting to suppress the effect of the non-linearity. The red dots and line are for the incident
angle of 30◦, which suffered less from the non-linearity, for comparison. The χ2 and the fitting
parameters in this figure are for the 0◦ data.

One method was to use an external light-rich scintillator as a reference of timing. As described
in Section 3.1.5, we made a special run to measure the timing resolution. We attached two PMTs
on both ends of the scintillator. If we use 1

2(t1 + t2) as the reference of timing, where ti is the
timing of each PMT, the timing resolution of a crystal, σtCsI , can be calculated from the width
of tCsI − 1

2(t1 + t2) distribution:

σtCsI− 1
2
(t1+t2) = σtCsI ⊕

1
2
σ(t1+t2) . (3.19)

The width of sum, σt1+t2 , was estimated by the width of difference, σt1−t2 . The timing, t1 and
t2, had some incident position dependence. The effect appears in t1−t2 but not in t1+t2 because
they were anti-correlated. We checked the correlation between t1− t2 and the hit position in the
scintillating fiber position detector, and corrected for the position dependence. As a result, the
width 1

2σt1+t2 was estimated to be 100 ps. Because a e+ shower develops perpendicularly and
longitudinally to the incident direction, the time difference between the incident timing and the
timing when a PMT detects scintillating light has a dependence of the distance from the incident
position. To remove the time spread by the shower development, the width was calculated for
each incident position region relative to the evaluating crystal as shown in Fig. 3.41. The
expected time difference between regions are about 100 ps. Figure 3.42 shows the obtained
timing resolutions for different regions as a function of energy deposit in a crystal.

The other method to evaluate the timing resolution was to use the timing difference between
two neighboring crystals. Both of the selected crystals had typical light yields and were viewed
by PMTs with typical gains, and thus expected to have the same timing resolution. We can
thus simply divide the width of the timing difference between those two crystals by

√
2 to get
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Figure 3.41: The timing resolution was calculated for each incident position region relative to
the evaluating crystal, to avoid the time spread by shower development. 0) hit on the crystal,
n) distance from the crystal < 8n mm (n ≥1).
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Figure 3.42: The obtained timing resolutions as a function of deposit energy in a crystal. The
color of the dots indicate the hit position regions shown in Fig. 3.41.
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the timing resolution of each crystal. To remove the time spread by shower development, the
distance from the perpendicular bisector of the neighboring crystals to the incident position
was required to be less than 2 mm, as shown in Fig. 3.43. Because we want to know the
timing resolution for various energies, the deposit energy difference between the two crystals
was required to be less than 10 % of itself. Figure 3.44 shows the obtained timing resolution. It
was consistent with the result obtained with the previous method.

< 2mm

ΔE < 10%

beam

Figure 3.43: The distance from the perpendicular bisector of the neighboring two crystals to
the incident position was required to be less than 2 mm, to suppress the time spread caused by
shower development.

Because the results obtained with the two methods were consistent with each other, we
combined the results and parametrized the combined result with the function:

σt =
p0√
E

⊕ p1 (E : GeV). (3.20)

We obtained p0 = 0.121± 0.002 ns and p1 = 0.10± 0.02 ns for energy deposit more than 6 MeV
. We also fitted the result including the energy deposit below 6 MeV with the function:

σt =
p0√
E

⊕ p1

E
⊕ p2 (E : GeV). (3.21)

We obtained p0 = 0.115 ± 0.003 ns, p1 = 0.005 ± 0.001 ns and p2 = 0.13 ± 0.02 ns. The fitted
functions are shown in Fig. 3.45.

3.7 Summary of this chapter

We ran a beam test to measure the basic performance of the upgraded calorimeter. We developed
the procedure of the pulse shape analysis to reconstruct deposit energy and timing. We found an
energy non-linearity, and developed a new calibration method to treat the non-linearity. Based
on the studies, we evaluated the energy resolution and the timing resolution of the calorimeter.
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Figure 3.44: The obtained timing resolutions as a function of deposit energy in a crystal. The
black dots show the results obtained with using the external scintillator, and the red dots show
the results obtained with the neighboring two crystals. The position dependent values of the
former result were combined into one for each energy range.
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Figure 3.45: The obtained timing resolutions were parameterized with Equation 3.20(red line)
and 3.21(blue line). The black dots show the result of data combined with using the external
scintillator and the neighboring crystal method, as a function of the deposit energy.
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Chapter 4

Performance of the waveform
readout

In this chapter, we will describe a study on the performance of the waveform readout.

4.1 Outline of this chapter

If we know the mechanism of the pulse shape generation with the Bessel filter and FADC, we
can port the mechanism to Monte-Carlo calculation, and fully simulate detector responses. By
simulating full detector responses including pulse shapes, we can search for a possible problem
with the waveform readout or estimate the performance of detectors in a certain condition which
is difficult to measure directly.

We developed a new method to generate pulse shapes which are expected to be recorded
with a combination of the Bessel filter and FADC. With the new method, we can generate
pulse shapes using fundamental properties of single photoelectrons: ”typical waveform”, and
the probability density function in timing (timing PDF). Basic idea of the new method is to
distribute single photoelectrons according to the timing PDF, and overlay the typical waveform
of each single photoelectron.

We used the timing resolution as a reference to evaluate the new method. We measured the
timing resolution for various numbers of photoelectrons. The timing resolution is affected by
multiple sources, such as photon statistics, ground noise and geometrical size of scintillators.
Among them, the effect of photo statistics is relatively large and depends on the energy.

We first describe the measurement of the timing resolution and properties of single photo-
electrons in Section 4.2. We used a plastic scintillator to check the validity of our new method to
generate pulses. In Section 4.3, we describe the procedure of the new method in detail. Next, we
describe the property measurement for CsI crystals in Section 4.4. At the end, we evaluate the
new method by comparing the estimated performance of the CsI calorimeter with the obtained
results described in the previous chapter.

4.2 Measurement

We first measured the timing resolution of a plastic scintillator as a function of the number of
photoelectrons in an ordinal method as a reference. For our new method, we also measured
typical waveform and timing PDF of single photoelectrons.
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54 CHAPTER 4. PERFORMANCE OF THE WAVEFORM READOUT

4.2.1 Timing resolution

Figure 4.1 shows an overview of the setup used to measure the timing resolution. S1 and S2
were plastic scintillation counters to trigger cosmic rays, and also to measure their timings. S3
was a lead/scintillator sandwich counter of interest. The gain of the PMT (Hamamatsu H7195)
for S3 was calculated by measuring the charge of a single photoelectron signal (Fig. 4.2). The
number of photons from S3 was reduced by a variable neutral density filter placed in front of
the PMT. Waveforms of S1, S2 and S3 were recorded with a 125MHz FADC board. The timing
and charge of the pulse from S3 were also measured with a usual TDC and ADC.

variable
filter

PM
T

PMT

PMT

S1

S2

S3 PMT 15x15cm2

side view top view

Figure 4.1: A setup used to measure the timing resolution for different numbers of photoelec-
trons. S1 and S2 were plastic scintillators to trigger cosmic rays. S3 was a lead/scintillator
sandwich counter of interest. A variable neutral density filter was placed between S3 and a
PMT for S3 to reduce the number of photons from S3.

The timing resolution of the scintillator was calculated in the following way. First, we mea-
sured the width of the timing difference, t3 − 1

2(t1 + t2), where ti is the timing of Si. Because
the timings of all the counters are independent, the width, σt3− 1

2
(t1+t2), can be represented as

σt3− 1
2
(t1+t2) = σt3 ⊕

1
2
σt1+t2

= σt3 ⊕
1
2
σt2−t1 . (4.1)

The σt2−t1 can be calculated by making a histogram for t2 − t1. The σt3 can thus be calculated
by:

σt3 =

√
σ2

t3− 1
2
(t1+t2)

− (
1
2
σt2−t1)2 . (4.2)

Figure 4.3 shows the histograms of t2 − t1 and t3 − 1
2(t1 + t2) for ∼ 40 photoelectrons from S3.

The width, σt2−t1 , was 1.05±0.02 ns, and it was consistent with other measurements for various
number of photoelectrons in S3. By calculating σt3 for various numbers of photoelectrons, the
timing resolution was measured as shown in Fig. 4.4. This result will be used as a reference to
evaluate the new method to generate pulses described next.
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Figure 4.2: The PMT gain was measured by counting the number of photoelectrons. Figure on
the left shows the ADC distribution of the well-reduced LED signal with the applied voltage
of 2000 V to the PMT. By calculating the charge of a single photoelectron, we can determine
the PMT gain. Figure on the right shows the measured gain for different applied voltages. The
measured typical gain was 1.6 × 107 at 2000 V.
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Figure 4.3: The distributions of timing differences: t2 − t1(left) and t3 − 1
2(t1 + t2)(right). On

the right plots, the distance between the 2 peaks is 8 ns. This was caused by 1 clock time shift
between the three channels, S3 and S1/S2, in the 125MHz FADC.
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Figure 4.4: The measured timing resolution of a plastic scintillator as a function of the number
of photoelectrons. This result will be compared to the values obtained by the new method to
generate pulses described in the coming subsection.

4.2.2 Typical waveform

One of the fundamental properties of single photoelectrons, typical waveform, was also measured
with the same setup.

The typical waveform of single photoelectrons is an averaged pulse shape for single photoelec-
trons passing through the Bessel filter. For this measurement, we further reduced the number
of photoelectrons from S3 by the variable neutral density filter, and made ”single photoelectron
dominant samples”. The mean number of single photoelectrons in the Poisson distribution was
about 5 × 10−3. Figure 4.5 shows the ADC distribution of the measurement. A single pho-
toelectron peak can be seen clearly in region (2). Figure 4.6 shows the waveform of a single
photoelectron recorded with the 125 MHz FADC. The typical waveform was parameterized with
Asymmetric Gaussian with a lower older (Equation 3.17). Figure 4.7 shows the distribution of a
and σ0 for single photoelectron pulses coming through the Bessel filter. We obtained a = 0.0626,
and σ0 = 17.95 ns.

4.2.3 Timing PDF

Another fundamental property of single photoelectrons, timing PDF, was also measured with
the same setup.

The timing PDF of single photoelectrons depends on type of scintillators. To measure the
PDF of single photoelectrons, we changed the variable neutral density filter setting to increase
the rate of single photoelectrons, and suppressed the effect of thermal electrons. The mean
number of single photoelectrons in the Poisson distribution was 0.3. Figure 4.8 shows the ADC
and TDC distributions of the data with a higher rate. By applying an energy cut to select single
photoelectrons as shown in Fig. 4.8, the number of two photoelectron events became negligible.
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Figure 4.5: The S3 ADC distribution of
the ”single photoelectron dominant samples”.
The red dots show the TDC overflow data in
which no photoelectrons were observed, and
the black histogram shows whole data. The
zero photoelectron data was recorded once ev-
ery 100 events. The single photoelectrons
clearly show up in region (2).
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Figure 4.6: A waveform of the single photo-
electron recorded with the 125 MHz FADC.
The typical waveform of single photoelectron
was parameterized with lower order Asymmet-
ric Gaussian (Equation 3.17). The red line
shows the fitted function.
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Figure 4.7: The distribution of a(left) and σ0(right) in Equation 3.17 for single photoelectron
pulses through the Bessel filter.
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This timing distribution was also parameterized with Asymmetric Gaussian with a lower order
(Equation 3.17). The asymmetry parameter, a, was 0.244, and the typical width, σ0, was 3.02
ns.
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Figure 4.8: Figure on the left(right) shows the ADC(TDC) distribution of the data with a
higher rate. Left) The black histogram shows all the recorded events and the red dots show
events with no photoelectrons observed (TDC overflow). The zero photoelectron data was pre-
scaled to 1/10 during data taking. Events between the blue broken lines were used as single
photoelectron samples. Right) The timing distribution was also parameterized with lower order
Asymmetric Gaussian (Equation 3.17). The red line shows the fitted function. The events later
than 150 ns were outside of the ADC gate.

The observed timing distribution is not the true PDF itself. It is also deformed by the timing
resolution of the trigger counters, σt ∼ 0.7 ns. We made a toy Monte-Carlo simulation to
estimate the shift of each parameter caused by the deformation. Figure 4.9 shows an example
of the effect. We determined the true timing according to the PDF, smeared the timing with
a timing resolution (σt = 2 ns in this figure), and fitted the Asymmetric Gaussian (Equation
3.17) to the smeared timing distribution. The fitted function is slightly wider than the original
PDF. We first used the measured parameters as inputs and checked how the shape parameters,
a and σ0, were shifted by the amount of the smearing resolution. According to the toy Monte-
Carlo simulation, the parameter shifts were relatively small (-3 % for a and +6 % for σ0)
for the smearing resolution, σt = 0.7 ns. We assumed the parameter shifts for the measured
parameters are the same as the parameter shifts for the true parameters, and adopted a 3 %
larger asymmetry parameter and 6 % smaller typical width as the true PDF parameters. Figure
4.10 shows the parameter shifts of the timing PDF by the timing resolution estimated with
the toy Monte-Carlo simulation. The measured parameters were obtained when the smearing
resolution is around 0.7 ns. This value is consistent with the timing resolution of the trigger
counters, σt ∼ 0.7 ns.
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Figure 4.9: An example of deformation by timing resolution. Blue line shows the input PDF,
black histogram shows the PDF smeared by a 2 ns timing resolution, red line shows the fitting
result of the histogram. The fitted function was slightly wider than the input PDF.
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Figure 4.10: The parameter shifts by timing resolution estimated by a toy Monte-Carlo simula-
tion for typical width, σ0(left), and asymmetry parameter, a(right). Horizontal axes show the
smearing resolution and vertical axes show the fitted parameters. Blue arrows show the MC
input parameters, red lines show the measured parameters.
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4.3 Performance estimation

Based on the measured properties of single photoelectrons, recorded pulse shapes were simulated
and the timing resolution was estimated.

In the following subsections, we first describe the pulse shape simulation procedure, and then
compare the estimated performance with the measured results.

4.3.1 Pulse shape simulation procedure

We will describe our procedure to simulate the pulse shape. The data was taken for various
”mean” numbers of photoelectrons. In the simulation, we first chose the number of photo-
electrons following a Poisson distribution for every event1, and distributed the photoelectrons
according to the timing PDF decided earlier. Each waveform was generated by overlaying the
typical waveform for each photoelectron. A ground noise of 3.7 counts in σ, equivalent to 0.014
times of the pulse height of a single photoelectron, was also added every 8 ns. The leading
timing was shifted every event by the time offset caused by the deviation of hit position within
the 15 × 15 cm2 lead/scintillator sandwich. Assuming that the light velocity in the scintillator
was 15 cm/ns, the time deviation by the geometrical size was 0.28 ns in RMS. The height of
the generated waveforms were picked every 8 ns, assuming the 125 MHz FADC, and analyzed
in the same way as data. This simulation procedure is summarized in Fig. 4.11, and Fig. 4.12
shows a generated waveform.

decide the number 
of photoelectons

event loop

photoelectrons loop

distribute a 
photoelectron by PDF

emulate PMT amplifier

overlay the waveforms of 
photoelectrons

decide the time offset

add ground noise

waveform analysis

Figure 4.11: The simulation procedure of the
pulse shape generation.
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Figure 4.12: A waveform generated by the
simulation procedure described in the text.

1 Because we cannot observe 0 photoelectron event, we just made events containing one or more photoelectrons.
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4.3.2 Data comparison

Figure 4.13 shows data and Monte-Carlo energy distributions for 17.4 photoelectrons on average.
The Monte-Carlo reproduced the distribution of data around the peak, but not in lower energy
region. Because the data was taken by the external trigger counters, the measured data contained
thermal electrons and electric noise. The measured data also contained cosmic ray hits near the
edge of the scintillator. To compare the timing resolutions, events were required to have more
than half of the mean number of photoelectrons. Figure 4.14 shows the timing resolutions for
various numbers of photoelectrons for data and Monte-Carlo. The Monte-Carlo simulation based
on the generated pulse shapes reproduced the measured timing resolution.
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Integ. of fitting func.s
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Figure 4.13: The energy distribution for data and Monte-Carlo. The black histogram shows data,
and the blue histogram shows Monte-Carlo. The distribution of Monte-Carlo was horizontally
scaled to adjust the peak position to data, and the red line is a fitted function used to adjust
the horizontal scale.

4.4 Parameters for CsI crystals

In order to estimate the performance of our CsI calorimeter, the timing PDF and typical wave-
form of the CsI crystals are necessary. To measure the properties of single photoelectrons from
the CsI crystals, we prepared a type of phototube, Hamamatsu R4125, instead of the PMT
for the KOTO experiment (R5364). This is because the gain of R5364 is too low to observe
single photoelectrons. The PMTs for the KOTO experiment were originally made for the KTeV
experiment, by reducing the number of dynodes of R4125 from 10 to 5 in order to achieve a
better energy linearity. Typical gains of R4125 and R5364 are 8.7 × 105 and 4800, respectively.
To keep the properties of single photoelectrons of the R4125 similar to R5364, the HV divider
ratios were set to K-3-2-2-2-2-1-1-1-1-1-1-A; the first six ratios are the same as for R5364. In
the following measurement, we used the same technique as described in the previous sections,
except that the CsI crystal with a custom-made PMT was used.

We describe the measurement of properties of single photoelectrons and absolute light yields
of CsI crystals in the following subsections.
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Figure 4.14: The measured timing resolution (black dots) and the estimated timing resolution
(red dots) of the plastic scintillator for various numbers of photoelectrons.

4.4.1 Properties of single photoelectrons

The typical waveform and timing PDF of single photoelectrons were measured for CsI crystals.
Figure 4.15 shows a waveform of a single photoelectron recorded with the 125 MHz FADC. The
typical waveform was also parameterized with Asymmetric Gaussian (Equation 3.17), and the
distributions of the fitted parameters are shown in Fig. 4.16. We obtained a = 0.0443, and
σ0 = 23.71 ns.
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Figure 4.15: A waveform of a single photoelectron. The typical waveform of single photoelectron
was also parameterized with Asymmetric Gaussian with a lower order (Equation 3.17). The red
line shows the fitted function.

Figure 4.17 shows the timing distribution of single photoelectrons obtained with a CsI crystal.
The shape of the timing distribution is slightly different from the shape for plastic scintillator,
and the distribution was parameterized with Asymmetric Gaussian with a higher order (Equation
3.1). The fitted parameters are a = −1.2 × 10−7 ns−3, b = 4.5 × 10−5 ns−2, c = −5.8 ×
10−3 ns−1, d = 0.54 and σ0 = 3.3 ns.
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Figure 4.16: The distribution of a(left) and σ0(right) in Equation 3.17 for single photoelectron
pulses after the Bessel filter tuned for the CsI crystals.
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Figure 4.17: The timing distribution of single photoelectrons from a CsI crystal. The timing
distribution was parameterized with Asymmetric Gaussian with a higher order (Equation 3.1).
The red line shows the fitted function.
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4.4.2 Absolute light yield

Absolute light yields for some crystals were also measured. Though relative light yields of
all the CsI crystals had been already measured with radio active source, absolute light yields
are necessary to estimate the performance of the CsI calorimeter. Absolute light yields were
measured with cosmic ray data. Figure 4.18 shows the observed charge distributions of cosmic
rays passing through 25 mm of the crystal. According to the Monte-Carlo simulation, the most
probable value is 14 MeV.
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Figure 4.18: The observed charge distribution of a CsI crystal obtained with cosmic rays
with(left) and without(right) the variable neutral density filter. The filter was set to generate
single photoelectron dominant samples and measure the charge of single photoelectron pulses.

We measured the absolute light yields for 34 crystals. Figure 4.19 shows the correlation
between the relative light yields and the measured absolute light yields. By fitting the correlation
to a line, the mean absolute light yields of all the CsI crystals for the the KOTO experiment
was estimated to be 12.7 p.e./MeV.

4.5 Comparison and Evaluation

We compared the results obtained with the beam test data and the estimation based on the
timing PDF of CsI crystals described in this chapter. We first compared the timing resolution.
Figure 4.20 shows the timing resolution as a function of energy deposit in a CsI crystal. The
estimation based on the timing PDF agrees with the result obtained with beam test data.

We next compared the pulse shape generated based on the timing PDF with the pulse shapes
recorded in the beam test data. We fitted the generated pulse shapes with lower order Asym-
metric Gaussian (Equation 3.17), and compared the shape parameters, σ0 and a, with the
parameters for all the crystals in data. Figure 4.21 compares the distributions of the shape
parameters for all the crystals to the parameters for the generated pulses. The pulse shapes
differ between channels depending on the individual difference of the Bessel Filter on the FADC
board. Because the generated pulses are based on the data for a certain channel, the parameters
for the generated pulse shapes were consistent with the parameters for crystals in data.

64



4.5. COMPARISON AND EVALUATION 65

0.6 0.8 1 1.2

10

11

12

13

14

15

16
 / ndf 2  10.04 / 10

p0            0!     0 
p1        0.3918! 12.85 

 / ndf 2  10.04 / 10
p0            0!     0 
p1        0.3918! 12.85 

1 1.5

10
11
12

13
14

15
16
17

18  / ndf 2  9.221 / 9
p0            0!     0 
p1        0.4061! 12.68 

 / ndf 2  9.221 / 9
p0            0!     0 
p1        0.4061! 12.68 

0.6 0.8 1 1.2 1.4
9

10

11

12

13

14

15

16  / ndf 2  11.02 / 9
p0            0!     0 
p1        0.3992! 12.47 

 / ndf 2  11.02 / 9
p0            0!     0 
p1        0.3992! 12.47 

0.9 1 1.1 1.2 1.3

13

13.5

14

14.5

15  / ndf 2  0.8545 / 2
p0            0!     0 
p1        0.7626! 13.17 

 / ndf 2  0.8545 / 2
p0            0!     0 
p1        0.7626! 13.17 

0 0.5 1 1.50
2
4
6
8

10
12
14
16
18
20
22
24

0 0.5 1 1.50
2
4
6
8

10
12
14
16
18
20
22
24  / ndf 2  32.01 / 33

p0            0!     0 
p1        0.2206! 12.72 

 / ndf 2  32.01 / 33
p0            0!     0 
p1        0.2206! 12.72 

relative light yield

ab
so
lut
e 
lig
ht
 y
iel
d 
[p
.e.
/M
eV
]

Figure 4.19: The correlation between the relative light yields and the measured absolute light
yields of CsI crystals.
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Figure 4.20: The timing resolution as a function of the deposit energy in a CsI crystal. The
black solid line with dots shows the estimated timing resolution, the black dashed lines show
the ones with 10 % smaller/larger light yield corresponding to the error of the measured relative
light yields. The red dots show the result of data combined with using the external scintillator
and the neighboring crystal method in Fig. 3.45.
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Figure 4.21: The distributions of the shape parameters in Equation 3.17, σ0(left) and a(right),
for all the crystals. The red dashed lines show the value observed with the generated pulses.

We also compared the energy resolutions in the following two ways. We first compared
the total energy distributions between data and Monte-Carlo with pulse shapes based on the
timing PDF. We used (600 MeV, 40◦) dataset because it suffered less from the non-linearity, and
the expected energy resolution thus was better due to larger beam energy. Figure 4.22 shows
the total energy distribution for data and Monte-Carlo. The estimated beam energy spread,
σE/E ∼ 0.6 %, was taken into account for the Monte-Carlo. The Monte-Carlo with generated
pulse shapes reproduced the energy resolution of the calorimeter.
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Figure 4.22: The total energy distributions of data and Monte-Carlo with the generated pulse
shapes. The integrals of both histograms were normalized to 1.

We also checked the energy resolution with the cosmic ray data. We fitted the energy dis-
tribution with the Landau function, and took the ratio of width, σ, to the most probable value
(MPV). Figure 4.23 shows the distributions of the ratio for data and Monte-Carlo with and
without the generated pulses. The central value of the ratio of Monte-Carlo with generated
pulses agreed better with data.
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Figure 4.23: The distributions of the ratio of σ to the most probable value of the deposit energy
distribution with cosmic ray events for Monte-Carlo(top) and data(bottom). The red(black)
lines show the distribution obtained with the Monte-Carlo with(without) generated pulses, and
the blue lines show the distribution obtained with data. The difference of widths between data
and Monte-Carlo is caused by the difference of statistics between them.

We confirmed that the estimation method described in this chapter can reproduce the pulse
shapes and resolutions obtained with data. According to the pulse shape simulation, we found
that the energy resolution of each channel was mostly determined only with photo statistics all
over the energy range. It means that we achieved to fully utilize the attribute of the CsI crystals
with the waveform readout.

In the following chapters, the Monte-Carlo takes into account the energy resolution for each
crystal, which is confirmed with data and understood.

4.6 Summary of this chapter

We developed a new method to generate pulse shapes to be recorded with a combination of the
Bessel filter and FADC, based on the fundamental properties of single photoelectrons: ”typical
waveform”, and the timing PDF. By comparing the estimated performance with the beam test
results, we showed that we can reproduce the obtained performance with the method, and that
we understand the performance of the upgraded calorimeter from the first principle.
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Chapter 5

New analysis method for the
upgraded calorimeter

We developed new analysis methods that fully utilize the finer granularity and waveform readout
capability of the upgraded calorimeter. KOTO is an upgraded experiment of the KEK-PS E391a.
We already have some analysis methods to reconstruct photons and the KL → π0νν̄ decay. The
existing methods, however, are not the best for the upgraded experiment. As described in Section
2.2.1, the crystals for the CsI calorimeter were changed from large 7 cm square crystals to small
2.5 cm square crystals. We need optimized analysis methods for the upgraded calorimeter.
We developed new methods to reconstruct the incident positions of photons, discriminate their
incident angles and directions, and separate overlapped double pulses from the phototubes. We
will describe these new methods in detail.

At the KOTO experiment, multiple photons can hit the CsI calorimeter at the same time.
For analyzing such data, we first find clusters to reconstruct photons, which are contiguous
groups of the CsI crystals with energy deposit exceeding a threshold. We set 1.5 MeV as the
energy threshold on crystal in the following analysis.

Section 5.1 describes a method to reconstruct incident positions by fitting the shower shapes.
Section 5.2 describes a method to discriminate incident angles by comparing likelihoods based
on the shower shapes. Section 5.3 describes a method to discriminate incident directions by
using the difference of the recorded pulse shapes of photons between coming from upstream and
downstream. Finally, Section 5.4 describes a possible inefficiency due to the overlapped pulses.

5.1 Incident position reconstruction

At the E391a experiment, the incident positions of photons were defined by the energy-weighted
mean:

xrec =
∑

i eixi∑
i ei

(5.1)

where ei and xi are the deposit energy and position of the i-th crystal in a cluster, respectively.
Figure 5.1 shows the correlation between the incident position and the energy-weighted mean
position obtained with Monte-Carlo simulation. The position obtained with the energy-weighted
mean deviates from the incident position within a size of the crystal. Moreover, the calculation
of the energy-weighted mean does not use shower shape information, though we have finer
granularity with the upgraded calorimeter.
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Figure 5.1: The correlation between the incident position and the reconstructed position ob-
tained with the energy-weighted mean (Equation 5.1), obtained with Monte-Carlo simulation.
Each black dot shows the mean value of the reconstructed position for each incident position
range. The blue line shows the case where the both positions match. The figure was obtained
with 25 mm square crystals.

We developed a new method to reconstruct incident positions by fitting the shower shape.
Because we will use 2.5 cm square crystals, which are smaller than the Moriere radius of CsI,
3.8 cm, we will be able to see the electromagnetic shower shape more clearly. Basic idea of the
method is to project the energy deposits in crystals in x and y directions, and fit the shape with
a template. The shower shape templates were generated by Monte-Carlo simulation.

Figure 5.2 shows the correlation between the fractions of energy deposit in 0.25 mm-wide
slices and their distances from the incident positions. The 0.25 mm pitch is smaller than the
expected position resolution. By summing energies in 100 slices, we obtained the mean fraction
of energy deposit for a 25 mm-wide band. Figure 5.3 shows the mean energy fraction in a 25
mm-wide band for various incident angles as a function of the distance between the center of
the band and the incident position. Based on the typical shower shapes for various energies and
angles, the shower shape template was dynamically generated for a given incident position as
shown in Fig. 5.4. Figure 5.5 shows an example of the shower shape fitting. Error for each bin
was set at a value proportional to the square-root of the energy in the column/row, because the
energy fluctuation is dominated by photon statistics.

We evaluated the new method with e+s with Monte-Carlo simulation. Because e+s generate
electromagnetic showers immediately on hitting the calorimeter, but photons do not, the differ-
ence between the new and previous methods is expected to be seen more clearly with e+s. Figure
5.6 shows the position resolutions obtained with the new fitting-based method and the previous
energy-weighted mean method for different incident angles with Monte-Carlo simulation. We
achieved a better position resolution with this new method for various incident angles.

The new method to reconstruct the incident position was also evaluated with the data col-
lected at the beam test (e+s). Figure 5.7 shows the distribution of the distance between the
reconstructed position and the hit position measured with the scintillating fiber detector. The
tail region of the distribution was widened by accidental activities in the scintillating fiber de-
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Figure 5.2: The correlation between the frac-
tions of energy deposit in 0.25 mm-wide slices
and their distances from the incident posi-
tions. The black line shows the mean energy
fraction.
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the incident position. The black, red and blue
lines show the fraction for the incident angle
of 10◦, 20◦, and 30◦, respectively.

tector, and interactions between the beam and materials in the beam line. We fitted the central
part (±2σ) of the distribution with Asymmetric Gaussian (Equation 3.17) and used the typical
width, σ0, to compare the position resolutions. Figure 5.8 shows the obtained position resolu-
tions for various incident angles for data and Monte-Carlo simulations. The position resolutions
obtained with the new method are consistent between the beam test data and Monte-Carlo
simulation.

5.2 Incident angle discrimination

As described in Section 1.3.1, if we can discriminate the incident angles of photons, we can
suppress backgrounds caused by halo kaons and neutrons.

The incident angles can be discriminated with a likelihood ratio method. The basic idea of
this method is the following. We first reconstruct the KL → π0νν̄ decay from two photons with
the assumption that the two photons came from a π0 decay on the z-axis, and calculate the
incident angle of each photon. We next reconstruct the incident angle again assuming a certain
background. For each photon, we then have two incident angles for the two assumptions, signal
and background. We can then calculate the likelihood of the observed shower shape in the
calorimeter for each assumption. By comparing the likelihoods for the two assumptions, we can
distinguish signal from backgrounds.

The likelihood was calculated for the projection of the energy deposits on the x and y axes.
The likelihood of the i-th assumption is:

Li =
∏
j;γ

∏
x,y

∏
k;row

P (ek|Ej , dk, θij , φij) , (5.2)

where j is an index of the reconstructed two photons, k is an index of CsI crystal column, ek is
the energy deposit in the k-th column, dk is the distance between the center of the column and
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Figure 5.4: A schematic view of the dynamical generation of templates as a function of the
distance between the center of the band and the incident position. The black line shows the
mean energy fraction in a 25 mm-wide band as a function of the distance. A 25mm-wide bar
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the energy-weighted mean position, θij and φij are the polar and azimuthal angles of the j-th
photon for the i-th assumption, respectively, and P is the probability density function (PDF)
made via Monte-Carlo study. The PDF was prepared based on the distribution of the fraction
of energy deposit for various incident energies, angels and distances from the energy-weighted
mean position. Figure 5.9 shows examples of the PDFs. The likelihood ratio is then calculated
by:

Likelihood Ratio =
Lsignal

Lsignal + Lbackground
. (5.3)
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Figure 5.9: Examples of PDFs of energy fraction for 650 MeV photons at (a) 0 mm, and (b) 50
mm from the energy-weighted mean position. The black/red/blue lines show the PDFs for the
incident angles of 0◦/20◦/40◦, respectively.

The performance of the incident angle discrimination was checked with a Monte-Carlo simu-
lation. Figure 5.10 shows the likelihood ratio distributions for Monte-Carlo samples of photons
with the incident angles of 10◦ and 30◦. It also shows the ratio of the survival probabilities that
events pass a cut on the Likelihood ratio, as a function of the survival probability of the 10◦

samples. We can discriminate between two assumed incident angles with the likelihood ratio
method.

We could not, however, check the power of the incident angle discrimination with the beam
test data. Figure 5.11 shows the likelihood ratio distributions for the incident angle of 0◦ obtained
with data, and Monte-Carlo with and without material in the beam line (the collimator and
air). The data has different distribution from Monte-Carlo without the materials, and agrees
better with Monte-Carlo with the materials. It means the likelihood ratio distribution was
contaminated with e+s interacting with the materials.

The background rejection power of this incident angle discrimination will be discussed in the
next chapter.

73



74 CHAPTER 5. NEW ANALYSIS METHOD FOR THE UPGRADED CALORIMETER

0 0.5 1

10

210

310

410

0.6 0.8 1

10

210

Likelihood ratio 10°→←30°

MC, 650MeV
10°
30°

signal efficiency

S/
N MC, 650MeV

S : 10°
N : 30°

(a) (b)
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5.3 Incident direction discrimination

If we can identify whether the photon that generated a cluster, comes from upstream or down-
stream, it may help to reject backgrounds. There is a possible background source called ”back-
ward π0”. It is a π0 generated by the interaction between a neutron and the material placed
downstream of the calorimeter. Even if the photons from the π0 hit the calorimeter from the
downstream side, we cannot distinguish them from photons from the upstream side. We will
then mis-reconstruct the π0 decay vertex in the upstream side of the calorimeter, and that will
become a background. If we can tell the direction of those photons, such background events can
be rejected.

We found that the pulse shape depends on the position along the z-axis where the scintil-
lation light was emitted. Figure 5.12 shows the pulse shape parameters as a function of the
cosmic ray hit position within the crystals. Because the longitudinal length of the CsI crystal is
enough long, the effective position where the scintillation light was emitted is close to the up-
stream(downstream) surface when photons comes from upstream(downstream). If we know well
about the position dependence for all the crystals, we can thus identify the incoming directions
of photons.

0 20 40

27.35

27.4

27.45

27.5

27.55

27.6

gre0_9_12_0_0gre0_9_12_0_0

0 20 40

.0725

0.073

.0735

0.074

.0745

0.075

.0755

0.076

.0765

gre0_9_12_0_1gre0_9_12_0_1

0 20 40

27.55

27.6

27.65

27.7

27.75

27.8

gre0_9_13_0_0gre0_9_13_0_0

0 20 40

0.075

0.076

0.077

0.078

0.079

gre0_9_13_0_1gre0_9_13_0_1

0 20 40

27.55

27.6

27.65

27.7

27.75

27.8

27.85

gre0_9_14_0_0gre0_9_14_0_0

0 20 40
.0755

0.076
.0765

0.077

.0775
0.078

.0785
0.079

.0795

0.08

gre0_9_14_0_1gre0_9_14_0_1

0 20 40
27.75

27.8

27.85

27.9

27.95

28

28.05

gre0_9_15_0_0gre0_9_15_0_0

0 20 40

.0765

0.077

.0775

0.078

.0785

0.079

.0795

0.08

gre0_9_15_0_1gre0_9_15_0_1

0 20 40

28.2

28.25

28.3

28.35

28.4

28.45

28.5

gre0_10_0_0_0gre0_10_0_0_0

0 20 40

0.08

0.081

0.082

0.083

0.084

0.085

0.086

gre0_10_0_0_1gre0_10_0_0_1

0 20 40
27.82

27.84

27.86

27.88

27.9

27.92

27.94

27.96

27.98

28

gre0_10_1_0_0gre0_10_1_0_0

0 20 40
0.076

.0765

0.077

.0775

0.078

.0785

0.079

.0795

0.08

gre0_10_1_0_1gre0_10_1_0_1

0 20 40
27.6

27.65

27.7

27.75

27.8

27.85

gre0_10_2_0_0gre0_10_2_0_0

0 20 40

0.075

0.076

0.077

0.078

0.079

gre0_10_2_0_1gre0_10_2_0_1

0 20 40

27

27.2

27.4

27.6

27.8

28

gre0_10_3_0_0gre0_10_3_0_0

0 20 40

0.078

0.08

0.082

0.084

0.086

0.088

gre0_10_3_0_1gre0_10_3_0_1

0 20 40

27.8

27.85

27.9

27.95

28

gre0_10_4_0_0gre0_10_4_0_0

0 20 40

0.077

0.078

0.079

0.08

0.081

0.082

0.083

gre0_10_4_0_1gre0_10_4_0_1

0 20 40

27.45

27.5

27.55

27.6

27.65

27.7

gre0_10_5_0_0gre0_10_5_0_0

0 20 40
.0765

0.077

.0775

0.078

.0785

0.079

.0795

0.08

.0805

gre0_10_5_0_1gre0_10_5_0_1

0 20 40

27.35

27.4

27.45

27.5

27.55

27.6

gre0_9_12_0_0gre0_9_12_0_0

0 20 40

.0725

0.073

.0735

0.074

.0745

0.075

.0755

0.076

.0765

gre0_9_12_0_1gre0_9_12_0_1

0 20 40

27.55

27.6

27.65

27.7

27.75

27.8

gre0_9_13_0_0gre0_9_13_0_0

0 20 40

0.075

0.076

0.077

0.078

0.079

gre0_9_13_0_1gre0_9_13_0_1

0 20 40

27.55

27.6

27.65

27.7

27.75

27.8

27.85

gre0_9_14_0_0gre0_9_14_0_0

0 20 40
.0755

0.076
.0765

0.077

.0775
0.078

.0785
0.079

.0795

0.08

gre0_9_14_0_1gre0_9_14_0_1

0 20 40
27.75

27.8

27.85

27.9

27.95

28

28.05

gre0_9_15_0_0gre0_9_15_0_0

0 20 40

.0765

0.077

.0775

0.078

.0785

0.079

.0795

0.08

gre0_9_15_0_1gre0_9_15_0_1

0 20 40

28.2

28.25

28.3

28.35

28.4

28.45

28.5

gre0_10_0_0_0gre0_10_0_0_0

0 20 40

0.08

0.081

0.082

0.083

0.084

0.085

0.086

gre0_10_0_0_1gre0_10_0_0_1

0 20 40
27.82

27.84

27.86

27.88

27.9

27.92

27.94

27.96

27.98

28

gre0_10_1_0_0gre0_10_1_0_0

0 20 40
0.076

.0765

0.077

.0775

0.078

.0785

0.079

.0795

0.08

gre0_10_1_0_1gre0_10_1_0_1

0 20 40
27.6

27.65

27.7

27.75

27.8

27.85

gre0_10_2_0_0gre0_10_2_0_0

0 20 40

0.075

0.076

0.077

0.078

0.079

gre0_10_2_0_1gre0_10_2_0_1

0 20 40

27

27.2

27.4

27.6

27.8

28

gre0_10_3_0_0gre0_10_3_0_0

0 20 40

0.078

0.08

0.082

0.084

0.086

0.088

gre0_10_3_0_1gre0_10_3_0_1

0 20 40

27.8

27.85

27.9

27.95

28

gre0_10_4_0_0gre0_10_4_0_0

0 20 40

0.077

0.078

0.079

0.08

0.081

0.082

0.083

gre0_10_4_0_1gre0_10_4_0_1

0 20 40

27.45

27.5

27.55

27.6

27.65

27.7

gre0_10_5_0_0gre0_10_5_0_0

0 20 40
.0765

0.077

.0775

0.078

.0785

0.079

.0795

0.08

.0805

gre0_10_5_0_1gre0_10_5_0_1

z[cm]

ty
pi
ca
l w
id
th
 σ
0[n
s]

z[cm]

as
ym
m
. p
ar

(a) (b)

Figure 5.12: The position dependence of pulse shapes obtained with cosmic rays. The horizontal
axes show the distance from the upstream surface of a CsI crystal. The shape parameters (a)
typical width, σ0, and (b) asymmetry parameter, a, depend on the muon hit position.

We will next estimate how much we can suppress the ”backward π0” background with this
photon direction discrimination. We will not, however, estimate the number of the backward π0

background events. This is because the background will be suppressed by CC04 veto counter
currently being designed to be placed downstream of the CsI calorimeter.

We estimated the background rejection power with the following assumptions.

1. The position dependence of pulse shapes is independent of the energy deposit. We thus
applied the position dependence obtained with cosmic ray data for all the energy ranges.

2. The pulse shape for each event depends on the depth of electromagnetic ”shower maxi-
mum” of the event. The ”shower maximum” is the energy-weighted mean position along
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the direction of incident photons. Figure 5.13 shows a schematic view of the ”shower
maximum”.

3. The two photons of the π0 background events after applying all the cuts have the same
properties as photons from the KL → π0νν̄ decay. We thus used the KL → π0νν̄ Monte-
Carlo to estimate the rejection power for the backward π0 background.

The estimation procedure is the following.

1. Determine the true depth of the shower maximum for each event. The mean depth of the
shower maximum, L, is represented by:

L(cm/X0) = (p0 + p1 × ln(E(GeV))) × cos θ , (5.4)

where X0 is the radiation length of the CsI (1.85 cm), E is the incident energy of photons,
θ is its incident angle, p0 = 6.49 and p1 = 0.99. This formula was used to correct incident
positions of photons based on the energy-weighted mean. The mean free path of photons,
9
7X0, was also taking into account.

2. Decide the true shape parameters based on the depth.

3. Smear the determined parameters with an expected precision for the energy deposit in
each crystal. The precisions of the obtained shape parameters, σ0 and a, for various
energy ranges were estimated from the beam test data. Figure 5.14 shows the correlation
between the energy deposit and the relative value of the shape parameter, σ0, in one
crystal. The width of the obtained distribution of the shape parameter for each energy
range was used as the expected precision. Figure 5.15 shows the estimated precision for
each shape parameter as a function of energy.

4. For the backward π0 background, do the same as signal except for replacing the depth, d
cm, with 50 − d cm.

5. Calculate the mean depth of the shower maximum with Equation 5.4, and estimate the
shape parameters assuming that the two photons came from upstream.

6. Compare the estimated parameters with the smeared parameters.

We used the mean dependence of the shape parameters of about 1000 crystals. They were 2.2
% and 10 % per 50 cm for σ0 and a, respectively.

We first checked the χ2 method to discriminate the incident direction of photons. The χ2 is
defined as:

χ2 =
γ∑

i=0,1

ch.∑
j

par.∑
k=0,1

(
sobs.
ijk − sexp.

ijk

σk(eij)

)2

, (5.5)

where i is an index of two photons, k is an index of shape parameters, eij is the energy deposit of
the i-th photon in the j-th channel, s

obs.(exp.)
ijk is the observed(expected) shape parameter of the

j-th channel, and σk is the estimated precision of the shape parameter, sijk. Figure 5.16 shows
the reduced χ2 distributions of the signal and background events. The signal to background
ratio, S/N , was improved by a factor of 2.3 with a 90 % efficiency for signal.
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Figure 5.13: A schematic view of the ”shower maximum”. The black line shows the fraction
of energy deposit along the direction of photons as a function of the distance from the incident
position. The ”shower maximum” is defined as the energy-weighted mean position along the
direction of the incident photons.
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Figure 5.15: The estimated precision of the obtained shape parameters as a function of energy:
Left) typical width and Right) asymmetry parameter.
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We also checked the likelihood ratio method to discriminate the incident direction. If we
know well about the pulse shape of photons that came from downstream, we can compare the
likelihoods for the assumptions that the photon came from upstream and downstream. The
likelihood of the n-th assumption is:

Ln =
γ∏

i=0,1

ch.∏
j

par.∏
k=0,1

Gaussian(sobs.
ijk |sexp.

ijkn, σk(eij)) , (5.6)

where sexp.
ijkn is the estimated shape parameter with the n-th assumption. Figure 5.17 shows the

likelihood ratio distributions of the signal and background events. The signal to background
ratio, S/N , was improved by a factor of 660 with a 90 % efficiency for signal. This rejection
power is still underestimated. Although we used the mean values of the position dependence of
the shape parameters, actually the position dependence of the shape parameters are different
between the crystals. If there is one crystal in all the activities which can tell the direction clearly,
we can distinguish background events even if all other crystals have no position dependence. We
checked the rejection power also with the dependences shown in Fig. 5.12. The dependences
were about two times larger than the mean values. The improvement factors of the signal to
background ratio, S/N , became 1700 with the χ2 method with a 90 % efficiency for signal, and
>14000 with the likelihood ratio method with a >99 % efficiency.
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Figure 5.17: The distributions of the likelihood ratio of the shape parameters. The black(red)
histogram shows the signal(backward π0 background).

We confirmed a potential to discriminate the incident direction of photons by the pulse shapes
to suppress the background events.
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5.4 Double pulse separation

We also checked the case that two pulses come close in timing. We use the Bessel filter to achieve
better timing and energy resolution with 125 MHz FADCs. However, the filter widens the pulse
width, and it makes pulses overlap more often. If a small pulse is overlapped by a large pulse,
it can be a source of inefficiency.

We evaluated this effect with waveform samples generated from the beam test data. We
picked two pulses in a channel in different events and merged them into one event. The timing
of one pulse was randomly shifted within 250 ns (about twice wider than a full width of a pulse).
Figure 5.18 shows an example of such a merged pulse.
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Figure 5.18: An example of merged pulses made from the beam test data. The blue and pink
waveforms are from different events in a FADC channel. The black waveform shows the merged
pulse.

We fitted all the sampling points of the generated pulse shapes with the templates described
in Section 3.2.2, and used the χ2 values of the fitting to identify the overlapped pulses. Figure
5.19 shows the correlation between the fitted pulse height and the reduced χ2 of the fitting when
we fit the pulse shapes of single pulses as a single pulse. If the χ2 value of the pulse fitting is
larger than a proper value, the pulse was considered as an overlapped pulse. Figure 5.20 shows
an example of samples rejected by the χ2 cut.

The inefficiency due to the overlapped pulse was estimated. Figure 5.21 shows the estimated
energy distribution of a single central small crystal at the KOTO experiment. The estimated
single counting rate (E > 2 MeV) is 20 kHz with the full intensity beam (2 × 1014 proton on
target per spill). The probability of the two activities coming within 250 ns is then 5 × 10−3.
Figure 5.22 shows the estimated inefficiency1 due to the overlapped pulse. The inefficiency due
to the overlapped pulse is more than 10 times smaller than the inefficiency by other factors.

1 We did not consider the events in which two particles come within ± 10 ns, and one pulse overlaps the other
as an inefficient event. When two particles come at the same time, we cannot identify it. That is, however, not a
source of inefficiency, because we can see the activity and kill the event. It corresponds to set 20 ns length timing
window.
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Figure 5.20: An example of the pulse shape rejected as multiple pulses. The reduced χ2 value
was 143.2 and it was much larger than the cut value, 29.2. The time difference of the original
two pulses was 26 ns.
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Figure 5.21: The estimated deposit energy
distribution in a single channel during a spill
based on a Monte-Carlo simulation.
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Figure 5.22: The estimated inefficiency of the
calorimeter due to the overlapped pulse (black
dots) and other factors (red line).

5.5 Summary of this chapter

We developed new analysis methods to fully utilize the upgraded calorimeter. One of them is
to reconstruct incident positions by fitting the shower shape, and another one is to discriminate
incident angles by comparing the likelihoods of the shower shapes. We also showed the potential
to discriminate photons coming from downstream from photons coming from upstream by using
the difference of the recorded pulse shapes. We showed that the inefficiency due to overlapped
pulses was more than 10 times less than the inefficiency by other factors.
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Chapter 6

Sensitivity of the KOTO experiment

Based on the performance studies of the CsI calorimeter described earlier, we will estimate the
expected number of KL → π0νν̄ signal and other background events, and the sensitivity of the
KOTO experiment.

Section 6.1 first describes possible background sources, and Section 6.2 describes backgrounds
suppressed by the incident angle discrimination explained in Section 5.2. Section 6.3 describes
estimation methods for other background sources, and the estimated number of signal and
background events. Section 6.4 describes the accidental loss. Finally, Section 6.5 presents the
estimated experimental sensitivity of the KOTO experiment.

6.1 Background sources

We already described the background sources in Section 1.2.2. Through those mechanisms, the
following processes become background sources for KL → π0νν̄ decays: KL → π0π0, KL → γγ,
KL → π−e+ν, KL → π+π−π0, η production at CV, and π0 production at CV and CC02. Here,
CV is the charged veto placed in front of the calorimeter, and CC02 is the photon veto counter
placed at the entrance of the decay volume, as shown in Fig. 2.4. We will first describe how the
new method to discriminate the incident angle can suppress some of these backgrounds.

6.2 Possible backgrounds eliminated by incident angle discrim-
ination

As described in Section 1.3.1, backgrounds caused by halo kaons and neutrons can be suppressed
by the incident angle cut. Of those backgrounds, we describe KL → γγ and η → γγ backgrounds
in the following subsections.

6.2.1 KL → γγ backgrounds

The KL → γγ decays are rejected by requiring finite transverse momentum of the two photon
system. The requirement is valid for the decays of kaons in the beam core, but not for kaons in
the beam halo. Because the KL → γγ decay has no extra photons in the final state, the decay
can be a serious background source.

The momentum spectrum, the profile, and the nunber of kaons in the beam halo are not well
understood, because the rate of the production of halo kaons is too small to measure or generate

83



84 CHAPTER 6. SENSITIVITY OF THE KOTO EXPERIMENT

with Monte-Carlo simulation. We thus made the following assumptions to estimate the number
of KL → γγ background events.

1. The momentum spectrum of kaons in the beam halo is the same as the kaons in the beam
core. The halo kaons are generated by the elastic scattering of core kaons with collimators
according to a Monte-Carlo study[17].

2. The profile of the kaons in the beam halo is the same as the neutrons in the beam halo.

3. The ratio of the number of kaons in the beam halo to the beam core is the same as the
ratio of neutrons.

To apply the new incident angle cut on the KL → γγ background, the incident angle of the
two photons were calculated by assuming that they came from a KL → γγ decay, instead of
π0 → γγ decay. We can calculate the vertex position Zvtx of the KL → γγ decay by replacing
the π0 mass with the KL mass, and r0 = (0, 0, Zvtx) with (xCOE, yCOE, Zvtx) in Equation 1.9,
where ”COE” denotes the center of energy of the two photon system in the calorimeter. Figure
6.1 shows a schematic view of the reconstruction of the KL → γγ decay. Because the obtained
value, Zvtx, is a good approximated value, we corrected xCOE and yCOE to make PT = 0, and
calculated Zvtx again with the corrected vertex position. Figure 6.2 shows the distributions of
the differences between the reconstructed decay vertex position and the Monte-Carlo true value.
The vertex position reconstructed with the PT = 0 correction became closer to the true vertex
position.

KL
beam halo

π?

KL
“COE”

Figure 6.1: A schematic view of the KL → γγ decay reconstruction from two photons.

The new fitting-based position reconstruction method needs the incident angle as an input
to select a proper template. Because we are now reconstructing two photons by assuming a
KL → γγ decay, the incident angle obtained with this assumption is different from the angle
for a KL → π0νν̄ decay. Figure 6.3 shows the distributions of the difference between the
reconstructed hit position and the Monte-Carlo true value for KL → γγ decay in the beam halo.
We updated the reconstructed vertex with the corrected hit positions to get better incident
angles. We used the updated hit positions and vertexes to calculate the likelihood LKL→γγ .
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Figure 6.2: The distributions of the differences between the reconstructed decay x-vertex(a)/z-
vertex(b) and the Monte-Carlo true values of the KL → γγ decay. The black histogram shows
the distribution with the assumption that the two photons come from the center of energy of the
two photon system in xy-plane. The red histogram shows the distribution with the correction
that the transverse momentum of the two photon system becomes zero.
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Figure 6.3: The distributions of the differences between the reconstructed incident x-position
and the Monte-Carlo true value for KL → γγ decay in the beam halo. The black histogram
was obtained with the KL → π0νν̄ decay assumption. The red(blue) histogram was obtained
with the KL → γγ decay assumption with COE(fitting) based method to reconstruct incident
position. The positive sign was chosen to be in the direction of photons.
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Figure 6.4 shows the correlation between the reconstructed z-vertex and the transverse mo-
mentum, PT , of the assumed π0 for both KL → π0νν̄ and KL → γγ events after applying all the
cuts except the new likelihood ratio cut. Figure 6.5 shows the likelihood ratio distribution of
these events. By applying the new incident angle cut, the number of halo KL → γγ background
events was reduced by a factor of 53 with an 83 % efficiency for the KL → π0νν̄ decay.
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Figure 6.4: The correlation between the reconstructed z-vertex and the transverse momentum,
PT , of the assumed π0 for KL → π0νν̄ (a) and KL → γγ (b). All the cuts except the new
incident angle cut were applied. The black square in each plot shows a signal box.
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areas of the histograms were normalized to 1.
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6.2.2 η → γγ at CV backgrounds

The η → γγ background has a similar event topology with the KL → γγ background. The η
is produced by the interaction between the neutrons in the beam halo and the Charged Veto
(CV) placed 25 cm upstream of the surface of the calorimeter. Because the decay vertex is not
on the z-axis and the mass is not the π0 mass, the incident angles of photons are different from
the reconstructed incident angles with the signal assumption. The incident angle cut is thus
effective for the η → γγ background.

However, sometimes neutrons also produce extra π0s or protons together with the η. When
those additional activities hit near the photons from the η and generate fused clusters, the
fused cluster shapes become different from a single photon cluster. Because the PDF of energy
fraction was prepared for single photons, the likelihood of the fused cluster shape is extremely
small, sometimes zero. If the cluster shape is different from both the signal and the background
(Lsignal ∼ Lbackground ∼ 0), we cannot calculate the likelihood ratio with Equation 5.3. The
signal likelihood (Equation 5.2) can be turned into:

Lsignal =
∏
i;γ

∏
j;x,y

∏
k;row

P (ek|Ei, dk, θ
signal
i , φsignal

i )

=
∏
i;γ

∏
j;x,y

Lsignal
ij , (6.1)

where i is an index of the reconstructed two photons, j is an index of the dimensions, x/y, and
Lsignal

ij is the partial signal likelihood of the i-th photon in the j-th plane. We then applied a

threshold on the partial signal likelihoods, Lsignal
ij , for each photon on each x/y axis. Figure 6.6

shows the correlation between photon energy and the partial signal likelihood of the photons on
the x/y axis for KL → π0νν̄ signal and η → γγ background events. We applied the threshold
as a function of the photon energy for the partial signal likelihood values.
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Figure 6.6: The correlation between energy and the partial signal likelihood, Lsignal
ij in Equation

6.1, of photons on the x/y axis for KL → π0νν̄ signal and η → γγ background events.

Now we can define the likelihood ratio for η → γγ events. Because the KL mass is close to
the η mass and the transverse momentum of η is small but not zero, the cut to suppress the
KL → γγ background is also effective for the η → γγ background. We thus decided to apply
only the cut with KL → γγ assumption. The rejection power of the cut was 8.7 for the η → γγ
background.
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88 CHAPTER 6. SENSITIVITY OF THE KOTO EXPERIMENT

6.3 Other backgrounds

We also estimated the number of background events for other sources in three ways. Due to the
limitation of the Monte-Carlo statistics, some backgrounds were estimated (partially) using a
so-called fast simulation. (In contrast, we call the ordinal detector simulation with full shower
generation as a full simulation.)

The fast simulation uses the detector response function for each detector. Each response
function has been studied for individual detector. For example, in the case of veto counters, the
inefficiency for various particles, energies and angles has been evaluated in advance as shown
in Fig. 6.7. In the fast simulation, we use the inefficiency values as weights for events. For the
calorimeter, we updated its response functions based on the performance studied in this thesis.
Figure 6.8 shows the comparison between the full and fast simulations for energy and position
on the calorimeter.
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Figure 6.7: Examples of the response functions of veto detectors, commonly used in the KOTO
collaboration: a) The detection inefficiency of MB for photons for various incident angles as a
function of the incident energy, and b) The detection inefficiency of CV for charged particles as
a function of the incident momentum.

The backgrounds sensitive to the shower shape in the calorimeter but have some extra ac-
tivities in the veto counters were estimated with a full shower simulation for calorimeter and a
fast simulation for the veto counters. The backgrounds not sensitive to the shower shape, but
required to have large statistics were estimated with a fast simulation for all the detectors. For
such backgrounds, we assumed the same efficiency, 83 %, for the new incident angle cut. The
other backgrounds were estimated with a full simulation. Table 6.1 shows the summary of the
background estimation methods.

The KL → π+π−π0 decay becomes a background when two photons from the π0 are detected
by the calorimeter and the remaining two charged pions are not detected. Because the observed
two photons in the calorimeter are truly from a single π0 decayed in the beam core, the observed
shower shape with the calorimeter is consistent with our assumption as a signal. This kind of
events thus are not sensitive to the new incident angle cut. We estimated the number of the
background events with a fast simulation for all the detectors (method 3 in Table 6.1).

The KL → π−e+ν decay becomes a background when the charge exchange (π−p → π0n) and
the annihilation of the positron (e+e− → γγ) occur in CV at the same time. There are four
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Figure 6.8: The distributions of reconstructed energy (left) and difference between the recon-
structed/smeared position and Monte-Carlo true value (right). The black dots show the result
obtained with the full simulation, and the red histogram shows the result obtained with the
response function of the calorimeter in the fast simulation.

Table 6.1: The background estimation methods. Due to the limitation of the Monte-Carlo
statistics, the number of background events were estimated in the following three ways. A
full simulation means the ordinal detector simulation with full shower generation, and a fast
simulation is based on the detector response function evaluated in advance.

# calorimeter veto counters backgrounds
1 full full not so rare
2 full fast rare, sensitive to the shower shape cut
3 fast fast very rare, not sensitive to the shower shape cut
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90 CHAPTER 6. SENSITIVITY OF THE KOTO EXPERIMENT

Table 6.2: The expected number of signal and background events in the KOTO experiment. The
numbers in the table are normalized to 1.85×1014 KLs at the exit of beam line assuming 2×1014

protons on target per spill and 12 month long beam time. The method column indicates the
Monte-Carlo simulation procedure shown in Table 6.1 : 1=full , 2=calorimeter:full+veto:fast,
and 3=fast. The numbers with parentheses were obtained by assuming the same efficiency as
signal for the incident angle cut.

sources method w/o new cut w/ new cut
KL → π0νν̄ 1 7.85 ± 0.06 6.50 ± 0.05
KL → π0π0(except fusion) 3 3.40 ± 0.09 (2.81 ± 0.08)
KL → π0π0(fusion) 2 2.15 ± 0.15 0.75 ± 0.09
KL → γγ(halo) 1 101 ± 2 1.90 ± 0.28
KL → π+π−π0 3 0.54 ± 0.18 (0.45 ± 0.15)
KL → π−e+ν 2 0.86 ± 0.08 0.22 ± 0.04
η → γγ(@CV) 1 0.37 ± 0.02 0.04 ± 0.01
π0 → γγ(@CV) 1 0.36 ± 0.15 0.06 ± 0.06
π0 → γγ(@CC02) 1 0.13 ± 0.04 0.08 ± 0.03
BG total - 109 ± 2 6.32 ± 0.35

photons in the final state. Some of them hit on MB, or hit close to each other in the calorimeter
and make a fused cluster, because of the short distance between CV and the calorimeter. The
background is thus sensitive to the shower shape, and has some activity in the veto counters.
We estimated the number of the background events with the combined method (method 2 in
Table 6.1),

The KL → π0π0 decay becomes a background when two extra photons are not detected.
This background can be classified into two groups. The first one is to miss both two photons
by detection inefficiency, and the other is related to the fused cluster. In the first group, the
events remaining after applying the kinematic cuts, are the events in which two photons from
a π0 detected in the calorimeter and two photons from the other π0 are missed, according to a
Monte-Carlo study. Because the shower shape observed in the calorimeter is consistent with our
assumption as a signal, we estimated the number of the background events with a fast simulation
for all the detectors (method 3 in Table 6.1). For the second group, they were estimated by the
combined method (method 2 in Table 6.1), because they make a fused cluster and are sensitive
to the shower shape cut.

In addition to the KL → γγ and η → γγ at CV backgrounds, the number of background
events for π0 production at CC02 and CV were estimated by a full simulation (method 1 in
Table 6.1).

Table 6.2 shows the summary of the expected number of signal and background events in the
KOTO experiment. By applying the incident angle cut, the KL → γγ background is suppressed
in particular. The signal to background ratio, S/N , then increased from 0.07 to 1.03, and
improved by a factor of 14.
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6.4. ACCIDENTAL LOSS 91

6.4 Accidental loss

We also estimated the accidental loss due to the particles in the beam and daughter particles
from another KL decays inside the veto time window. The accidental loss was estimated based
on the expected single counting rate for each detector. The estimated loss probability due to
the accidental activities was 0.34, and the expected number of signal and background events
became 4.29 ± 0.04 and 4.17 ± 0.23, respectively.

6.5 Expected sensitivity

In rare decay experiments, we often use a parameter called ”Single Event Sensitivity (SES)” as
a reference of the experimental sensitivity. The expected number of the observed events, Nobs,
is represented with the SES as:

Nobs =
Br(KL → π0νν̄)

SES
. (6.2)

Here, SES is expressed as:

SES =
1

Ndecay × Asignal

=
1

NKL
× Pdecay × Asignal

, (6.3)

where Ndecay is the number of KL decays, Asignal is the acceptance of the KL → π0νν̄ signal,
NKL

is the number of KL, and Pdecay is the decay probability in the fiducial region (3000 <
ZVTX(mm) < 5000, where the upstream surface of the CsI calorimeter is at Z = 6148 mm).
The number of KL is expected to be 1.85 × 1014 by assuming 2 × 1014 protons on target per
spill and 12 months of beam time, the decay probability in the fiducial region is estimated to be
3.47×10−2, and the number of KL decays is thus 6.42×1012. The acceptance of the KL → π0νν̄
signal is 2.78 × 10−2 in this analysis. Substituting these numbers in Equation 6.3, we obtained

SES = 5.59 × 10−12 . (6.4)

We estimated the number of observed events to be 8.46 consisting of 4.29 signal and 4.17
background events. There are several scenarios depending on the result of the KOTO exper-
iment. In the following calculations, we assumed the background estimation is correct, and
systematic errors and Monte-Carlo statistics are not taken into account.

• When we observe more than 11 events, we can say that we observed at least one KL →
π0νν̄ decay with a 3σ evidence, because the probability of the observation of 12 or more
background events with the expectation of 4.17 background events is 0.13 % by Poisson
distribution, and smaller than 0.27 %.

• When we observe more than 18 events, we can say that we found a New Physics which
enhances the KL → π0νν̄ decay with a 3σ evidence, because the probability of the obser-
vation of 19 or more events with the expectation of 8.46 events in total is 0.12 %.

• When we observe only 4 events, we can set an upper limit on the branching ratio: Br(KL →
π0νν̄) < 4.47 × 10−11 (90 % C.L.), assuming that all the 4 events are KL → π0νν̄ decays.
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92 CHAPTER 6. SENSITIVITY OF THE KOTO EXPERIMENT

If we take the expected number of background events into account by the Feldman-Cousins
method[18], the upper limit becomes 2.48 × 10−11(90 % C.L.). The upper limit is almost
the same as the Standard Model prediction. We can thus exclude most of the allowed
region in theories which give the branching ratio above the Standard Model prediction.

• When we observe less than 2 events, we can say that we find a New Physics which sup-
presses the KL → π0νν̄ decay with a 3σ evidence, because the probability of the observa-
tion of 1 or less events with the expectation of 8.46 events in total is 0.20 %.

In these ways, the result of the KOTO experiment has a potential to test the Standard Model,
and acts an important role to search for a New Physics.
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Chapter 7

Discussion

We will discuss the possible improvements on the timing resolution and the experimental sen-
sitivity, and the uncertainty on evaluating the number of KL → γγ background events in the
following sections.

7.1 Further improvement of the timing resolution

We defined the timing of each crystal by the peak timing of the fitted pulse shape. We tested
another way, ”Constant fraction method”(CFM), to define the timing. Figure 7.1 shows a
schematic view of this method. The timing was defined by the constant fraction (0.5) of the
peak pulse height on the rising edge of the pulse shape. The concrete procedure is the following.
First, fit the pulse shape and obtain the peak timing. Next, fit a linear function to the pulse
shape in the range : tpeak − 42 ns < t < tpeak − 18 ns. Evaluate the timing with the linear
function that has a half of the peak pulse height.

time[ns]
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ts
[c
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nt
]

Figure 7.1: A schematic view of the constant fraction method. The black dots show the recorded
pulse shape, the red line shows the template based fitted function, and the blue line shows the
linear function to define the timing based on the constant fraction method. The red(blue) dashed
lines show the pulse height and the timing at the peak(constant fraction).
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94 CHAPTER 7. DISCUSSION

We evaluated the timing resolution obtained with CFM with data from the beam test, and
also with the pulse shape simulation described in Chapter 4. Figure 7.2 shows the timing
resolution obtained with CFM for various energy ranges. For energies more than a few MeV,
the CFM gives a better timing resolution than pulse peak timing method, both in data and the
pulse shape simulation.
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Figure 7.2: The timing resolution of various methods as a function of deposit energy. The
black(red) dots show the timing resolution obtained with data with fitted peak timing(CFM).
The black(red) line shows the timing resolution obtained with the pulse shape simulation with
fitted peak timing(CFM).

The CFM, however, has a problem with smaller pulses below a few MeV; the timing resolution
becomes larger, and moreover sometimes the timing cannot be defined because of the ground
noise, as shown in Fig. 7.3.

The calorimeter works not only as a calorimeter but also as a veto counter, and the threshold
will be a few MeV. If the timing for such a few MeV photons are not reconstructed within a
reasonable timing range, that may be a possible source of inefficiency. Because of this reason,
we used the timing based on the fitted peak timing in this thesis.

7.2 Further improvement on the sensitivity

According to the background estimation summarized in Table 6.2 , KL → π0π0 decay and KL →
γγ decay are the two largest background sources for the KOTO experiment. The KL → π0π0

background events are caused by the detection inefficiency, mostly in Main Barrel (MB). As
described in Section 2.2.3, we plan to add 5 X0 thick modules inside the existing MB. The
upgrade design is now being optimized. Because of the optimization, the number of KL → π0π0

background is estimated to be a half of the current estimation. If the KL → π0π0 background
is suppressed by a factor of 2, the KL → γγ background then becomes the largest. Though the
KL → π0π0 background is suppressed by a factor of 2, the signal to background ratio, S/N , will
only improve from 1.04 to 1.39 because of the amount of the KL → γγ background.
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Figure 7.3: An example of the pulse shapes for which we failed to define the timing with CFM.
The black dots show the recorded pulse shape, the red line shows the template based fitted
function, and the blue line shows the linear function for CFM. The red dashed line shows the
fitted pulse height and the fitted timing. The blue dashed line shows a half of the pulse peak
height. The peak pulse height corresponds to about 1 MeV.

Figure 7.4 shows the rejection power of the new incident angle cut against the KL → γγ
background as a function of the efficiency of the cut for the KL → π0νν̄ signal. By tightening
the cut, we can further reduce the KL → γγ background. Figure 7.5 shows the estimated signal
to background ratio, S/N , as a function of the efficiency of the cut for the KL → π0νν̄ decay.
If we tighten the threshold of the cut from 83 to 75 % efficiency for the KL → π0νν̄ decay,
the S/N ratio will be improved from 1.39 to 1.86, and the expected number of signal events is
reduced from 4.29 to 3.89.

7.3 Uncertainty on evaluating the number of KL → γγ back-
ground events

As discussed in Chapter 6, the KL → γγ decay in the beam halo can be a serious background
source, and it is strongly suppressed by the incident angle discrimination. We will discuss the
uncertainties on the number of the background events due to the understanding of the shower
shape PDF, and the rate of KLs in the beam halo.

7.3.1 Uncertainty of the shower shape PDF

The incident angle discrimination is based on the likelihoods of the shower shapes, and the
likelihood is calculated by using the shower shape PDF. We generated the shower shape PDF
with the Monte-Carlo simulation. If the Monte-Carlo based shower shape PDF does not rep-
resent the true shower shape in data, the estimated number of the halo KL → γγ background
events is wrong. Understanding the uncertainty of the shower shape PDF is crucial to evaluate
the sensitivity of the KOTO experiment. We evaluated the uncertainty by using the position
resolution as a reference.

95



96 CHAPTER 7. DISCUSSION

0.6 0.7 0.8 0.9 1

10

210

0.6 0.7 0.8 0.9 1

10

210

0.6 0.7 0.8 0.9 1

10

210

0.6 0.7 0.8 0.9 1

0.5

1

1.5

2

2.5

signal efficiency

re
je
ct
io
n 
po
we
r(1
/B
G 
effi
cie
nc
y)

Figure 7.4: The rejection power of the new
incident angle cut against the KL → γγ back-
ground as a function of the efficiency of the
cut for the KL → π0νν̄ decay.
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Figure 7.5: The estimated signal to back-
ground ratio, S/N , as a function of the effi-
ciency of the cut for the KL → π0νν̄ decay.
The black(red) dots show the result with the
upgraded MB before(after) the optimization.

The Monte-Carlo based shower shapes are also used to reconstruct incident positions. We
first checked whether the fitting based position reconstruction method really uses the shower
shape information. We changed the crystal size and evaluated the position resolution with
the fitting based method and the previous energy-weighted mean method. Figure 7.6 shows
the position resolution as a function of the incident angle for different crystal sizes. With the
energy-weighted mean method, the position resolutions for the incident angle of 40◦1 are almost
the same and independent of the crystal sizes. With the fitting based method, the estimated
position resolution is better than the energy-weighted mean method, and it becomes better
with smaller size crystals. This means that the fitting based method uses the shower shape
information, and the position resolution with the fitting method can reflect the difference of
shower shapes. This is why we used the position resolution with the fitting based method, as a
reference to evaluate the shower shape in the Monte-Carlo simulation.

Basic idea of this evaluation is the following.

1. Estimate the position resolution with Monte-Carlo simulation with the fitting based method
by using templates for (A) true incident angles, and (B) wrong incident angles. We can
evaluate how sensitive the obtained position resolution is to the shower shapes for different
incident angles.

2. Estimate the position resolution with (C) the beam test data with the fitting based method
by using templates for the true incident angle.

3. Compare the difference between (A) and (C) with the difference between (A) and (B).

1The position resolutions with energy-weighted mean method for smaller incident angles become larger because
the crystal size becomes larger than the transverse shower shape spread.
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Figure 7.6: The position resolution as a function of the incident angle with the fitting method
(solid lines) and the energy-weighted mean method (dashed line) for crystal sizes: 25mm(black),
50mm(red) and 75mm(blue). The RMS value of the distribution of distance between the recon-
structed position and Monte-Carlo true value, was used as a position resolution in this plot.

Figure 7.7 shows the obtained position resolutions as a function of the true incident angle. The
position resolution is sensitive to the shower shape templates to be used on fitting shower shape,
and most of the position resolutions2 obtained with the beam test data (C) were more consistent
with the values with the templates for the true incident angles (A) than the values with the
templates for the true +2.5◦ incident angles (B). This showed that we know the true shower
shapes to the precision that corresponds to 2.5◦ difference in the incident polar angle.

Figure 7.8 shows the difference of the calculated polar angles of photons between with the
KL → π0νν̄ assumption and with the KL → γγ assumption. All the differences of the calculated
polar angles of photons between the two assumptions are larger than 5◦ both for the KL → π0νν̄
signal and halo KL → γγ background. Though the incident angle discrimination uses not only
the difference in polar angles but also uses the difference in azimuthal angles, understanding the
shower shapes to the precision that corresponds to 2.5◦ difference in the incident polar angles,
is good enough to discriminate the KL → π0νν̄ events from the KL → γγ events.

7.3.2 Uncertainty of the rate of halo KLs

We also evaluated the uncertainty of the rate of KLs in the beam halo. Both the KL → π0νν̄
signal and the halo KL → γγ background are coming from KL decay, and only the ratio of the
beam halo to the beam core is effective. Because we have no data to evaluate the halo/core
ratio of KLs, we adopted the difference of the halo/core ratio of neutrons between Monte-Carlo

2The turntable we used at the beam test has stoppers just every 10◦. We thus excluded the position resolution
for the incident angle of 15◦ on evaluation.
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Figure 7.7: The position resolution with the fitting based method as a function of the true
incident angle. The round dots show the results obtained with the templates for the true incident
angles plus 0◦(black), 2.5◦(red), 5◦(blue), 7.5◦(magenta), 10◦(green) and 12.5◦(light-blue). The
orange squares show the position resolution obtained with beam test data. The distribution of
the distance between the reconstructed position and the hit position measured with scintillating
fibers was fitted with Asymmetric Gaussian (Equation 3.17), and its σ0 was used as the position
resolution in this plot.
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Figure 7.8: The difference of the calculated polar angles of photons between with the KL → π0νν̄
assumption and with the KL → γγ assumption, obtained with the Monte-Carlo simulation with
all the cuts except for the incident angle discrimination applied. The black(red) line shows the
result for the KL → π0νν̄(KL → γγ) decay. Of the two photons, the larger difference was filled
in this plot.
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packages as the uncertainty of the halo/core ratio of KLs. Figure 7.9 shows the neutron profiles3

estimated with Geant3 and FLUKA[17]. If we define ”halo” as the particles in |x| > 60 mm, the
ratio of the ”halo” were (5.27 ± 0.05) × 10−4 for Geant3, and (4.91 ± 0.13) × 10−4 for FLUKA.
The difference of the ”halo” ratio was 6.8 ± 2.7 % between the Monte-Carlo packages. The 7%
difference of the rejection power of the incident angle discrimination toward the halo KL → γγ
background corresponds to 0.5% difference of the signal efficiency around the cut point as was
shown in Fig. 7.4, and it is negligible on calculating the sensitivity.
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Figure 7.9: The neutron profiles in x-plane estimated with Geant3(black) and FLUKA(red)[17].
The integrals of both histograms were normalized to 1.

3Unlike the beam line condition for physics runs, a vacuum window was placed at 20.5 m from the target and
the region downstream of the vacuum window was filled with air. The vacuum window was made of 100 µm thick
SUS.
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Chapter 8

Conclusion

The KOTO experiment at J-PARC is a dedicated experiment aiming to observe the KL → π0νν̄
decay. We upgraded our experimental apparatus to achieve the Standard Model sensitivity. In
those upgrades, we mainly described a study about the upgrades of the CsI calorimeter. The
major upgrades of the calorimeter are improvement of granularity, and waveform readout.

We did a beam test to evaluate the basic performance of the upgraded calorimeter, and studied
the origin of the energy and timing resolutions obtained with waveform readout. We developed
new analysis methods to fully utilize the fine granularity. One of them is to reconstruct incident
positions by fitting the shower shape, and another one is to discriminate incident angles by
comparing the likelihoods of the shower shape to suppress halo KL → γγ background. Because
the KL → γγ decay has no extra photons in the final state, the decay in the beam halo can
be a serious background source and only rejected by the calorimeter. With the incident angle
discrimination, the halo KL → γγ background was suppressed by a factor of 53 with an 83 %
efficiency for the KL → π0νν̄ decay. We also showed a potential to discriminate the incident
direction of photons by using the recorded waveform.

Based on the performance studies of the CsI calorimeter, we estimated the number of signal
and background events, and evaluated the sensitivity of the KOTO experiment. The single
event sensitivity was estimated at 5.6× 10−12. With the upgraded calorimeter, we can suppress
backgrounds and achieve the sensitivity of the Standard Model prediction.
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Appendix A

Functions for pulse shape fitting

We decided to use templates to fit pulse shapes at the end, but we have tested several functions to
fit pulse shapes. One of the functions was Asymmetric Gaussian with a higher order (Equation
3.1). We also fitted the pulse shapes with Crystal Ball function. Because pulse shapes have
longer tail in positive direction in timing, we modified the function to:

A(t)
|A|

=


Gaussian(t, µ, σ) ( t−µ

σ 6 α)(
n
|α|

)n
exp

(
−α2

2

)(
n
|α| − |α| + t−µ

σ

)−n
( t−µ

σ > α)

 . (A.1)

We also tested a function which is sometimes used to fit pulse shapes of plastic scintillators:

A(t) = 2|A| × Freq
(

t − µ

τL

)
exp

(
− t − µ

τR

)
, (A.2)

where Freq(x) is the normal frequency function:

Freq(x) =
1√
2π

∫ x

−∞
exp

(
− t2

2

)
dt . (A.3)

Another kind of asymmetric gaussian was also tested to fit pulse shapes:

A(t)
|A|

=
{

Gaussian(t, µ, σL) (t 6 µ)
Gaussian(t, µ, σR) (t > µ)

}
. (A.4)

Figure A.1 shows the mean value of the reduced χ2 of the fitting with these functions as a
function of the fitted pulse height. Asymmetric Gaussian well reproduces the pulse shapes1

except for pulse heights larger than 4000 FADC counts because of the pulse shape deformation
by the non-linearity.

The fitted pulse height dependence of the reduced χ2 is explained as following. The definition
of the χ2 of the fitting is:

χ2 =
smpl∑

n

(
h(tn) − hn

σn

)2

, (A.5)

1We did not include the tail part of pulse shapes on fitting. We just fitted pulse shapes between -150 ns and
45 ns relative to the roughly decided peak timing as described in Section 3.2.2.
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Function1 Eq(A.2)
Function2 Eq(A.4)

Figure A.1: The reduced χ2 of the fitting is shown as a function of the fitted pulse height.
The dots show the result obtained with Asymmetric Gaussian (black), Crystal Ball function
(red), Equation A.2 (blue) and Equation A.4 (magenta), respectively. The height dependences
obtained with those functions except Asymmetric Gaussian were parameterized with the function
(Equation A.6), and the solid lines show the fitted functions.

where n is an index of sampling point, h(t) is the function to fit the pulse shape, and tn, hn

and σn are the timing, height and error of the n-th sampling point, respectively. If the function
cannot represent recorded pulse shapes correctly, the difference, h(tn) − hn, for each sampling
point is proportional to the pulse height because we set an error of each sampling point at the
independent value of the pulse height, the amount of ground noise. We can thus parameterize
the dependence with the function:

χ2 = (ah)2 + b2 . (A.6)

The fitted height dependences of the reduced χ2 except for Asymmetric Gaussian were fitted
with Equation A.6 as is shown in Fig. A.1.

On fitting pulse shapes, we required that the shape to be used for fitting should be fixed,
as described in Section 3.2.2. Figure A.2 shows the mean value of the reduced χ2 of the fitting
with Asymmetric Gaussian and templates as a function of the fitted pulse height. Parameters
of Asymmetric Gaussian except for the pulse height and peak timing were fixed on fitting. Even
with Asymmetric Gaussian, the reduced χ2 became larger than the one obtained with templates,
when we fixed shape parameters on fitting. We thus decided to use the templates to fit pulse
shapes at the end.
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Figure A.2: The reduced χ2 of the fitting is shown as a function of the fitted pulse height.
The black(red) dots show the reduced χ2 obtained with Asymmetric Gaussian (templates).
Parameters of the Asymmetric Gaussian except for the pulse height and timing were fixed on
fitting.
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