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Abstract

The primary goal of KEK B�factory experiment is to observe CP asymmetry in B meson decays
at e�e� collision at energy on ���S� mass and to perform the test for Standard Model� The
decay mode� B � charmonium�KS� is expected to provide the best information to measure the
angle �� of the unitarity triangle with less theoretical uncertainty and a small experimental error�
We used decay modes B � J��KS � B � ��	S�KS � B � �c�KS and B � �cKS � We performed
a simulation of the experiment by treating Monte Carlo events as real data� The value of sin 	��
and its statistical error were calculated with 
tting the proper time distribution of B meson
decays� In order to avoid the dependence on Monte Carlo simulation in the real experiment�
a method was developed where we didn�t use generator information but only reconstructed
values� We also estimated systematic errors� Combining all the modes� we obtained �	�� events
including �	� � � estimated background events with integrated luminosity of ���fb�� which
is the designed annual luminosity� We obtained sin 	�� � ����	�������������stat���������������sys�� for the
input value of ����� With the result of the simulation� it is found that we can observe CP
asymmetry with �� signi
cance if the value of sin 	�� is larger than ��	� with ���fb��� which
covers the entire allowed region given with the present indirect experimental results�
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Chapter �

Introduction

A major unresolved issue in our understanding of the universe is how the present universe� which
is composed entirely of matter� evolved from the matter�antimatter�symmetric Big Bang� The
laws of the nature have a high degree of symmetry between matter and antimatter� The excess
of matter over antimatter is not an easily explained property of the universe� CP violation is a
key piece in the puzzle of the matter dominance in the universe����

Since the 
rst observation of CP violation in the neutral kaon system in �����	�� an enor�
mous amount of theoretical work has been done to try to understand the phenomenon� Many
extensions of the Standard Model �SM���� have been proposed that incorporate CP violation�
such as the multi�Higgs model���� the left�right symmetry ���� the supersymmetry ��� and so on�
In a remarkable paper published in ���� Kobayashi and Maskawa �KM� noted that CP viola�
tion could be accommodated in the framework of the SM only if there were at least six quark
�avors� twice the number of quark �avors known at that time��� The subsequent discoveries of
c� b and t quarks have proven the six�quark KM hypothesis� and KM model for CP violation is
now considered to be an essential part of the SM�

However� the KM scheme is not the only model that can accommodate the CP violation and
in spite of a considerable amount of experimental e�ort over the past three decades� there remain
other theoretical proposals that are consistent with presently�available experimental data�

In ����� Sanda and Carter pointed out that the KM model contained the possibility of rather
sizable CP violating asymmetries in certain decay modes of the B mesons���� The observation
of a CP violation in B meson decays would be a con
rmation of the KM model� The key to
the test of the SM is the measurement of the �unitarity triangle� which shows relations between
the KM matrix elements� The KM model provides de
nitive predictions for three CP angles�
��� ��� ��� which can be extracted from measurements of di�erent CP asymmetries�

The largest observable e�ects are expected to show up in the di�erence of the decay rates
between B� and �B� mesons to the same CP eigenstate� Therefore measurements of CP asym�
metries using B� �B� pairs from ���S� decays must be derived from comparisons of the time
evolution of the B� and �B� decays� rather than from time�integrated asymmetries�� The most
favorable experimental situation is the asymmetric e�e� storage ring at the ���S� resonance����
This would boost the decaying B� mesons in the laboratory frame� allowing existing vertex
measurement technology to measure the time order of B� �B� decay pairs� even with the short B

�The B� �B� pair from ���S� has C�odd state� If one integrates over all decay time� CP asymmetry vanishes�
At C�even state� for exsample ���S�� BB�� CP asymmetry can be observed even if decay time is integrated�
CP asymmetry is� However� diluted by factor 	x��
 � x���� where x � �mB�B �

�



meson �ight distance� The proper time di�erence �t is given by

�t � �z�c	
�

where 	
 is the Lorentz boost factor due to the asymmetric beam energy and �z is the distance
between the decay vertices of the two B mesons along the beam direction� In addition to the
feasibility of the measurement of the proper time distribution� the asymmetric e�e� collider on
���S� is expected to provide a large number of B� �B� pairs� ��� or more� Hence it will become
possible to obtain the sizable number of fully�reconstructed B decays into CP eigenstates each
of that has a typical branching ratio of �����

KEK B�factory project is in preparation to achieve the goal speci
ed above� The data
taking is expected to start in ����� The accelerator� referred to as KEKB� promises to provide
the luminosity of ����cm��s�� with asymmetric ���S� production at a 	
 of ���	 ����GeV�c
electrons on ��� GeV�c positrons�� In this condition� ��� ���S� would be produced a year and
the mean decay length of B meson would be �	���m� It is therefore possible to measure the
dependence of the CP asymmetry on the relative decay time of two B mesons� from which
one can extract a precise measurement of the CP violating parameters in the KM matrix� For
example in B � J��KS � the asymmetry� A� is related to CP angle �� as

A��t� �
��B���t� � J��KS�� �� �B���t� � J��KS�

��B���t� � J��KS� � �� �B���t� � J��KS�
� � sin 	�� sin��mB�t�

where �t is the time di�erence of two B meson decay and �mB the mass di�erence of two CP
eigenstates of B� meson� The resolution of vertex measurement directly a�ects the accuracy of
CP angle measurement� A detector� referred to as BELLE� must be capable of high e�ciency
reconstruction of extremely rare exclusive 
nal states of B mesons in the presence of combinatoric
and accelerator�generated beam backgrounds� This requirement places a premium on solid
angle coverage� charged particle momentum resolution and species identi
cation� and photon
resolution and detection e�ciency� In particular� since BELLE detector must provide precision
proper time of B meson decays� Silicon Vertex Detector �SVD� is essential to have a resolution
better than B�	� corresponding to a ��� �m resolution for the vertex di�erence�

Among the three CP angles of unitarity triangle� �� is expected to be the most accessible
experimentally� and one of the primary goals of B�factory experiment� B � J��KS is generally
considered to be the cleanest channel for measuring ��� This is because of its 
nal state�
namely l�l������ is essentially background free� and its decay diagram is dominated by a
single contribution� allowing a straightforward extraction of CP angle� In order to con
rm in
various decay modes and measure with smaller errors� we need to utilize other decay modes� To
this end� it will be crucial to incorporate other similar decay modes such as� B � ��	S�KS �
B � �c�KS and B � �cKS � all of them provide alternative possibilities for measuring ���

The importance of the research of CP violation in B decays is re�ected in the number of
laboratories� The BaBar���� experiment at SLAC and the HERAB���� experiment at DESY are
in preparation with competitive schedules with BELLE� Other projects addressing this physics
are also planned for the Tevatron collider��	� and have been proposed for LHC����� A goal of
the BELLE experiment at the 
rst stage is to be the 
rst group to establish the CP violation
in B decays�

In this thesis� we present a simulation study for the measurement of a time dependent CP
asymmetry and the extraction of sin 	�� for the decay mode� B � charmonium � KS � We
developed a experimental technique and estimated the accuracy of measurement of sin 	��� The

	



basic strategy of the simulation study is to treat generated events as if they were real data�
The established chain of the processes will be applicable to real data� In order to justify the
simulation � we also performed a test of SVD� which is the most crucial detector component for
measurement of sin 	��� with high energy test beam�

The outline of this thesis is as follows Physics formalism for CP violation is given in Chapter
	� An overview of the experimental apparatus� KEKB accelerator and BELLE detector� is
described in Chapter � with a detailed description of the silicon vertex detector �SVD�� The
testbeam experiment for SVD is given in Chapter �� The result of this testbeam experiment was
indispensable to determine the design of unit sensor of BELLE SVD� The details of software
for Monte Carlo simulation are given in Chapter �� In chapter �� we describe the estimation of
the overall performance of BELLE SVD with Monte Carlo simulation study� We estimated the
vertex resolution for B decays and con
rmed that the resolution is good enough to measure CP
asymmetry in B decays� In Chapter � we describe the simulation study for CP violating mode�
The event generation� reconstruction and selection technique are explained� Based on the study
in Chapter � sin 	�� is 
nally estimated in Chapter �� We also evaluate the statistical and
systematic errors for measurement of sin 	��� Chapter � is devoted to discussion on the impact
of sin 	�� measurement at BELLE on the elementary particle physics� Finally� the conclusion of
this thesis is given in Chapter ���
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Chapter �

CP violation in B�decays

The violation of CP symmetry is one of the most interesting aspects of high�energy physics�
Experimentally� it is one of the least tested properties of the Standard Model� This chapter
explains the basic theory of CP violation in B decays and the measurement of the angles of the
unitarity triangle� First of all� we explain the discovery of CP violation in K decays in Section
	��� After describing phenomenology of CP violation in B decays in Section 	�	� we discuss the
origin of CP violation and Kobayashi�Maskawa matrix in the framework of Standard Model in
Section 	��� The measurement of the angle� ��� of unitarity triangle with B � charmonium�KS

is described in Section 	���

��� Discovery of CP Violation

����� P� C� and CP Transformation

In quantum theory� there are conservation laws corresponding to discrete transformations� One
of these is re�ection in space ��parity operation�� P� Invariance of laws of nature under P means
that the mirror image of an experiment yields the same result in its re�ected frame of reference
as the original experiment in the original frame of reference� This means that �left� and �right�
cannot be de
ned in an absolute sense�

Similarly� the particle�antiparticle conjugation C transforms each particle into its antiparti�
cle� by which all additive quantum numbers change their sign� C invariance of laws means that
experiments in a world consisting mainly of antiparticles will give identical results to the ones
in our world provided all names of particles are �anti� relative to ours�

A third transformation of this kind is time reversal T� which reverses momenta and angular
momenta� This corresponds formally to an inversion of direction of time� According to the CPT
theorem of L!uders and Pauli���� there is a connection between these three transformations such
that under rather weak assumptions in a local 
eld theory all processes are invariant under the
combined operation CPT�

For a long time it was assumed that all the elementary processes are also invariant under
the application of each of the three operation C� P� and T separately� However� the work of
Lee and Yang���� questioned this assumption� and the subsequent experiments demonstrated
the violation of P and C invariance in weak decays of nuclei and of pions and muons� At that
time CP was still considered to be invariant� replacing the separate P and C invariance of weak
interactions�
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One consequence of this postulated CP invariance for the neutral K mesons was predicted
by Gell�Mann and Pais there should be a long�lived partner to known V ��K�

� � particle of
short lifetime������ sec�� According to this proposal these two particles are mixtures of two
strangeness eigenstates� K��S � ��� and �K��S � ��� produced in strong interactions� Weak
interactions do not conserve strangeness and the physical particles should be eigenstates of CP
if the weak interactions are CP invariant� These eigenstates are�with �K� � CPK��

CPK� � CP��K� � �K���
p

	� � �K� � �K���
p

	 � K�� �	���

CPK� � CP��K� � �K���
p

	� � �K� � �K���
p

	 � �K��

Because of CP������ � ������ for � mesons in a state with an angular momentum zero � the
decay into ���� is allowed for the K�� but forbidden for the K�" hence the longer lifetime of
K� � which was indeed con
rmed when the K� was discovered�

In ����� however� Christenson� Cronin� Fitch and Turlay discovered that the long�lived
neutral K meson also decays to ���� with a branching ratio of � 	 � ����� From then the
long�lived state was called KL because it was no longer identical to the CP eigenstate K�"
similarly� the short�lived state was called KS � The CP violation that manifested itself by the
decay KL � ���� was con
rmed by subsequent discoveries of the KL � ����� and of a charge
asymmetry in the decays KL � ��e�� and KL � ������

��� Phenomenology of CP violation in B decays

Decays of B mesons are expected to be the most promising processes to clarify the nature of
CP violation� Below we categorize three types of CP violation�

�� Direct CP violation in weak decays� which occurs in both charged and neutral meson
decays�

	� Indirect CP violation in the mixing�

�� CP violation in the interference of mixing and decay� which occurs in decays into 
nal
states that are common to B� and �B��

In each case it is useful to identify a particular CP violating quantity that is independent of
phase conventions and discuss the types of processes that depend on this quantity� In following
sections phenomenology for each type is described�

����� Direct CP Violation in Weak Decays

Consider two decay processes related to each other by a CP transformation� Let P and �P be
CP�conjugated pseudoscalar meson states� and f and �f some CP�conjugated 
nal states 

CPjP i � ei�P j �P i� CPjfi � ei�f j �fi� �	�	�

The phase �P and �f are arbitrary� The CP�conjugated decay amplitudes� A and �A� can be
written as

A � hf jHjP i
X
i

Aie
i�iei�i �

�A � h �f jHj �P i � ei	�P��f 

X
i

Aie
i�ie�i�i � �	���

�



where H is the e�ective Hamiltonian for weak decays� and Ai are real partial amplitudes� Two
types of phases may appear in the decay amplitudes the weak phases �i are parameters of the
Lagrangian that violate CP� They usually appear in the electroweak sector of the theory and
enter A and �A with opposite signs� The strong phases �i appear in scattering amplitudes even
if the Lagrangian is CP invariant� They usually arise from rescattering e�ects due to the strong
interactions and enter A and �A with the same sign�

Although the de
nition of strong and weak phases is to a large degree convention�dependent�
one can show that a ratio �����

�A

A

����� �

�����
P

iAie
i�iei�iP

iAiei�ie�i�i

����� �	���

is independent of phase conventions and therefore physically meaningful� The condition�����
�A

A

����� �� � � direct CP violation �	���

implies CP violation� which results from the interference of decay amplitudes leading to the
same 
nal state� Note that this requires at least two partial amplitudes that di�er in both their
weak and strong phases�

Experimental observation of direct CP violation�

Since mixing is unavoidable in neutral meson decays� it is better to observe direct CP violation
in the decays of charged mesons� One de
nes the CP asymmetry 

af �
��P� � f�� ��P� � �f�

��P� � f� � ��P� � �f�
�

�� j �A�Aj�
� � j �A�Aj� � �	���

The requirement of at least two partial amplitudes with di�erent phases forces us to consider
non�leptonic decays� since leptonic and semileptonic decays are usually dominated by a single
diagram� Non�leptonic decays� on the other hand� can receive so�called �tree� and �penguin�
contribution����� Penguin diagrams contain a W �boson�quark loop and typically involve other
weak phases than tree diagrams� In order to get large interference e�ects� one needs partial
amplitudes with similar magnitude���� A possibility is to consider decays in which the tree
contribution is suppressed� with respect to the penguin contribution� by small KM parameters��

This compensates for the loop suppression of penguin diagrams� In the Standard Model� an
example of this type is the decay B� � K��� shown in Figure 	��� for which the penguin
diagram is proportional to ��s��	�� ln�m�

t �m
�
b�jVtbV �

tsj � ���	 � ���� � �������� ��� 	��� An�
other possibility is to consider tree�forbidden decays� which can only proceed through penguin
diagrams� In this case� it is the possibility to have di�erent quarks in the loop �t� c� u� that leads
to the interference� Examples are B� � K�K and B� � K��� as well as the radiative decays
B� � K��
 and B� � ��
� see Figure 	�	�

There is no unambiguous experimental evidence for direct CP violation yet��

�KM parameters are described in Section 	���
�This is the situation as of March 
���� However� it is expected that new papers on K decays will be submitted

soon�	
��
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����� Indirect CP Violation in the Mixing of Neutral Mesons

The neutral mesons P � and �P � can mix via common decay channels 

P � � X � �P � �	��

An arbitrary neutral meson state can thus be written as a superposition of the �avor eigenstates�
ajP �i� bj �P �i� which obeys the time�dependent Schr!odinger equation

i
d

dt

�
a

b

�
� H

�
a

b

�
�

�
M � i

	
�

��
a

b

�
�	���

where M and � are Hermitian 	 � 	 matrices� which are called the mass and decay matrices�
respectively� Since the Hamilton operator� H� is not Hermitian� its eigenvectors

jP���i � pjP �i � qj �P �i" jp�j� jq�j � � �	���

are not orthogonal� and the eigenvalues

�i � Mi � i

	
�i" i � �� 	 �	����

are complex� This re�ects that the states P� and P� are resonances� not elementary particles�
Mi are the masses of these resonances� and �i are their decay widths� The states Pi have a
diagonal time evolution given by

jPi�t�i � e�iMite�
�
�
�itjPi���i� �	����

One can show that ratio ����qp
���� �

�����M
�
�� � i

�����
M�� � i

����

����� �	��	�





is independent of phase conventions and therefore physically meaningful� The condition����qp
���� �� � � indirect CP violation �	����

implies CP violation� which results from the fact that the mass eigenstates are di�erent from
the CP eigenstates�

Let us collect some useful equations related to the mixing of neutral mesons� De
ne the
mass di�erence �m � m� �m� and the width di�erence �� � �� � ��� Then the following
relations hold 

��m�� � �

�
����� � �jM��j� � j���j��

�m 	�� � �Re�M���
�
����

q

p
� ��

	

�m� i
���

M�� � i
����

� �	
M�

�� � i
�����

�m� i
���

� �	����

An alternative common notation is to de
ne �� such that

p �
� � ��p

	�� � j��j�� � q �
�� ��p

	�� � j��j�� �
q

p
�

�� ��

� � ��
� �	����

q�p in the B�meson system�

Decay channels common to B� and �B�� which are responsible for the di�erence ��B� are known
to have branching fractions of order ���� or less� Hence� although ��B has not yet been
measured directly� it follows that j��B j��B � ����� On the other hand� the observed B� � �B�

mixing rate implies�		� �mB��B � ��� � ����� so that model independently

j��B j 
 �mB �	����

thus� there is a negligible lifetime di�erence between the CP eigenstates� and one therefore refers
to these states as �light� ��BL� and �heavy� ��BH�� It follows that j���j 
 jM��j� and to 
rst
order in ����M�� we obtain from �	�����

q

p

�
B

� � M�
��

jM��j
�

�� �

	
Im

���

M��

�
� �	���

Hence
jq
p
j � � � �	Re ��B � O������� �	����

As in the kaon system� CP violation in B� � �B� mixing is a small e�ect�

Experimental observation of indirect CP violation in the B�meson system�

Since BL and BH have almost identical lifetimes� it is not possible to produce selectively beams
of BL or BH particles� With mH�L � mB � �

��mB and �H�L � �B � equation �	���� gives for
the time evolution of an initially pure B� state 

jB����i �
�

	p
�jBHi� jBLi� �

jB��t�i �
�

	p
e�imB te�

�
�
�Bt

n
e�

i
�
�mBtjBHi� e

i
�
�mBtjBLi

o
�

� e�imBte�
�
�
�Bt

�
cos

�
�

	
�mBt

�
jB�i�

iq

p
sin

�
�

	
�mBt

�
j �B�i

�
� �	����

�



Similarly 

j �B��t�i � e�imBte�
�
�
�Bt

�
cos

�
�

	
�mBt

�
j �B�i�

ip

q
sin

�
�

	
�mBt

�
jB�i

�
� �	�	��

De
ning the semileptonic asymmetry as

aBSL �
�� �B��t� � l���X�� ��B��t� � l��X�

�� �B��t� � l���X� � ��B��t� � l��X�
� �	�	��

We obtain

aBSL �
�� jq�pj�
� � jq�pj� � �Re ��B � O������� �	�		�

To date� there is no experimental evidence for indirect CP violation in the B�meson system�

����� CP Violation in the Interference of Mixing and Decay

Consider decays of neutral mesons into CP eigenstates 

A � hfCP jHjP �i� A� � hfCP jHj �P �i� �	�	��

It can be shown that the product

� �
q

p
	

�A

A
�	�	��

is independent of phase conventions and thus physically meaningful� In other words� the con�
vention dependence of q�p cancels against that of �A�A� The condition

� �� �� � CP violation �	�	��

implies CP violation� Note that direct CP violation�j �A�Aj �� �� and indirect CP violation
�jq�pj �� �� imply j�j �� �� but they are not necessary for the weaker condition � �� ���

Many decays of neutral B mesons are the kind described above� This type of CP violation
is called CP violation in the interference of mixing and decay� Consider the time evolution of a
state which is identi
ed as B� at time �t� � � as

t � �  jB�i �
�

	p
�jBLi� jBHi�� �	�	��

Since BL and BH evolve according to Equation �	���� the jB�i oscillates into a mixture of B�

and �B� as Equation �	���� and �	�	��� Let�s consider decays into states jfi which are eigenstates
of CP� i�e� CP jfi � �jfi� with eigenvalue � � ��� and let�s assume that a single weak amplitude
�or rather a single weak phase� dominates the decay process� Both B� and �B� decay to the state
f � with amplitudes 

B�  A � jAjei�f ei�f �	�	�

�B�  �A � �jAje�i�f ei�f

where �f and �f are the weak and strong phases� respectively� The �clean modes� with j�j � �
are those dominated by a single weak phase �f � so that

�A

A
� e��i�f �	�	��

�



is close to a pure phase� Using Equation �	�	��� the time dependent decay rates of an initial B�

and �B� can be written as

��t� � ��B��t� � f� � e��BtjAj� �	�	��

�
�

� � j�j�
	

�
�� j�j�

	
cos �mt� Im��� sin �mt

�

���t� � �� �B��t� � f� � e��Btjp
q

�jjAj� �	����

�
�

� � j�j�
	

� �� j�j�
	

cos �mt� Im��� sin �mt

�

If one de
nes the CP asymmetry ��� 	��

afCP �
��B��t� � fCP �� �� �B��t� � fCP �

��B��t� � fCP � � �� �B��t� � fCP �
�	����

and takes into account that jq�pjB � � so that we can put q
p � e��i�f � it follows that

afCP � ��� j�j�� cos��mBt�� 	Im� sin��mBt�

� � j�j�
j�j�� �Im� sin��mBt�� �	��	�

This method using such decays is very useful and shows large CP violation in the Standard
Model prediction� The quantity Im� which can be extracted from afCP is theoretically very
interesting since it can be directly related to KM matrix elements in the Standard Model� The
detail of this decay on B�mesons is described in Section 	���

��� CP Violation in the Standard Model

����� KM Matrix

In terms of the mass eigenstates� a Lagrangian of weak interaction forms

Lint � � gp
	

� �uL� �cL� �tL� 
�V

	
B
 dL

sL
bL

�
CAW� � h�c�� �	����

The KM�Kobayashi�Maskawa� mixing matrix V is a unitary matrix in �avor space� In the
general case of n quark generations� V would be an n � n matrix� For the case of three
generations� V is then� explicitly�

V �

	
B
 Vud Vus Vub

Vcd Vcs Vcb
Vtd Vts Vtb

�
CA � �	����

which can be parametrized by three Euler angels and six phases� 
ve of which can be removed
by adjusting the relative phases of left�handed quark 
elds� Hence� three angles �ij and ob�
servable phase � remain in the quark mixing matrix� as was 
rst pointed out by Kobayashi

��



and Maskawa��� The imaginary part of the mixing matrix is necessary to describe CP viola�
tion in the Standard Model� In general� CP is violated in �avor�changing decays if there is no
degeneracy of any two quark masses� and if the quantity JCP �� �� where

JCP �
���Im�VijVklV

�
ilV

�
kj�
��� " i �� k� j �� l� �	����

It can be shown that all the CP�violating amplitudes in the Standard Model are proportional
to JCP � and that this quantity is invariant under phase rede
nitions of the quark 
elds�	�� 	���

For many applications� it is convenient to use an approximate parametrization of the KM ma�
trix� called Wolfenstein parametrization�	��� which makes explicit the strong hierarchy observed
experimentally�

V ��

	
B
 �� ����	� � A����� i��

�� �� ����	� A��

A����� �� i�� �A�� �

�
CA � �	����

Using this parametrization� we obtain

JCP � A����� �	���

which shows that JCP is of order ���� for � � ��		 and A � ����
In principle� the entries in the 
rst two rows of mixing matrix are accessible in so�called

direct �tree�level� process� i�e� in weak decays of hadrons containing the corresponding quarks�
In practice� jVudj and jVusj are known to an accuracy of better than �#� jVcbj is known to �#�
and jVcdj and jVcsj are known to about ���	�#� Hence� the two Wolfenstein parameters � and
A are rather well determined experimentally 

� � jVusj � ��		�� � ������� A �

���� VcbV �
us

���� � ���� � ����� �	����

On the other hand� jVubj has an uncertainty of about ��#� and the same is true for jVtdj� which
is obtained from B� � �B� mixing� This implies a rather signi
cant uncertainty in the values of
the Wolfenstein parameters � and �� A more precise determination of these parameters will be
a challenge to experiments and theory over the next decade�

����� The Unitarity Triangle

A simple visualization of the implications of unitarity is provided by the so�called unitarity
triangle� which uses the fact that the unitarity equation

VijV
�
ik � � �j �� k� �	����

can be represented as the equation of a closed triangle in the complex plane� Most useful from
the phenomenological point of view is the triangle relation

VudV
�
ub � VcdV

�
cb � VtdV

�
tb � �� �	����

since it contains the most poorly�known entries in the KM matrix� In the standard parametriza�
tion� VcdV

�
cb is real� and the unitarity triangle has the form shown in Figure 	��� It is useful to

rescale the triangle by dividing all sides by jVcdV �
cbj� The rescaled triangle has the coordinates

������������ and �������� where

�� �

�
�� ��

	

�
�� �� �

�
�� ��

	

�
� �	����

��



are related to the Wolfenstein parameters � and � appearing in �	����� CP is violated when the
area of the triangle does not vanish� i�e� when all the angles are di�erent from zero� The three
angles of the triangle are de
ned as

�� � �arg
�
VtdVtb�

VcdV
�
cb

�
� �� � arg

�
VudVub�

VtdV
�
tb

�
� �� � arg

�
VcdVcb�

VudV
�
ub

�
� �	��	�

V V

V  V

V  V

φ1

φ2

φ3

td tb
ud ub

cd cb
*

*
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Figure 	�� The unitarity triangle of the KM matrix �left� and its rescaled form in the ��� � ���
plane �right��

To determine the shape of the triangle� one can aim for measurements of the two sides Rb and
Rt� and three angles ��� ��� and �� �Figure 	���� So far� experimental information is available
only on the sides of the triangle� The current value of jVubj�	� 	�� implies

Rb �
q

��� � ��� �

�
�� ��

	

�
�

�

����VubVcb

���� � ���� � ����� �	����

To determine Rt � one needs information on jVtdj� which can be extracted from B�� �B� mixing�
In the Standard Model� the mass di�erence �mB between the two neutral meson states is
calculable from the box diagrams shown in 
gure 	��� The resulting theoretical expression is

�mB �
G�
Fm

�
W

���
�BBBf

�
BmBS�mt�mW �jVtdV �

tbj�� �	����

where �B � ���� � ���� accounts for the QCD corrections�	��� and S�mt�mW � is a function of
the top quark mass����� The product BBf

�
B parameterizes the hadronic matrix element of a

local four�quark operator between B�meson states� There exists a vast literature on calculations
of the decay constant fB and the BB parameter� Combining the results of some recent QCD
sum�rule���� and lattice calculations��	�� we quote the value

fB � ���� ��MeV� �	����

Together with the prediction BB � ���� obtained from lattice calculations����� this gives

B
���
B fB � �	�� � ���MeV� �	����

�	



Solving then �	���� for jVtdj� one obtains����

jVtdj � ����� ����
�

	�� MeV

B
���
B fB

��
�� GeV

�mt�mt�

����� � �mB

���� ps��

����
� �	���

Taking �mt�mt� � ���� ���GeV for the running top�quark mass� and using the average exper�
iment value����

�mB � ����� � ������ps��� �	����

gives
jVtdj � ����� � ����� � ����� �	����

The corresponding range of values for Rt is

Rt �
q

��� ���� � ��� �
�

�

����VtdVcb

���� � ���� � ���� �	����

Equations �	���� and �	���� yield constraints on the Wolfenstein parameters �� and ��� which

b

d

d

B0 B0

b

t

t

b

d

d

B0 B0

b

tt

Figure 	�� Box diagram for B� � �B� mixing in the Standard Model�

have the form of rings centered at ���� ��� � ��� �� and ������ Another constraint can be obtained
from the measurement of indirect CP violation in the kaon system� The experimental result on
the parameter �K measuring CP violation in K�� �K� mixing implies that the unitarity triangle
lies the upper half plane� The constraint arising in the ��� �� plane has the form of a hyperbola�
the shape of which depends on a hadronic parameter BK � The theoretical prediction is ����

��

�
��� ���A�

�
mt

mW

�����
� ����� � �����


A�BK � ����� �	����

where A � ���� � ���� according to �	����� In the last few years� theoretical calculations of the
BK parameter have converged and give results���� of

BK � ��� � ���� �	��	�

In principle� the measurement of the ratio Re������ in the kaon system could provide a deter�
mination of � independent of �� In practice� however� the experimental situation is unclear���
���� and the theoretical calculations���� of this ratio are a�ected by large uncertainties� so that
there currently is no useful bound to be derived�

In Figure 	��� we show the constraints which the measurements of Rb� Rt� and �K imply in
the �� � �� plane� Given the present theoretical and experimental uncertainties in the analysis
of charmless B�decays� B� � �B� mixing� and CP violation in the kaon system� there is still a
rather large region allowed for the Wolfenstein parameters� This has important implications�
For instance� the allowed region for the angle �� of the unitarity triangle is such that

���� � sin 	�� � ���� �	����

��
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Figure 	�� Experimental constraints on the unitarity triangle in the �� � �� plane� The region
between the dashed �dotted� circles is allowed by the measurement of Rb �Rt� discussed in text�
The dash�dotted curves show the constraint following from the measurement of the �k parameter
in the kaon system� Each constraint shows the region with the con�dence level of ����

Among the three CP angles of unitarity triangle� �� is expected to be the most measurable
experimentally with CP violation in the interference of mixing and decay described in Section
	�	���

��� B � Charmonium � KS mode

As already mentioned in Section 	�	 and 	��� the decay of neutral B mesons into CP eigenstates
shows a large CP asymmetry and we can extract the elements of KM matrix from this asym�
metry� In this section� we describe the extraction of �� through CP violation in the interference
of mixing and decay in B � charmonium � KS �

����� Charmonium modes

Figure 	�� shows the charmonium system� Table 	�� shows observed branching ratios for
B��B�� � charmonium �K��K���

B�� �B�� � J��KS

The combination of relatively large branching fractions� readily accessible 
nal states with small
backgrounds and negligible theoretical uncertainty have earned the decay B � J��KS the name
�gold�plated mode�� Among all B � charmonium � KS modes� J��KS is the most e�ective
decay mode experimentally to measure ���

B�� �B�� � ��	S�KS

The decay mode B � ��	S�KS has not been observed yet� but is estimated to have about
the same branching ratio as that of B � J��KS assuming the isospin symmetry between

��
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Figure 	�� The current state of knowledge of the charmonium system and transitions�	
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B� � ��	S�KS and B� � ��	S�K��

B�� �B�� � �c�KS

The decay mode B � �c�KS has not been observed yet� However� this mode may have larger
branching ratio than that of B � J��KS � again assuming the isospin symmetry�

B�� �B�� � �cKS

The decay mode B � �cKS has not been observed yet� However some recent theoretical
works show that B � �cKS has the branching ratio ����	�� times larger than that of B �
J��KS ���� �	�� In addition� recently CLEO reported a large branching ratio for a corresponding
charged mode����� This mode is therefore promising�

����� CP Asymmetry in b� c�cs transition

In the B meson system� up to corrections of order ����� we have

�
q

p

�
� � M�

��

jM��j �
�V �

tbVtd�
�

jV �
tbVtdj�

�
V �
tbVtd

VtbV
�
td

� e��i�� � �	����

This combination of KM parameters can be read o� directly from the vertices of the box diagram
in Figure 	��� which in the Standard Model are responsible for the non�diagonal element M�

�� of
the mass matrix� Notice that for the real part of the box diagrams� which determine M��� the
contributions of c and u quarks in the loops can be neglected� The decay B � charmonium�KS

is based on the quark transition b� c�cs� for which the tree diagram is dominant� All processes�
which have quark transition of b � c�cs� follow the same line except the CP eigenvalue of the

nal states� As shown in Figure 	�� the tree amplitude is proportional to VcbV

�
cs � ���� With

CP�J��KS����� one 
nds

�J��KS
� �

�
q

p

�
B

	
�
q

p

�
K

	
�A

A
� V �

tbVtd
VtbV

�
td

	 VcsV
�
cd

V �
csVcd

	 VcbV
�
cs

V �
cbVcs

� �e��i�� � �	����

��



Table 	�� Data on branching ratios for B � Charmonium� K�K��
Decay mode Experimental Branching Ratio Reference

J�� �K� ���� � ��	� � ���� ����

J��K� ���� � ���� � ���� ����

J�� �K�� ����� � ����� � ���� ����

J��K�� ���� � ��	� � ���� ����

��	S� �K� � �� ���� ����

��	S�K� ���� � ���� � ���� ����

��	S� �K�� ����� � ����� ���� ����

��	S�K�� � �� ���� ����

�c� �K� � 	�� ���� ����

�c� �K� ���� � ���� � ���� ����

�c� �K� � 	��� ���� ����

�c� �K�� � 	��� ���� ����

�c �K� � ���� ���� ����

�c �K� ���������������stat��� ���	�syst�� � ���� ����

�c �K�� � ���� � ���� ����

�c �K�� � ���� � ���� ����

where the 
rst term comes from B�� �B� mixing� the second from the ratio
�A	f

A	f
 and the third

from K�� �K� mixing� Therefore we obtain

Im�J��KS
� sin 	��� �	����

In the present case� the contamination from the penguin contribution is extremely small����
Depending on the �avor q of the quark in the loop� the penguin contributions are proportional
to VtbV

�
ts � �� �for q � t�� VcbV

�
cs � �� �for q � c�� and VubV

�
us � �� �for q � u�� Because of

the relation VtbV
�
ts � �VcbV �

cs �O����� it follows that up to very small corrections the penguin
contributions have the same weak phase as the tree diagram� Hence� their presence a�ects
neither j�j nor Im�� Detailed estimates show that hadronic uncertainties are only of order �����
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Figure 	� Tree and penguin diagrams for the decay B � J��KS �

This measurement will thus give the theoretically cleanest determination of sin 	���
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Table 	�	 Examples of decay modes

Quark subprocess Examples of decay modes

b� c�cs B� � �cKS�KL�K
���� J��KS�KL�K

����
��	S�KS�KL�K

���� �c�KS�KL�K
���

b� c�cd B� � D �D�D� �D��D �D�

b� s�ss B� � �KS�KL�K
���

����� Comparison with other decay modes for ��measurement

We show in Table 	�	 the examples of decay modes of B meson that can be used for �� mea�
surement� In the case of B � J��K��� two vector particles can have either even or odd relative
angular momentum� Hence the 
nal state is not a pure CP eigenstate� Although two di�erent
CP states can be separated by an analysis of the angular distribution of the decays����� this
requires more data to get a comparable accuracy for sin 	���

The channel B � J��KL� and other B � charmonium �KL� also have a similar amplitude
structure as B � charmonium � KS � Because of the di�culty of KL detection� however� the
e�ciency and S�N ratio for B � J��KL would be worse than that in B � J��KS mode�

B � �KS is theoretically clean as B � J��KS � This decay proceeds through the quark
transition b � s�ss� i�e� it involves a �avor�changing neutral current� which is forbidden at the
tree level in the Standard Model� The leading contribution comes from penguin diagram shown
in Figure 	��� The parameter � is

��KS
�

�
q

p

�
B

	
�
q

p

�
K

	
�A

A
� V �

tbVtd
VtbV

�
td

	 VcsV
�
cd

V �
csVcd

	 VtbV
�
ts

V �
tbVts

� e��i�� � �	���

and therefore
Im��KS

� � sin 	��� �	����

However� the branching ratio of b� �KS is estimated to be an order of magnitude lower than
that of J��KS � Therefore this mode doesn�t have advantage to measure �� experimentally�
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Figure 	�� Penguin diagram for the decay B � �KS �

The decay B � D�D� is dominated by the tree diagram shown in Figure 	��� The quark
subprocess here is b� c�cd� With CP�D�D������ the tree contribution gives

�D�D� �
V �
tbVtd

VtbV
�
td

	 V
�
cdVcb

VcdV
�
cb

� e��i�� � �	����

Therefore we obtain
Im�D�D� � � sin 	��� �	����

�



There are hadronic uncertainties due to the pure penguin term� but they are estimated to be
small to �#����� This decay mode has as large branching fraction as that of B � J��KS �
Although the reconstruction e�ciency is low due to its multiplicity of daughter tracks� the
number of useful events is still comparable to that of B � J��KS � The background rejection
plays a key role for this type of decay modes�
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Figure 	�� Tree and penguin diagrams for the decay B � D�D��

����� Observation of CP Violation in Asymmetric B�factory

In the KEK B�factory experiment� the initial B� and �B� are produced in a coherent B� �B� state
and remain in this state until one of them decays� If one B decays to a CP eigenmode� here
B � charmonium � KS � and the other decays to a �avor speci
c mode� the event can be used
to reconstruct the time dependence of CP asymmetry� �Figure 	����

B
0

B

CP decay

Tagged decay

Υ(4S)

0

∆ ∆=γβc tz

(8.0GeV) (3.5GeV)e- e+

Figure 	��� Decay scheme of B� �B� at asymmetric B factory� The proper time are measured
from the distance of two B decays�

CP asymmetry appears in di�erence of the decay rates between B� and �B�� Figure 	���
shows the proper time distribution for B � J��KS decays for the case of sin 	�� � ���� as
a function of the time distribution in units of the B lifetime� B� The proper time shows the
distribution as �	�	����	��	�� The solid and dotted lines are the decay rates of the �B� and the
B�� respectively� The di�erence between the positive and negative time scale re�ects the CP
asymmetry� This can be seen either in the solid and dotted curves separately� or in the sum
after the time scale of the dotted curve is reversed�

The proper time of B decay is measured with the distance of vertices of two B mesons as�

�t � �z�c	
� �	����

��
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Figure 	��� Proper time distribution for B�� �B�� � J��KS �

where 	
 is the Lorentz boost factor due to the asymmetric beam energy �	
 � ���	 at KEKB�
and �z is the distance between the decay vertices of the two B mesons along the beam direction�
Figure 	��� shows the measurement scheme of proper time of B mesons�

Flavor tagging

The �avor of B meson which decays into CP eigenstate is determined by the �avor of the other
B meson which decays into �avor speci
c mode�

The charge of leptons or kaons from generic B decays has the information of the parent
B meson� As shown in Figure 	��	� the lepton�s charge from the b�quark��b�quark� decays into
cW���cW�� indicates �avor of B meson� As shown in Figure 	���� the �avor of B meson has
also correlation with the charge of the kaon in the 
nal state�

Figure 	��� shows the momentum distribution of leptons from B meson decays in ���S�
rest frame� Although leptons are produced in c decays also� one can e�ciently remove such
contamination by selecting high momentum lepton� e�g� above ��	 GeV�c�

The �avor of Btag has correlation to the sign of charge sum of charged kaon in 
nal state�

��t is measured as the di�erence of two B mesons and is di�erent from t in �	��	�� When one B decays to a
CP eigenmode and the other decays to a �avor speci�c mode� the decay rates are expressed as

�B��t��� f�t��� � e��B�t��t���
� sin 	���m�t� � t���

� �B��t��� f�t��� � e��B�t��t���
 � sin 	���m�t� � t����

where f is de�ned as a certain CP eigenstate� Integrating this equation over �t� � t�� to �t� � t���� �t�� the
proper time distribution would be same form as �	�	���
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Figure 	��� shows the charge sum of charged kaon detected and identi
ed as kaon in an event�
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����� Previous Search

The 
rst direct measurement of sin 	�� was performed by OPAL collaboration with B � J��KS

at the energy of MZ peak� They have measured sin 	�� with 	� J��KS events including back�
ground� The result was���

OPAL  sin 	�� � ��	���������stat��� ����syst���

	�



The second was measured by CDF collaboration with ����� B � J��KS events in p�p collisions
at
p
s � ��� TeV� The result was ����

CDF  sin 	�� � ��� � ����stat��� ����syst���

Both results have a large statistical error� and therefore are not conclusive�
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Chapter �

B�Factory Experiment

In this chapter we describe the B�factory experiment and its apparata� BELLE detector and
KEKB accelerator for the measurement of CP violation in neutral B meson decays�

KEKB accelerator is designed to produce a large number of B�mesons� The BELLE detector
is optimized to measure the particles from B�meson decays e�ectively� These are being con�
structed at High Energy Accelerator Research organization�KEK�� The commissioning of the
KEKB beams will take place in March ����� In Section ���� a brief introduction of the KEKB
accelerator is given� In Section ��	� the overview of BELLE detector and the description of
its principal components are given� The detail of Silicon Vertex Detector�SVD�� which has an
essential role to measure indirect CP violation� is given in Section ����

��� KEKB accelerator

KEKB is an electron�positron collider� The energy of electrons and positrons are � GeV and ���
GeV� respectively� Hence the center�of�mass energy is ����� GeV� which corresponds to ���S�
resonance� Electrons have higher energy than positrons in order to avoid ion trapping� which
happens only at low energies� The design luminosity is ����cm��s�� in order to produce ���

���S� a year�

3
0
0
m

Figure ��� Con�guration of the KEKB accelerator system

Figure ��� illustrates the con
guration of the two rings of KEKB� The electron ring is called

		



HER �High Energy Ring� and the positron ring is called LER �Low Energy Ring�� These rings
are built side by side in the existing TRISTAN tunnel� which has a circumference of about � km�
KEKB has only one interaction point �IP� in the Tsukuba experimental hall� where the electron
and positron beams collide at a 
nite angle of ���mrad� The BELLE detector is installed in
this interaction region�

� GeV electrons ���� GeV positrons� can be directly injected from LINAC to the HER �LER�
at Fuji and circulate clockwise �anticlockwise�� The RF cavities of the HER �LER� are installed
at the straight section of Nikko and Oho �Fuji�� The two wigglers for LER are also put at Nikko
and Oho� They reduce the longitudinal damping time of the LER from ��ms to 	�ms� i�e�� the
same damping time as the HER� To achieve the design luminosity� ���� bunches are injected to
each ring� where the bunch interval is only 	ns �or ��cm�� The main parameters of KEKB are
summarized in Table ��������

��� BELLE Detector

The con
guration of the BELLE detector is shown in Figure ��	�
Because of the asymmetry of the beam energy� the detector itself also has the asymmetry 

i�e� it has a larger acceptance in the direction of electrons �which is de
ned as �the forward
region��� The de
nition of coordinate of detector is shown in Figure ���� B�meson decay vertices
are measured by a silicon vertex detector �SVD� just outside a cylindrical beryllium beam pipe�
Charged particle tracking is provided by a central drift chamber �CDC�� Particle identi
cation
is provided by dE�dx measurements in the CDC� the aerogel �Cerenkov counter �ACC� and the
time of �ight �TOF� counter arrays outside the CDC� Electromagnetic showers are detected in
CsI�Tl� electromagnetic calorimeter �ECL� located inside the superconducting solenoid� which
provides magnetic 
eld of ��� Tesla� KL mesons and muon counters �KLM�� which consists of
resistive plate counters �RPCs�� are interspersed in the iron return yoke of the magnet� The
expected performance of each detector is summarized in Table ��	� The detail of each detector
component is given in ����� A brief description of the components follows�

����� Silicon Vertex Detector	SVD


The main task of Silicon Vertex Detector �SVD� is to reconstruct the decay vertices of two
primary B mesons in order to determine the time between two decays� This determination will
allow the measurement of time�dependent CP asymmetry in B� decays� Since SVD is one of
the most important detector for the simulation performed in this thesis� we will describe the
detail of SVD in Section ����

����� Central Drift Chamber	CDC


The main role of Central Drift Chamber �CDC� is the detection of charged particles� Speci
cally�
the physics goals of BELLE experiment require a momentum resolution better than �pt�pt �
���# 	

q
� � p�t for all charged particles with pt  ���MeV�c in the polar angle region �� � � �

����� In addition� CDC is expected to provide particle identi
cation information in the form of
precise dE�dx measurements for charged particles�

The inner and outer radii are � cm and �� cm� respectively� CDC consists of �� sense wire
layers in total and � cathode strip layers� The sense�wire layers are grouped into �� super layers�
where � of them are axial and � are stereo super layers� Stereo angles range from �	�� mr to
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Table ��� Main parameters of KEKB�

Ring LER HER

Energy E ��� ��� GeV

Circumference C �����	� m

Luminosity L �� ���� cm��s��

Crossing angle �x ��� mrad

Tune shifts �x��y ����������	

Beta function at IP 	�x�	�y ��������� m

Beam current I 	�� ��� A

Natural bunch length �z ��� cm

Energy spread �� �� � ���� �� � ����

Bunch spacing sb ���� m

Particle�bunch N ���� ���� ��� � ����

Emittance �x��y ��� � �������� � ����� m

Synchrotron tune �s ���� � ���	

Betatron tune �x��y ����	������ ���	������

Momentum �p �� ���� � 	� ����

compaction factor

Energy loss�turn Uo ����y����z ��� MeV

RF voltage Vc � � �� �� � 	� MV

RF frequency fRF ������ MHz

Harmonic number h ��	�

Longitudinal � ��y�	�z 	� ms

damping time

Total beam power Pb 	�y����z ��� MW

Radiation power PSR 	��y����z ��� MW

HOM power PHOM ��� ���� MW

Bending radius � ���� ����� m

Length of bending �B ����� ���� m

magnet

y without wigglers� z with wigglers
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	�� mr� The number of readout channels is ����� for anode wires and ���	 for cathode strips�
A ��# helium���# ethane gas mixture will be used in the chamber to minimize the multiple
Coulomb scattering contribution to the momentum resolution�

In the beam test of the full�size CDC prototype� a spatial resolution of ��� �m and a dE�dx
resolution of ��	# for ��� GeV�c pions were obtained as shown in Figure ���� Figure ����a�
shows the pulse height distribution for ��� GeV�c charged particles" it is seen that protons and
electrons are clearly separated from pions� This 
gure indicates e�� separation with �� or more�
which will provide a very powerful handle for electron identi
cation below � GeV�c� where E�p
method in ECL is not so e�ective� Measurement of dE�dx as a function of 	
 are shown in
Figure ����b��

The details of results of full�size CDC prototype can be found elsewhere�����

Figure ��� �a� A typical track residual distribution �b� A typical ��� truncated�mean pulse
height distribution�����

Figure ��� �a� A pulse height distribution for ���GeV�c charged particles� �b� A normalized
dE�dx distribution as a function of 	
�����
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����� Aerogel �Cherenkov Counter	ACC


The BELLE particle identi
cation system comprises an array of time�of��ight counters covering
the momentum range of p ���	GeV�c� augmented by a Aerogel �Cherenkov Counter �ACC�
system that extends the coverage upward to the kinematic limit of two�body B�decays such as
B� � ����� to p � 	�� � ���GeV�c� depending on polar angle�

Each aerogel counter module consists of silica aerogel radiator module and 
ne�mesh photo
multiplier tubes to detect �Cherenkov radiation� The typical aerogel module comprises aerogel
tiles contained in a ��	�mm�thick aluminum box� The inner surface of the box is lined with
Goretex sheet as the re�ector� The barrel part of ACC consists of ��� aerogel counters" ���fold
segmentation in z and ���fold segmentation in �� Five di�erent indices of re�ection� n � �����
������ ������ ���	� and ���	�� are used depending on � �angle with respect to the beam axis��
Each barrel counter is viewed by one or two 
ne�mesh photo�multipliers �FM�PMT�s�� The
endcap part of ACC has 		� counters in total with n � ���� and is structured in 
ve concentric
rings with ���� ���� ���� ���� and ���fold segmentation from inside to outside� Each endcap
counter is viewed by one FM�PMT through an air light guide� The number of readout channels
is ����� in the barrel and 		� in the endcap�

Figure ��� shows the performance of the ACC prototype in a beam test with ��� Tesla
magnetic 
eld� Pulse�height distributions produced by ���GeV�c pions are shown in Figure
����a� together with the results for sub�threshold particles"���GeV�c protons with n������ aero�
gel� Figure ����b� shows the ine�ciency and the background contamination as a function of a
threshold on the pulse height� We obtained e�ciency larger than ����# for separating pions
from protons� The probability for a proton mis�identi
ed as a pion is less than 	��#� The
background mainly comes from proton�induced knock�on electrons produced on the aluminum
box and aerogel material�

A detailed description of ACC and test beam performances can be found elsewhere�����
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Figure ��� ACC performances� �a� Pulse height distributions obtained with ���GeV�c pions
and ��� GeV�c protons for n������ �b�� the ine�ciency for pions and the mis�identi�cation
probability for protons as a function of the pulse�height threshold values�����

	



Figure �� TOF performance��a� Time resolution of a BELLE TOF module as a function of
the hit position and �b� ��p separation as ���GeV�c��	��

����� Trigger�Time of Flight Counter	TOF


The Time of Flight counter �TOF� system is required to have a ���ps time resolution in order
to provide �� ��K separation for momenta below ��	GeV�c� the region of interest for B��avor
tagging�

One ��mm�thick Trigger Scintillation Counter �TSC� layer and two ��cm�thick Time�of�Flight
counter �TOF� layer separated by a 	�cm gap are located at r � �	� cm� TOF is segmented into
�	� in � sectors and readout by one FM�PMT at each end� TSC�s have ���fold segmentation
and are readout from only backward end by a single FM�PMT� The number of readout channels
is 	�� for TOF and �� for TSC�

Figure ���a� shows the time resolution of BELLE TOF system as a function of a beam hit
position� The results achieved the time resolution that meets the BELLE design goal of ���ps�
Figure ���b� demonstrates the separation capability of the BELLE TOF counter� It indicates
�� separation of ��p at 	��GeV�c for the beam� which corresponds to �� ��K separation at
��	�GeV�c�

����� Cesium Iodide Calorimeter	ECL


The main purpose of the electromagnetic calorimeter �ECL� is the detection of photons from
B�meson decays with high e�ciency and good resolution� Most of the physics goal of BELLE
experiment require reconstruction of exclusive B�meson 
nal states� For typical B�meson decays
approximately one third of the 
nal state particles are ���s� thus it is important to have photon
detection capabilities that match those for charged particles� especially for low energy photon�
�� mass resolution is dominated by the photon energy resolution� Sensitivity to and resolution
of low energy photons are the critical parameters for the e�cient �� detection�

Electron identi
cation in BELLE relies primarily on a comparison of the charged particle
track momentum and the energy it deposits in the electromagnetic calorimeter� Good energy
resolution of the calorimeter results in better hadron rejection�

In order to satisfy these requirements� we chose a design of the electromagnetic calorimeter
based on CsI�Tl� crystal� All CsI�Tl� crystals are ��cm ����� radiation length� long� and are
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Figure ��� ECL performances� Energy resolution as a function of the incident photon�energy
for ����left� and ��� matrices� The results obtained from di�erent electron�beam energies are
shown by di�erent symbols� The star��� indicates the resolution obtained from the compton�
edge� The square is the result from the Monte Carlo simulation�����

assembled into a tower structure pointing near the interaction point� The barrel part of ECL
has ���fold segmentation in � and ����fold segmentation in ��

The forward�backward� endcap part of ECL has �������� fold segmentation in � and the
� segmentation varies from �� to ��� ��� to ����� The barrel part has ���	� crystals and
the forward �backward� endcap part has ����	����� crystals� Each crystal is readout by two
��mm�	�mm photo�diodes� Total readout channel is ���	� The inner radius of the barrel
part is �	�cm� The forward�backward� endcap part starts at z�����cm����	cm��

Several tests were performed with a photon beam provided from the backward Compton
scattering between electrons and laser photon ����� The energy resolution is given in Figure
��� for � � ��left� and � � ��right� CsI matrices in the photon�energy region from �� up to
���MeV�c� �

A detailed description of ECL performances can be found elsewhere�����

���� Solenoid magnet

The magnetic 
eld causes the charged particles to follow a helical path� Its curvature is related
to the momentum of the particles� The coil consists of a single layer of an aluminum�stabilized
superconductor coil� a niobium�titanium�copper alloy embedded in a high purity aluminum
stabilizer� It is wound around the inner surface of an aluminum support cylinder� Indirect
cooling is provided by liquid helium circulating through a single tube welded on the outer
surface of the support structure� A super conducting solenoid magnet provides a magnetic 
eld
strength of ��� Tesla in a cylindrical volume of ��� m in diameter and ��� m in length� The 
eld
value in the CDC volume is expected to vary by 	��#�
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����� KL and Muon Detector	KLM


The KL and Muon Detector�KLM� is designed to detect neutral kaons and muons with momenta
above ��� MeV�c� The detection of KL is needed to reconstruct B � J��KL� Muons are used
in the CP violation measurements to identify the �avor tagging B meson and to reconstruct
J�� � �����

Resistive Plate Counter �RPC� is utilized for BELLE KLM system� RPC�s are essentially pla�
nar spark counters wherein the avalanche induced by an incident charged particle is quenched
when the limited amount of charge on the inner surfaces of highly resistive electrodes is ex�
hausted� Having a particle penetrating an RPC� it becomes locally deadend for short time until
the inner surfaces can recharge through the resistive material� As resistive material for RPC�
BELLE KLM employs glass� which has a bulk resistivity of about ���� � ����$�cm�

The KLM detector consists of a barrel part and two endcap parts� Fourteen layers of ��
cm thick iron plate and each RPC superlayer contains two RPC planes and provides � and �
information� The barrel part has one additional RPC superlayer in front of the 
rst iron plate�
RPC is made of 	�mm thick glass electrodes� The iron plate is an absorber material for KLM
and also serves as a return path of the magnetic �ux provided by solenoid magnet� KL is tagged
with hadronic interactions in the ECL� the coil or KLM itself� Nominally� the detector covers
the polar angle range of 	�� � � � ����� Signals are readout by �� cm wide cathode strips in
both � and �� The number of readout channels is 	����� in barrel and ����	� in endcap�

����� Trigger and Data Acquisition

Figure ��� shows a schematic view of the trigger system� The trigger information from individual
detector components is formed in parallel and combined at the 
nal stage �global decision logic�
GDL�� In the full�bucket operation of KEKB� the time between beam crossing is only 	 ns and
trigger system works in the pipelined manner in order to avoid large dead�time losses� The GDL
provides the trigger signals 	�	�s delayed from the actual event crossing�

The global scheme of the data acquisition system is shown in Figure����� The data from
each subsystem are combined into a single event by the eventbuilder� The output of the event
builder is then transferred to the online computer farm�

The allocated data digitization time should be less than 	�� �s in order to achieve the dead
time less than ��# at ��� Hz trigger rate� Once the data taking is done� full event records are
reconstructed in an event builder system before being transferred to the online computer farm
where a more complete on line event reconstruction is done before the data is stored in the tapes
by the mass storage system�

��� Silicon Vertex Detector �SVD�

At the B�Factory experiment� the precision vertex detection is essential to observe the asymmetry
in the proper�time�di�erence of two B�mesons� We achieve this accuracy with using Silicon
Vertex Detector �SVD�� While the wire drift chamber has worse resolution than ��� �m from
sense wires for only r�� direction� the resolution of SVD is much better  the intrinsic resolution
is expected to be a few tens of microns� Therefore it is suitable for measurement of the vertex
of B�mesons in z�direction� BELLE SVD is situated just inside CDC and reconstructs precise
tracks of charged particles with combining CDC measurement�
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Table ��	 Performance parameters of the BELLE detector�

Detector Type Con
guration Readout Performance

Cylindrical�

Beam pipe Beryllium r�	�� cm Helium gas cooled

double�wall ���mm Be�	mm He

����mm Be

��� �m�thick�

Double � layers

SVD Sided r � ��� � ��� cm

Si Strip Length � 		 � �� cm ���� K ��z � ��� �m

Small Cell Anode �	 layers �r� � ��� �m

CDC Drift Cathode � layers �z � 	�� � �� ����m

Chamber r � ��� � �� cm A ��� K �pt�pt ����#
q
p�t � �

�� z � ��� cm C ��� K �dE�dx � �#

n  ���� ��	x�	x�	 cm�

� ���� blocks

ACC Silica ��� barrel �eff  �

Aerogel � 		� endcap K�� ��	�p����GeV�c

FM�PMT readout ����

Scintillator �	� � segmentation �t � ��� ps

TOF r � �	� cm� �	��	 K�� up to ��	GeV�c

� m�long

Towered structure �E�E�

CsI � ���x���x�� cm� ���#�
p
E����#

crystals

ECL Barrel r � ���	� �pos���� cm�
p
E

�	� � ��	 cm

Endcap z � ����	�f� E in GeV

���	 and ���� cm ����b�

MAGNET super inn�rad� � �� cm B � ��� T

conducting

Resistive ��layers ��������mr for KL

��cm Fe��cm gap�

KLM Plate c� two RPCs �t��ns

in each gap

� and � strips � �� K �# hadron fakes

� �� K
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The precise vertex information will also be useful for eliminating continuum events and re�
ducing combinatorial backgrounds and for measuring the life time of the short lived particles����

In this section� required capability� con
guration� readout system and expected performance
will be given� The more detail of BELLE SVD is described elsewhere�����

����� Requirement for Silicon Vertex Detector

The primary goal for the vertex detector is the measurement of an asymmetry in the proper
time distribution when one of B �B pair decays into CP eigenstate� The proper time di�erence
�t is given by

�t � �z�c	
� �����

where 	
 is the Lorentz boost factor due to the asymmetric beam energy �	
 � ���	 at KEKB�
and �z is the distance between the decay vertices of the two B mesons along the beam direction�
At the KEKB situation� mean decay length of B meson should be about 	���m� The proper
time distribution of B � J��KS was already shown in Figure 	���� The di�erence between the
B� and �B�� or positive and negative time scale� re�ects the CP asymmetry� The curves in the

gure are drawn assuming perfect vertex�position resolution� When the 
nite time resolution
is included� the di�erence between the positive and negative time scale is diluted� The errors
of measured vertex point reduces the sensitivity of the CP violation measurement� Figure ����
shows the relative integrated luminosity required for observing CP asymmetry in the B �
J��KS with �� signi
cance for di�erent �t resolutions� The penalty for resolution of �t�B �
��� �as compared to perfect vertex resolution� is ��# increase in luminosity� If �t�B further
degrades from ��� to ���� another �# increase in luminosity is required� We expect to achieve
�t�B � ���� corresponding to about ����m position resolution in the beam direction�

Figure ���� Required integrated luminosity as a function of the �z resolution for three di�erent
values of sin 	���
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Figure ���	 The con�guration of BELLE silicon vertex detector�
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5cm

Figure ���� The con�guration of SVD ladders� The hatched layers are hybrid board which
have the LSI chip for readout�

����� Detector Con�guration

The con
guration of BELLE SVD is shown in Figure ���	 and ����� SVD has three cylindrical
layers consisting of units of the silicon sensors� The position of each layer is ��� cm� ���� cm
and ���� cm in r direction� respectively� The three layers have �� �� and �� sensor ladders in ��
In order to make precise alignment with particle tracks and cover the non�active region at the
edge of each sensor� all silicon sensors have some overlap with one another� The sensor ladders
have 	� � and � unit sensors to cover the acceptance of 	� to ��� degree in polar angle in layer
�� 	 and �� respectively�

At the BELLE experiment� the transverse momentum distribution of charged particles from
B decays peaks around 	�� MeV�c� which makes multiple Coulomb scattering of great impor�
tance� For reduction of the materials� all readout electronics are located outside the acceptance
region�

Each sensor ladder is divided into two electrically�separated long and short half�ladders�
Each long half�ladder contains two Double�sided Silicon Strip Detectors �DSSDs� and two hybrid
cards� Each short half�ladder contains a DSSD and two hybrid cards� As shown in Figure �����
each inner sensor ladder consists of two short half�ladders� Middle sensor ladders consist of a
short and a long half�ladder� Outer sensor ladders have two long half�ladders�

����� Design of Unit Silicon Sensor

As a unit sensor� we selected DSSDs� where all sensors have the same design� We used the
DSSD fabricated by HAMAMATSU Photonics �HPK� originally designed for DELPHI micro
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Figure ���� The Schematic view of ladder assemble�

vertex detector����� This DSSD is called S��������� Figure ���� shows the schematic structure
of DSSD� It has a size of ��������mm� The one side �� n�side� of DSSDs has n��strips
oriented perpendicular to the beam direction to measure the z coordinate and the other side
�� p�side� with longitudinal p��strips� allows � coordinate measurement� The bias voltage
of ��V is supplied to the n�side and p�side is grounded� The n��strips are interleaved by
p� implants �called p�stops� to separate the consecutive strips electrically� The thickness is
��� � ���m� Figure ���� shows the readout scheme of DSSD� On both sides� the number of
readout channels is a half of the number of strips� On the p�side� every second strip is connected
to a readout channel� The remaining half strips are �oating� which are biased but not connected
to preampli
ers� capacitively dividing the charge between adjacent channels� which are connected
to the readout system� On the n�side� the consecutive two strips are connected to one readout
channel� In order to change direction of readout channel of n�strips to the direction of p�strips�
Double Metal Layer �DML� structure is adopted on the n�side�

Table ��� shows revised BELLE speci
cation for S����� The average resistance of poly�silicon
bias resistor is raised from original speci
cation�to ��M$ with an allowed�minimum of 	�M$�
Schematic view of strips on both sides is shown in Figure ����

Strips on the n�side for z measurement has larger noise than that on the p�side for � mea�
surement� In order to minimize the noise of the long half�ladder� di�erent sides of the two DSSDs
are connected i�e� p�strips on one detector are wire�bonded to n�strips on the other detector�p�n
�ipped� as shown in Figure �����

BELLE SVD will have ��	 DSSDs in total with a total of ����	� readout channels�

����� Readout System

The readout system of SVD consists of three parts� The charge signal from each silicon sensor
is ampli
ed by a pre�ampli
er in a LSI chip on the hybrid card� From this frontend electronics�
the current signal is sent to the repeater system 	m apart from SVD� The repeater system
converts the current signal to the voltage signal� ampli
es and sends it to the backend part in
the electronics hut ��m apart from BELLE detector� A schematic view of the readout system
is shown in Figure �����

�The original speci�cation of S���� guaranteed 
�M� for p�side and 	�M� for n�side as minimum values�
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Figure ���� The readout scheme on each side of DSSD� On the n�side Double Metal Layer
�DML� structure change the direction of readout electrode to same direction as p�side�
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Figure ��� The S
��
 silicon sensor� Top� p�side� Bottom� n�side�

Table ��� Speci�cations for S
��
�
���
Parameter p�side n�side

Chip size ���mm�����mm

Active Area ����mm��	��	�mm ����mm��	���mm

Thickness ��� � ���m

Readout�Bias� method AC�Poly�Si� AC�Poly�Si�

Strip pitch 	��m �	�m

Number of strips �	�� �	��

Number of readout strips ��� ���

Strip width ��m ��m

Readout electrode width ��m ���m

DML insulator material� thickness N�A SiO�� ��m

DML trace pitch� width N�A ���m���m

Full depletion voltage �Vfd� ��V Max

Breakdown voltage ���V Min

Leakage current at Vfd 	�A Max

Bias Resistance 	�M$ Min 	�M$ Min

Coupling capacitance at ��kHz ��pF ��pF

Breakdown voltage of coupling capacitor ��V Min ��V Min

Load capacitance at �MHz �pF 	�pF

Number of NG channel �� Max �� Max

Passivation SiO� SiO�
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Figure ���� The readout scheme of BELLE SVD�

Frontend electronics

As a frontend electronics circuit� we have chosen VA� chip����� which was developed at CERN�
The VA� is a �	��channel CMOS integrated circuit that is specially designed for the read�
out of silicon strip detectors and other signal devices� It has excellent noise characteristics
�ENC����e� � ���e��pF at 	���s shaping time�� and consumes only ��	mW�channel� Signals
from the strips of DSSDs are ampli
ed by charge sensitive preampli
ers� followed by shapers�
The output of the shaper is fed into a track and hold circuitry� which consists of a capacitor
and a CMOS switch� The voltage on the capacitors is connected to output ampli
ers� All �	�
channels in the chip are readout by single output ampli
er with a shift register� The signal from
all channels can be read by a single ADC in this way� Five VA� chips are put on a hybrid card
and all channels are connected to the strips of a silicon sensor with thin wires�

Repeater System

The repeater system has three roles� It receives analog signals from VA� through hybrid cards
and transmits them to the backend part� All control and timing signals are optimized and
transferred through the repeater system� Powers for frontend electronics and detector bias are
also distributed by the repeater system�

Backend in Electronics Hut

Backend electronics consists of �ash ADCs �FADC� and trigger timing modules �TTM�� TTMs
distribute clocks and other digital control signals required for the VA� readout sequence� The
signals from the repeater system are digitized by FADCs� We take signals from all VA� chips
at a rate of � MHz� In addition� FADC must also perform a zero suppression so as to reduce
the data�ow in data acquisition system in order to achieve the rate required by BELLE Data
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acquisition� FADC system contains digital signal processor �DSP� and 
rst�in�
rst�out �FIFO�
memory� To reduce the data size� DSP calculates and subtracts the o�set from signal for each
channel� The signal lower than given threshold is rejected�

����� Summary

The construction of SVD was already completed in November ����� Figure ���� shows the
cosmic ray event taken with BELLE CDC and SVD� The SVD system was installed to BELLE
structure in December ����� SVD and other sub�detectors of BELLE will start to take physics
data in the beginning of JFY �����
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2 cm

Figure ���� The cosmic ray event with BELLE CDC and SVD� This event was taken inside
BELLE structure in January �����
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Chapter �

Testbeam Experiment for Silicon

Strip Detectors

In this chapter� we will describe the results of beam tests for silicon strip detectors carried out
as R % D for BELLE SVD�

In Section ���� the motivation of the beam test is described� The sample detectors and
testbeam setup are described in Section ��	� The data processing is explained in Section ����
The results of beam tests are given in Section ���� We also describe the performance test of a
real�size Double sided Silicon Strip Detector �DSSD� for BELLE SVD in Section ���� Finally�
we summarize this chapter in Section ����

��� Motivation of Beam Test

BELLE SVD is required to have the vertex resolution of about ����m for the z distance of
two B vertices as mentioned in Section ���� We use DSSD as unit silicon sensor� When a
particle penetrates DSSD� p�strips measure � position and n��strips measure z�position�see
Section �������

The vertex resolution of SVD depends on the intrinsic spatial resolution� especially that of
n�strips� of a unit silicon sensor� The spatial resolution of Silicon Strip Detector �SSD� is better
with a narrower strip pitch for a small incident angle� According to our simulation study��	��
however� there is a possibility that better resolution is obtained with wider strip pitch for a
particle with large incident angles�

In addition� the adoption of the wide pitch detector reduces the number of strips and detector
capacitance� which results in the better S�N ratio and less number of fake hits from electric
noise��

Since the con
guration of BELLE SVD has cylindrical structure� the maximum incident
angle reaches ��� for n��strips for z measurement�� However� no experimental measurement
on the spatial resolution existed for inclined tracks with such a large incident angle�

The main purpose of this testbeam experiment was to measure the spatial resolution of SSDs
with various strip pitches at various incident angles� This was an indispensable information to
determine the strip pitch of BELLE SVD for z�coordinate measurement�

�We require detector to have the S�N ratio of more than 
��
�For p�strips �r � ��� the maximum incident angle is about ���� The spatial resolution in this condition was

already measured�����
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Table ��� The parameters of the sample detectors�
Sample A B C

Strip pitch p��m� �� �	� 	��

Number of strips 	�� �� ��

Strip width Wn��m� �� 	� ��

Electrode width Wr��m� �� 	� 	�

P�stop width Wp��m� �� �� 	��

Thickness��m� ���

Active area ���������mm�

Bias resistance 	�M$

In addition to the purpose described above� an important goal of the testbeam experiment
was to check the correctness of our Monte Carlo simulation program� This was carried out by
comparing the intrinsic spatial resolution with the one predicted by Monte Carlo simulation�

Finally� is was also required to evaluate the performance of a large�area DSSD selected as
the BELLE SVD unit sensor to check validity of our choice�

��� Detector and Testbeam Setup

����� Detectors

In order to study a spatial resolution of detector at large incident angles and with wide strip
pitches for n� strip� we used three sample detectors� denoted as type�A� B and C detectors�
fabricated by HAMAMATSU PHOTONICS K�K������

The structure of these detectors is shown in Figure ���� The parameters of these detectors
are shown in Table ���� The area of type�A�C detectors is ���������mm�� These detectors are
single sided with n� bulk and have n��strips on the ohmic side� whose strip pitches are ��� �	�
and 	���m� respectively� P�stops are adopted between strips to separate the consecutive strips
electrically� The bias voltage was ��V on the p�side� while the n�side was grounded�

p

Wn Wp

Wr

n-strip p-stop

read out
        line

+
10mm

10mm

n bulk

Figure ��� The schematic view and parameters of type�A detector� These detectors are single
sided and have only n��strips on n�side�

The charge signal from these detectors is readout with a multiplexor charge ampli
er VLSI
chip� These detectors have VA	 chips���� which have similar performance as that of VA�� which
is selected for BELLE SVD� The readout rate was 	��MHz for each strip�
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These sample detectors were tested in advance with 	 source and Infra�red laser� The results
of the tests are described elsewhere�����

����� Testbeam setup

The beamtest was performed at the �	 beam line at KEK�National Laboratory for High Energy
Physics� �	GeV Proton Synchrotron in May and November ����� During the data taking period�
we used a �� beam with momentum of 	��GeV�c for all sample detectors� Figure ��	 illustrates
our testbeam setup�

45mm

45mm

Beam

Sample SSD

Figure ��	 The testbeam setup�

Four reference SSDs are located upstream and downstream to reconstruct a particle track
precisely� These reference SSDs are single�sided and have an area of �	�������mm� each� The
p��strip pitch is 	��m and we read out every other strip� i�e� the readout pitch is ���m� The
detail of these reference SSDs is described elsewhere����� The sample detectors were mounted
between upstream and downstream reference SSDs and can be rotated about the axis which is
parallel to the n�strips� Data have been taken at eleven di�erent incident angles ranging from ��

to �� for the type�A and at ten di�erent incident angles ranging from �� to �� for the type�B
and C�

��� Raw Data Processing

For each event and each channel� the pulse�height and the noise are calculated with subtracting
the o�set and the common mode noise from ADC counts o��line�����

We calculate the hit position on the sample detector with the following steps"

��� Data sparsi
cation

�	� Cluster 
nding

��� ��ray cut

��� Position calculation

The details of these algorithms are described below�
Calculating hit position on reference detector is done in the same way as sample detectors

but without steps ��� and ����
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Only if we 
nd clusters on the whole set of four reference detectors �i�e� ��fold coincidence�� a
track is reconstructed by interpolating hit positions of the upstream and downstream detectors�
Since we measure such a 
ne spatial resolution� a few tens of �m� precise alignment of this setup
is very important� We have aligned the position of the sample SSD using data of the beam
tracks� The method of alignment is described in Appendix A in detail�

����� Data sparsi�cation

In the readout system of BELLE�SVD� the sparse data scan will be adopted� In this analysis�
therefore� we only used the information of the strips which had larger charge than �� times the
noise level and its both sides� The signals on the rest of strips were zero�suppressed�

����� Cluster �nding algorithm

The charge induced by a penetrating particle is collected by several consecutive strips� which
form a cluster� In order to 
nd the cluster� we 
rst look for consecutive strips with the given
width� whose sum of charges is higher than the given threshold� The threshold was de
ned as
��pPi �i

�� where �i is the r�m�s� noise of each strip� The cluster width� Nw� was de
ned as

Nw � 	 � Int����� D

p
� tan��� �����

where D is the thickness of the silicon wafer �����m�� p a pitch of the readout strip� � the
incident angle� and Int�x� the nearest integer to x� If there is more than one cluster� we choose
a cluster which has the largest charge�

����� ��ray cut

When a ��ray electron is generated� larger charge is deposited on the neighbor strips than other
strips in the cluster� This e�ect is large for particles with a large incident angle� In order to
reject the e�ect of ��rays� we applied the following algorithm as a ��ray cut for incident angles
larger than ���� When Qi is greater than � Q � ��i� Qi is changed to � Q ��

P
Qi�Nw�

����� Position �nding algorithm

For computing the impact position of the particle passing through the detector� we used three
di�erent methods� i�e� ��� the analog centroid method�AC�method�� �	� the analog head�tail
method�AHT�method� and ��� the non�linear method on ��ETA�method������

Analog centroid method

In the AC�method� the hit position� XAC � is given by

XAC �

X
i�cluster

xiQi

X
i�cluster

Qi
� ���	�

where xi is each strip position de
ned at the center and Qi the charge collected on each strip�
In the AC�method� we used the information of the strips with charge larger than �i�
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Analog head�tail method

For a large incident angle� the charge generated by a particle spreads among many strips� We
assumed that the charge collected by strips was proportional to the path length of a particle
in a SSD� In this case� the charges collected by strips except both edges of the cluster do not
contain position information� Therefore including this information �which is the case in the AC
method� simply degrades the spatial resolution� In the AHT�method� we used the information
from strips on both edges only to solve this problem� We de
ned the head�tail� strip as a strip
which had the smallest�largest� strip number and which had charge larger than three times the
noise level in a cluster� The hit position� XAHT � is then given by

XAHT �
xh � xt

	
�
Qt �Qh

	QAV
� p� �����

where xh�xt� is the position of the head�tail� strip and de
ned at the center of the strip� The
charge collected on the head�tail� strip is Qh�Qt�� The average pulse height on the cluster is
QAV �

ETA method

For a small incident angle� the charge generated by a particle is collected by almost a single
strip� Figure ����a� shows a simulation of the charge division between consecutive two strips�
We de
ne � as

� �
Qright

Qleft � Qright
� �����

where Qleft�Qright� is the charge collected on the left�right� side strip of the hitpoint�
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Figure ��� Simulation of �a� Charge division and �b� � distribution for the type�B�����m��
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In the ETA�method� the hit position� X	� is given by

X	 � pf��� � xleft� �����

where p is the readout pitch� f��� is an arbitrary growing function of �� with f��� � � and
f��� � �� We de
ned f��� as

f���� �

R 	�
�

dN
d	 d�R �

�
dN
d	 d�

� �����

where dN�d� is the di�erential � distribution� The function is obtained with 
tting Figure
����b� with the complex Gaussian�

��� Results

����� Signal distribution� S�N ratio and Uniformity

Figure ��� shows a pulse�height distribution of the type�A ����m� detector with zero incident
angle�� � ���� The S�N ratio we obtained was ���� � ��� for the type�A� 	��	 � ��� for the
type�B and ���� � ��� for the type�C� respectively�
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Figure ��� Signal distribution with the type�A��� �m� detector�

To establish the design of SSD with the wide strip pitch� it was necessary to check that there
was no sizable loss of detection e�ciency since there could be a region of weak electric 
eld
in the middle of n��strips where e�ciency of charge collection might be lower� We check the
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uniformity of charge collection e�ciency for the type�C �	���m� detector� which has the widest
strip pitch� Figure ��� is a scatter plot of the pulse�height vs� the position of incidence obtained
with the reference SSDs� In the 
gure the both ends �i�e� Position � �� 	���m� correspond to
the center of strips� It is seen that there is no sizable loss of charges between two strips�
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Figure ��� The pulse�height distribution as a function of the position of incident particles with
the type�C���� �m� detector�

����� Residual distribution

Figure ��� shows the residual distributions of the type�C �	���m� with the AC method� The
di�erence between the point reconstructed by the reference telescope and the sample SSD is
de
ned as residual� The charge generated by a penetrating particle is di�used� The size of the
area is about 	��m���� When this di�used region is much narrower than strip pitch� the charge
is collected by only one strip� In this case the penetrating position has no correlation with that
reconstructed with AC method� The residual distribution forms a rectangle with width of the
strip pitch� �Figure ����a��

We de
ned sigma��fit� by 
tting each distribution with the Gaussian distribution�� Table
��	���� summarize the �fit obtained for all sample detectors� This �fit contains the contribu�
tions from multiple Coulomb scattering and the 
nite resolution of the reference SSDs� These
contributions need to be subtracted from �fit to obtain the intrinsic resolution of the sample
SSD� Multiple scattering e�ect is calculated with taking the geometry of the setup and the
momentum of the �� beam into account����� On the sample SSD� this e�ect is estimated to
be ��������m for x�direction and ��������m for y�direction for particles with an incident angle
of ��� The resolution of each reference SSD has been measured by replacing the sample SSD

�The residual distribution does not form a Gaussian shape at zero incident angle� However� when we ignored
the tail of distribution larger than strip pitch� the root mean square of residual was identical value of the width
of �tted Gaussian function�
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Figure ��� Residual distribution with the type�C�����m�� �a� ���� �b� ��	�� and �c� ��
���

with a reference SSD and we obtained ������	�m� On the sample SSD� this corresponds to an
uncertainty of ��������m�

����� Spatial resolution

The spatial resolution of the sample SSDs as a function of the incident angle is shown in Figure
������ and Table ��	����� We also show the simulation result for comparison� In our simulation�
the signal and the noise are generated to reproduce the same S�N ratio as that in the measure�
ment� The detail of simulation program is described elsewhere��	� ��� The measured data and
the simulation data are both analyzed with the same method� In the 
gure the open squares
indicate data points with the AC method� the solid circles with the AHT method and the solid
triangles with the ETA method� respectively� The solid lines are the simulation with the AC
method� With the AC method� measurements agree well with the simulations�

The AHT method was applied for type�B and C with large incident angles� It is seen that
there is no sizable improvement once the sparsi
cation is adopted� The peak of the signal read
out from a single strip is expressed as S�N � p

D�sin
 � which becomes smaller with the larger
incident angle ��� and the smaller strip pitch �p�� When p is ���m �type�A� and � is ��� the
expectation is ��� �with S�N of 	�� which is below the threshold of the sparsi
cation� Therefore
we did not apply the AHT method for the type�A�

With the ETA method� the resolution is sensitive to the S�N ratio� We do not see a sizable
improvement compared with the AC method in this test where the S�N ratios are around 	��
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Table ��	 Summary of the spatial resolution on the type�A with the AC method�
Angle �fit Spatial Angle �fit Spatial

resolution resolution
�deg�� ��m� ��m� �deg�� ��m� ��m�

��� ���� � ��	 ���� � ��� 	��� 	��� � ��� ��� � ���
��� ���� � ��	 ���� ��� ���� 	��� � ��� ��� � ���
��� ���� � ��	 ��� ��� ���� ���	 � ��� 	��� � ���

���� ���� � ��	 ���� ��� ���� ���� � ��� ���� � ��	
���� ���� � ��	 ���� � ��� ���	 ��� � ��� ���� � ���
	��� ���� � ��	 �	�� � ���

Table ��� Summary of the spatial resolution on the type�B with the AC method�
Angle �fit Spatial Angle �fit Spatial

resolution resolution
�deg�� ��m� ��m� �deg�� ��m� ��m�

��� �	�� � ��	 	��� � ��� ���	 ��� � ��� 	��� � ���
��� 	��� � ��	 	��� � ��� ���	 ���� � ��� 	��� � ���

���	 ���� � ��	 ���� � ��� ���� ��� � ��� 	��� � ���
	��	 		�� � ��� ��� � ��� ���	 ���� � ��� �	�� � 	��
���	 	��� � ��� ���� � ��� ��� ���� � ��� ���� � ���

Table ��� Summary of the spatial resolution on the type�C with the AC method�
Angle �fit Spatial Angle �fit Spatial

resolution resolution
�deg�� ��m� ��m� �deg�� ��m� ��m�

��� ��	 � �� ���	 � �� ���	 �� � ��� ���� � ��
�� ���	 � ��� �	�� � ��� ���� ���� � ��� �	�� � ���

���� ���� � ��� ���� � ��� ���	 ���	 � �� ���� � ���
	��� ���� � ��� ���� � ��� ���� ���� � ��� ��� � ���
���	 	��� � ��� 	�� � ��� ��� ���� � �� ��� � ���
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��� Performance of BELLE SVD

����� Selection of unit sensor

We determined the design of the unit silicon sensor with the test results of the small sample
detectors� If we use one kind of silicon sensor for simplicity� a detector with the strip pitch
around ����m gives good resolution in all regions� Thus we selected S���� SSD which has the
pitch of ���m for n��strip and is commercially available� The detail of parameters of S����
SSD was already shown in the previous chapter�Table �����

����� Test of the Detector Prototype of BELLE SVD

Detector prototype

We also tested the detector prototype which is the same as the detector module of 
nal design
of BELLE SVD�� The schematic view of the detector prototype is shown in Figure ����� The
detector prototype consists of two S���� SSDs� Two SSDs are connected with wire bonding�
As mentioned in the previous chapter� the detector module of BELLE SVD is made with one
or two sensors connected� In order to test both cases� a part of the detector prototype has the
region where two SSDs are wire�bonded� We call this region �the double chained region�� Other
part where strips of two SSDs are not connected is named �the single region�� The bias voltage
was ��V on the n�side� while the p�side was grounded� The charge signal from the detector
prototype was read out with a Viking chip�����

The measurement was performed with the same setup as that for the small sample detectors�
During the data taking period� we used a �� beam with momentum of ���GeV�c� Data have
been taken at the seven di�erent incident angles ranging from �� to ����

Results

We obtained the S�N ratio of �� � ��� for n�side of the single region and �	�� � ��� for the
n�side of the double chained region� respectively��

The spatial resolution of the n�side as a function of an incident angle ranging from �� to
���� is shown in Figure ���� for the single region and ���	 for the double chained region� These
results are summarized in Table ���� Since the incident angle is smaller than ���� we calculated
the hit position only with the AC method� In the 
gure the open squares indicate data points
and the solid line the simulation� We can see a good agreement between the measurement and
our simulation�

In our simulation� we neglected the gain variation of a preampli
er for each strip and a part
of the capacitive charge coupling with double metal layer structure����� This e�ect is expected
to be large with a small incident angle� The di�erence between simulation and measurement
mainly comes from this e�ect�

�The di�erence is that two silicon sensors are connected without p�n �ipped�
	The detector prototype consisted of two S���� with both n�sides connected� which gave the worst S�N ratio�

The result was� however� consistent with theoretical expectation� Since the real detector module uses p�n �ipped
connection� S�N ratio of the double region was much better and met our speci�cation�
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Table ��� Summary of the spatial resolution on the n�side of the detector prototype of BELLE
SVD�

Single region Double chained region

Angle �fit Spatial Angle �fit Spatial
resolution resolution

�deg�� ��m� ��m� �deg�� ��m� ��m�

��� 	�� � ��� 	��� � ��� ��� 	��� � ��� 	��� � ���
��� ���� � ��� ��	 � ��� ��� 	��	 � ��� ���� � ���

���� ���� � ��� ���� � ��� ���� ���� � ��� ���� � ���
���� ���� � ��� ��� ��� ���� ���� � ��� ���	 � ���
	��	 ���� � ��� ���� � ��� ��	 ���� � ��� �	�� � ���
	��	 ��� � ��� ���� � ��� 	��	 ��� � ��� ���� � ���
	��� ���� � ��� �	�� � ��� 	��� ��� � ��� ��� � ���

��	 Summary

We have measured the spatial resolution of the wide pitch SSDs and a prototype of BELLE
SVD with large incident angles�

As expected by our simulation� the spatial resolution with wide strip pitch detectors didn�t
become worse very much and was better than that with narrow strip pitch detectors at the large
incident angle� Our design of the silicon sensor of BELLE SVD �z�strip pitch of �� �m� is proper
choice to obtain good spatial resolution for particles with any possible incident angles required
at BELLE SVD�

The spatial resolution shows good consistency with that expected by simulation with all
prototype detectors� Our simulator well reproduces the behavior of intrinsic resolution of SSD�
The simulator of BELLE detector described in the following chapters includes the SSD simulator
used for comparison in this chapter� The results justify the correctness of SSD part of simulator
which is the most crucial part in our physics simulation�

The overall performance for vertex reconstruction of BELLE SVD system is demonstrated
in Chapter � with physics simulation�
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Figure ���� The schematic view of the detector prototype of BELLE SVD�
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Figure ���� Resolution measured as a function of incident angle on the n�side of the single region
of the detector prototype of BELLE SVD� The open squares with error bars are measured data�
The solid line is our simulation�
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Figure ���	 Resolution measured on the n�side of the double chained region of the detector
prototype as a function of incident angle�
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Chapter �

Monte Carlo Simulator for BELLE

detector

This chapter presents an overview of the software tools used in the Monte Carlo simulation in
this thesis� After BELLE experiment starts� this simulator will be used for various purposes� e�g�
to estimate the detector response� e�ciency and acceptance comparing with the experimental
data�

In Section ��� a general framework of software and data �ow for experimental and Monte
Carlo�MC� data is described� Section ��	 explains the event generation for Monte Carlo simu�
lation� In section ���� the detailed description of detector simulation is given�

��� General Framework of Software

Detector
 Simulator

Analysis

(PID part)

Parametrized
   simulation

(CDC,SVD,ECL)

GEANT-based
 simulation

KEKB
e  e   collision
                 event

Event generator

Reconstruction
               Tools

Smearing 
   simulator

BELLE 
Detector

Real Experimental Data

Monte Carlo Simulation
Data Summary
                   Table

+ -

Figure ��� General Framework of Software�

The general framework of software and data �ow for analysis is shown in Figure ���� All data
transport� shown with arrows in Figure ���� are treated with the bank system called Panther����
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developed for BELLE� The MC events are produced by an event generator� The detector simu�
lation is based on GEANT��� to simulate charged particles in CDC and SVD� and photons in
ECL� The signal from detector simulation has the same format as the experimental signal from
the real detector�

The MC and experimental signals �digitized quantities such as time and charge� are trans�
lated to the physics quantities such as momentum and energy with reconstruction software�
Other parts of the detector simulation� ACC� TOF and KLM� don�t make the detector signal�
i�e� these are not based on GEANT� These detector parts are used for particle identi
cation and
we used the parametrized simulator� Particle identi
cation with CDC and ECL was also treated
with the parametrized simulator� For the parametrization we used the results obtained in the
test�beam experiments� In this thesis� unless otherwise noticed� MC means the event generated
by GEANT and parametrized simulation for particle identi
cation�

We also have a �smearing� simulator� which simulates all detector response by smearing the
particle momentum vectors� Since it is about ��� times as fast as GEANT�based simulator� it
was used to process the large amount of background events� The detail of the smearing simulator
is described elsewhere�	��

All physics quantities� reconstructed and smeared for the particles were stored in Data Sum�
mary Table�DST�� Analyses were performed using DST�

��� Event Generator

We used QQ��� event generator developed by CLEO� It is designed to simulate the e�e�

collision at the energy of ���S�� Event generation by QQ consists of two parts� In the 
rst part
reaction products which we call primary particles are generated at the interaction point� In the
second particles decay according to the decay table and then daughter particles are generated�
All interactions were calculated in the center of mass frame and were boosted to the lab frame
according to the di�erence of e� and e� beam energy�

����� Primary generation

The cross section for various physics processes are shown in Table ��� at the energy of ���S�
mass� Although Bhabha and 	
 processes have larger cross sections than ���S� production�
they are rejected in the selection e�ectively because of low track multiplicity or low total energy
and transverse momentum� Therefore in this analysis we only considered ���S� production and
continuum events� The decay of ���S� was taken care of in this part" it was assumed to decay
either into B� �B� or B�B� with the equal branching ratio��	��

The continuum� e�e� � q�q� could be a serious backgrounds for B� �B� signal� The continuum
events were generated using JETSET��� �� inside QQ� For the hadronization process� LUND
string model��� was used for light quarks� u� d and s� and Peterson fragmentation model��
was used for heavy quarks� c and b�

The spread of beam energy and the interaction point �IP� are also treated in this part� IP
was distributed according to the size of beam bunch and the accuracy of beam orbit at the
interaction region of BELLE detector� These parameters were determined with the design value
of KEKB accelerator and the 
nal�focus quardrupole magnet����� Assuming Gaussian shape�
the widths of distribution were ����m� ��m� �mm in x� y and z directions� respectively� The
real beam bunch may have a wider tail which can not be parametrized with the ideal Gaussian
function� Such non�Gaussian tail becomes an origin of beam background which is explained
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Table ��� Total cross section of e�e�collision at
p
s � ������GeV � for various processes�

Physics Process Cross Section�nb�

���S� � BB ����

Hadronic production from continuum 	��

������� ���

Bhabha ��



 	��

	
 � ��

in Section ��	��� The energy of e�e� beam is also distributed� Center value of the energy of
electron and positron were set to be ���� and ���GeV� Assuming a Gaussian shape� the beam
energy smearing of electron and positron was modeled with widths of ��� and 	��MeV�

����� Decays of particles

Generated particles decay to a speci
c mode with its branching ratios and lifetimes speci
ed in
the decay table taking its momentum into account� Long lived particles �K�� �� and ��� don�t
decay in the event generator� In order to consider the interaction with the detector material�
decays of these particles are treated in the tracing part of detector simulation�

The branching ratios of B mesons to various exclusive mode were taken mainly from CLEO�s
data� Branching ratios of some of rare B� decays are assumed to be the same as that of
corresponding B� decays based on isospin symmetry� In order to specify 
nal states of a part
of hadronic decays for which no experimental result is available� we used the decays to quark
components and determined daughters and momentum distribution using fragmentation model
in JETSET assuming the quark �avors of u� d� s and c�

We used the value of sin 	�� � ���� to calculate CP asymmetry and mixing parameter
�m��B � ��� to reproduce B� �B� mixing�

����� Beam background

Beam particles interact with residual gas molecules� Their paths deviate from those without
interaction� Such particles are called spent electrons� The electrons�or positrons� which deviate
from the original path may interact with the beam pipe or the detector� The background from
such an origin is called �beam background� and can be a serious problem at the high luminosity
collider machine such as KEKB�

To generate spent electrons we used DECAY TURTLE program���� First� it simulates the
beam�pro
le with the parameters of KEKB� The interaction with a residual gas molecule was
simulated with Coulomb scattering and Bremsstrahlung process� The o��orbit particles are
transported with magnetic 
eld along the beam line�

Generated spent�electrons are then mixed with each normal event� While the particles from
beam collision are generated at a time� the beam background particles are not synchronous to
collision timing� The beam background particles were generated with the time window of ���sec
before beam collision time in order to take this e�ect into account�
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��� Detector Simulation

The generated particles are put into the detector simulator based on GEANT� In this section�
particle tracing and detector response of SVD� CDC and ECL are described�

����� Particle tracing

The simulator takes into account detailed con
guration of all the sub�detectors� Particle inter�
action in the detector material� decay in �ight and the bending of the trajectory in the magnetic

eld are considered� The magnetic 
eld is oriented to the electron beam direction �z�direction�
and has the strength of ��� Tesla�

The short lived particles� which should decay inside the beam pipe� were forced to decay in
the event generator� Although the decay of neutral particles� KS and &� were also determined
by the event generator� the decays of charged particles� kaon� pion and muon� were treated here
according to the life time and branching ratios in order to take the interaction with material into
account� For charged particles� energy loss is calculated in the materials by using Berger�Seltzer
formula���� Although ��rays were not generated� the e�ect of �uctuation by ��ray generation
was calculated according to Landau�Vavilov�Gauss function����� The e�ect of multiple scatter�
ing� bremsstrahlung� positron annihilation was calculated using standard formula� In addition�
Monte Carlo simulation included the photon conversion at the material� compton scattering
and photoelectric e�ect� To simulate the interaction of hadrons with the nuclei of the matter
traversed� we used FLUKA����� which is a GEANT library package�

The secondary particles generated by the above interactions were treated in a similar way�
All particles propagate until they go out of the detector 
ducial volume or their energy becomes
lower than a threshold� The energy thresholds are ���keV for a photon and an electron� �MeV
for a muon and a charged hadron� ��MeV for a neutral hadron�

����� Central Drift Chamber	CDC
 response simulation

Central Drift Chamber�CDC� was divided into many small cells� each of which has one sense
wire at the center� When charged particles pass a cell� the deposited energy was calculated from
its momentum with Bethe�Bloch formula� The charge was generated from the deposited energy
and was then collected by sense wires� The drift time from the particle path to the sense wire
was then smeared with position resolution� The deposited energy and the drift time with their
smearing are then converted to digital data� If multi hits were recorded in the same cell� the
earliest hit�timing and sum of charge were kept� After all these processes� we obtained hit wire
numbers� TDC and ADC counts�

����� Silicon Vertex Detector	SVD
 response simulation

The response of SVD is based on the testbeam result described in Chapter �� When a charged
particle penetrates Silicon Vertex Detector�SVD�� it creates electron�hole pairs along its path
in the depletion area of the semiconductor� The �uctuation due to ��ray is taken into account�
The charge carriers are then moved� di�used and collected to the nearest strip and smeared
with electric noise� The charge was distributed among neighboring strips taking into account
the charge coupling between the strips� Then the charge was converted with an ampli
er to
voltage signal with an appropriate time constant and was translated to ADC count and stored�
After these processes� we obtained the hit strip numbers and ADC count for each strip�
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����� ECL response simulation

As mentioned in the particle tracing part� GEANT simulates the electromagnetic shower of a
charged particle in the detector material� Each particle entering CsI�Tl� crystal of Electromag�
netic Calorimeter �ECL� deposits energy which depends on its velocity and the charge� ECL
routines collect the energy deposited in each CsI�Tl� crystal�

The measured energy is smeared with two kinds of noise� One is incoherent� which is in�
dependent in each crystal� The other is coherent noise� which is correlated and the energy in
all crystals are shifted simultaneously� The magnitudes of these noise are optimized with data
taken from the prototype test and design performance of readout electronics� Considering the
light yield to be proportional to the the sum of deposit energy� we correct measured energy with
calibration constant� and translate it to ADC count�

����� Simulation of detector response for particle identi�cation

The simulator of each Particle Identi
cation �PID� device provides a probability for a certain
particle hypothesis when a particle enters within its acceptance� In the following� the calculation
methods of the probability are described�

Central Drift Chamber�CDC�

CDC is able to test particle hypothesis by checking the di�erence between the expected and
measured energy loss� The expected dE�dx for each particle hypothesis is calculated from
particle�s measured momentum� The measured dE�dx is given from the generated but smeared
velocity according to the dE�dx resolution�

The probability of a track being a particular particle type i ��e� �� ��K� p� is calculated as 

probi �
�p

	��ix
exp

��
���

	

�
xmea � xiexp

�ix

��
��
� �

where xmea is measured�simulated� dE�dx� xexp expected one for the particle type i and �ix
resolution of measured dE�dx� For example� the ��K separation capability with dE�dx of CDC
is shown in Figure ��	�

Time of Flight Counter�TOF�

The main role of TOF is to distinguish K� from �� at lower momentum than ��	GeV�c�
Taking the TOF�s acceptance ���� � � � �	�� in polar angle� and e�ciency����#� into ac�
count� the simulator calculates the time�of��ight smeared with the time resolution of TOF coun�
ters�����pS�� The expected time�of��ight is calculated with the 	 of particle which is calculated
with momentum and the mass of the particle in assumption� The probability of a track being a
particular particle type is calculated in the same way as CDC� The ��K separation capability
with TOF system is shown in Figure ��	�

�At the real experimental situation� the calibration constant will be determined using �� mass reconstructed
from 	��
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Figure ��	 The ��K separation capabilities expected for the dE�dx and TOF systems expressed
in units of rms separation� These are for � � ��� tracks unless otherwise speci�ed�

Aerogel �Cherenkov Counter�ACC�

The ACC�s acceptance is �� � � � ��� for forward endcap region and ��� � � � �	� for
barrel region� The detection e�ciency is de
ned as Figure ���� These values are based on data
from test�beam experiments ����� The probability of a track being a particular particle type is
calculated as 

probi � �iexp �detected��

probi � ��� �iexp� �no detected��

Here� �iexp is an expected detection e�ciency for ith particle hypothesis�

Cesium Iodide Calorimeter�ECL�

The performance of ECL is taken from test data and GEANT simulation ��	�� The electron
identi
cation e�ciency is de
ned as

eff � ����Ee � ���GeV ��

� �������� � Ee � ���GeV ��

� �����Ee  ���GeV ��

for the region ��� � � � ����� The probability of misidentifying a hadron as an electron�effmis�
is assumed to be ��������# at ���GeV�c and ��	����� at ���GeV�c for a positive�negative� par�
ticle� For the given energy of particle� effmis is interpolated from these values and calculated�

��



Figure ��� The e�ciency of the ACC as a function of momentum� The open circles are mea�
surements under a magnetic �eld of ���T�

The probability of a track being a particular particle is calculated in the same way as the ACC
case with eff for electron and effmis for hadrons�

KL and Muon Detector�KLM�

KLM is used to identify high momentum muons� KLM�s e�ciency is assumed to be

eff � ����E� � ��	GeV ��

� ����E�  ��	GeV ��

for the region ��� � � � ����� The hadron misidenti
cation probability is de
ned to be �# which
was derived with GEANT�based simulation����� The probability of a track being a particular
particle is calculated in the same way as the ACC case with eff for muon�

���� Trigger simulation

Trigger e�ciencies for various decay modes were checked with simulation� The results show that
we obtain � ���# e�ciency for the decay modes of B mesons we are interested in����� Therefore
in this analysis� we have assumed that trigger e�ciency is ���# and the trigger simulation is
not included� Since we don�t need to know the absolute trigger e�ciency to measure the CP
asymmetry� we simply assume the e�ective integrated luminosity throughout the analysis�
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Chapter �

Simulation for Vertex Resolution

In this chapter� we explain a simulation performed to estimate the vertex resolution of BELLE
SVD for B meson decays�

We studied the vertex resolution for B � J��KS � which is one of the best modes to observe
CP asymmetry in BELLE� In the study� we generated ���S��B� �B� in which one B decays
into J��KS �called BCP hereafter� and the other decays generically �called Btag hereafter�� with
Monte Carlo simulation� We set J�� decays into two leptons ����� or e�e�� and KS decays
into �����

In Section ���� the track reconstruction of charged particles is described� In Section ��	�
we explain the method to reconstruct the decay vertices of the two neutral B mesons from the
decay of ���S� and estimate the resolution of vertex position� We summarize this chapter in
Section ����

	�� Track Reconstruction

���� Track reconstruction in CDC

The trajectory of a charged particle is helical in the magnetic 
eld� Reconstructed tracks are ex�
pressed with 
ve helix parameters�dr� �� �� dz� ��� The de
nition of these parameters are shown
in Figure ���� The ��dimensional track reconstruction in CDC is performed in the following
order��

�� Using hits of the axial wires �see Section ��	�	�� each track in r�� plane is reconstructed
assuming it is a circle� In order to 
nd track candidates� �the conformal and histogram
method� was used�����

	� Using hits of the stereo wires� a track is reconstructed assuming a straight line in z�Sr�
plane� where Sr� is the length of arc along the track in r�� plane�

�� The track was 
tted using hits of the axial and the stereo wires with a helix trajectory in
� dimension�

All helix parameters are determined with this 
tting �
Figure ��	 shows the tracking e�ciency as a function of a momentum for �a� single �� events

and �b� B � J��KS events� where J�� was set to decay into l�l�� KS into ���� and other B

�The details of the track �nding are described in Appendix B�
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Figure ��� Helix parameters� The charged tracks are expressed with �ve helix parameters dr
� � dz and �� In the �gure Sr� is the arc length�

generically� The 
gures do not include an acceptance e�ect� For single �� events� we obtained
the e�ciency of ��# or more for the momentum higher than 	��MeV�c� For B � J��KS �
the e�ciency was degraded by the presence of other particles� However� it is high enough for
momentum above ��� MeV�c�

���� Track �tting with CDC and SVD hits

SVD has much better resolution in z direction than that of CDC� Using SVD hits and extrap�
olation of tracks reconstructed in CDC� tracks are re
tted to reconstruct vertices with high
accuracy�

In track reconstruction in CDC described above� the e�ects of the multiple scattering �MS�
and energy loss �LOSS� in the detector were ignored� Taking these e�ects into account� we re
t
each track with all hits in both CDC and SVD�

The re
tting was performed with a Kalman 
lter method���� �� ���� Because of the e�ects
of MS and LOSS in the detector� the trajectory of particle is not an ideal helix� In the Kalman

lter method� helix parameters are not global and are de
ned at each hit point of CDC and
SVD� Hits are traced from the outermost wire in CDC to beam axis along a track trajectory�
Taking MS and LOSS� into account� we correct the helix with the expected trajectory and each
measured hit point� Hits with poor quality were also rejected in this re
tting in CDC�

In the 
tting in SVD� since this re
tting was performed in ��dimension� we required that hit
strips were found on both sides on each silicon sensor�

When there are associated hits on at least 	 layers� the track is de
ned as �a track with
matched SVD hits�� Then helix parameters are re�calculated at the interaction point�

Figure ��� shows the SVD matching e�ciency� We obtained the matching e�ciency of ��#
with the momentum higher than ���MeV�c�

�We assume the particle has a pion mass�
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Figure ��	 Tracking e�ciency as a function of the momentum for �a� single �� event and �b�
B � J��KS event�
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Figure ��� SVD matching e�ciency for single muon events� Muons were generated in SVD
acceptance�
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Figure ��� Vertex reconstruction�

	�� Estimation of Vertex Resolution

���� Overview of vertex reconstruction

Vertex reconstruction is a process of 
nding the best estimate of the three dimensional point
of intersection of tracks�See Figure ����� Assuming that the magnetic 
eld is uniform and the
e�ect of detector material is small� the trajectory of a charged particle can be approximated by
a helix� Most of vertex reconstruction algorithms work by minimizing the sum of the squares
of the distance of closest approach of a set of tracks to a candidate point� The �� of vertex is
calculated as����

�� �
nX
i�

�hi � h�v� pi��
TC��

i �hi � h�v� pi�� �����

where n is the number of tracks� i runs over all the tracks� Ci is a covariance matrix of helix
parameters� which gives the errors of parameters and their correlation to each other� hi is the
matrix of 
ve helix parameters of i�th track� h�v� pi� is the matrix of 
ve helix parameters
which passes the vertex� v� and have the momentum� pi� The reduced ���� ���n�d�f�� indicates
goodness of vertex reconstruction� where n�d�f� is the number of degrees of freedom de
ned as
	�Ntrack � �� where Ntrack is the number of the tracks used to reconstruct a vertex�

���� Vertex reconstruction of BCP

We used the decay vertex of J�� as the decay vertex of BCP �called VCP hereafter�� The vertex
of J�� was reconstructed with using two daughter leptons�
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In order to maximize the reconstruction e�ciency of the VCP � we took the following proce�
dure 

� If both tracks have matched SVD hits� VCP was reconstructed with two leptons in ��
dimension�

� If only one track has a matched SVD hits� we reconstructed the vertex position with one
lepton track and the beam axis�

If both tracks do not have matched SVD hits� we did not use the event� By adding the second
criterion� the e�ciency become better by ��#� The size of the beam constraint is determined
with the size of beam bunch and the decay length of B meson� The beam size is ����m in x
and ��m in y at the interaction point� The decay length of B meson in x � y plane is about
���m�� We have assumed the size of beam constraint to be ����m in x and ���m in y�

In order to reject vertices erroneously reconstructed in random combination� we required a
candidate to have smaller reduced ��vtx of 
tting than a threshold �������� The distribution of
the reduced ��vtx and the residual distribution in z�direction between the reconstructed VCP and
the generated VCP are shown in Figure ��� for B � J��KS MC� In the residual distribution�
there is a tail due to electrons which have lost large energy by radiation� When we have 
tted
the residual distribution with double Gaussian function� ��s were ���� �m and 	���� �m for
narrower and wider components� respectively� The fraction of narrower component was ��#�
We get the vertex reconstruction e�ciency of ����# for B � J��KS � The vertex resolution
obtained is summarized in Table ����
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Figure ��� Reconstruction of vertex of B meson in CP side for B � J��KS MC� �a� The
distribution of reduced �� of VCP reconstruction� �b� The residual distribution of VCP in z
direction�

���� Vertex reconstruction of Btag

The reconstruction of the decay vertex of Btag �called Vtag hereafter� is more complicated than
that of VCP � We didn�t restrict decay modes and didn�t reconstruct B explicitly� We 
rst
excluded tracks belonging to BCP � We also rejected tracks with dr�larger than �mm� Since
���S� is produced at rest in r�� plane� we expect the Vtag in r�� plane from VCP assuming two

��decay length in z��pt�pz�	���m������GeV�c��	�	��GeV�c��
�dr is an impact parameter in r�� plane� The de�nition of dr refer to Figure ��
�

�



B��s have the opposite momentum and have same decay length from mean life time of B meson�
Then a Vtag is reconstructed using all remaining tracks and a constraint axis� which is parallel
to beam axis and whose position in r��� �rconst� was determined with the following equation 

�rconst � �rVCP � 	
�pt
mB

cB � ���	�

where �rVCP is a position of VCP in r�� and pt the transverse momentum of BCP � If the reduced
��vtx of 
tting was larger than the threshold�������� we rejected the track which had the largest
��track� Here ��track is �� of each track for the reconstructed vertex� We repeated this procedure
until we get a vertex which had the reduced ��vtx smaller than the threshold� In case there was
no track remained� it means that the vertex 
nding was failed�

In Figure ��� we show the residual distributions of Vtag in z�direction and �z� which is
the di�erence between the two B� decay vertices� Both distributions have tails to the positive
direction due to the e�ect of secondary tracks from charm decays� The average number of tracks
remained was ��� �See Figure ����� The average number of iteration of 
t was ��� �See Figure
����� The reconstruction e�ciency of Vtag was ��# for B � J��KS �

The residual distributions of Vtag and �z vertices were 
tted with double Gaussian function�
The vertex resolution obtained is summarized in Table ���� The � of the narrower component
is less than ��� �m� The narrower component is dominant and has a fraction of ���	�
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Figure ��� The reconstruction of Tag�vertex� �Beam constraint axis� was calculated with VCP
and momentum of B candidate�

���� Evaluation of vertex resolution

The sensitivity of measurement of sin 	�� is calculated analytically as����

��sin 	��� � �

d
p
N
� �����

��
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0

50

100

150

200

250

300

350

400

450

0 1 2 3 4 5 6 7 8 9 10
Number of Tracks

E
ve

nt
s

Figure ��� The distribution of the number
of the track associate to tagging vertex in
B � J��KS MC�

0

200

400

600

800

1000

1200

1400

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Number of iteration of fit

E
ve

nt
s

Figure ��� The distribution of the number
of the iteration of tagging vertex �t in B �
J��KS MC�

��



Table ��� Results of vertex �tting for B � J��KS MC� The fraction of narrow component is
fn� The mean and width are mn �mw� and �n ��w� for narrow �wide� component respectively�
The units for mean and width are �m�

Mode Parameters��m�

fn mn �n mw �w

VCP ���� ��	� ���� ����� 	����
Vtag ���� ��� ���� ���� 			��

�z ���	 	��� ���� ��� 		��

where N is the number of observed events and d is the dilution factor due to the e�ect from
the 
nite resolution of vertex reconstruction�� As mentioned in Section 	�	��� the proper time
distribution of B decays is

f�� �
�

	
e�j� j��� sin 	�� sinxd�� �����

 � �t�B� c
	�t � ztag � zCP � �z�

where  � �t�B is the normalized time di�erence of the two B meson decays� ztag �zCP �
is z position of decay vertex of Btag �BCP �� B is B� meson lifetime and xd is B� �B� mixing
parameter �� �m��B�� The plus �minus� sign in front of sin 	�� corresponds to the events
tagged by �B��B�� decay� With real experimental situation� an asymmetry is smeared and �����
is modi
ed to

F �� �

Z �

��
d �g��  ��f� ��� �����

where g is the response function of vertex reconstruction� The dilution factor d is calculated
as�����

d� �

Z �

��
�

F

�
�F

��sin 	���

��
d� �����

As described in Section ���� we required the vertex resolution to be about ����m� When we
assume the response function as a Gaussian function with � � ����m� we obtain d of ������

	This is valid only when the background can be ignored� such as the case for B � J��KS �

When we extract the value of sin 	�� from the distribution of proper time of B decays� we use maximum

likelihood method!Jsee Section ��	�� In this method� we serach sin 	�� which give the miximum value of logarithm
of likelihood function� lnL� The error for sin 	�� is given as

���S� � E

�
�
	� lnL

	S�

���
where S �sin 	��� With N events of measured sample and L given as F in ������ we obtain

�

�Z �

��

NX
i��

�
	� lnF

	S�

�
Fd


���

�

�
N

Z �

��

�
	� lnF

	S�

�
Fd


���

���S� �

�
N

Z �

��




F

�
	F

	S

��
d


���

�

�The dilution factor depends on the value of sin 	��� We assume sin 	�� to be �����

�



Using a double Gaussian function obtained above� d was estimated to be ������ Since the
sensitivity is proportional to ��

p
N � the number of events needed to measure sin 	�� with the

same accuracy increases by ��# from the case with a single Gaussian with � �����m�

	�� Summary

In order to evaluate the vertex resolution of B decays with BELLE SVD� we performed sim�
ulation study for B � J��KS � Using double Gaussian resolution function� we obtained the
vertex resolution of �z of �����m for a narrower component with a fraction of ���	� which is
much smaller than the decay length of B meson in z��	���m�� Taking the e�ect of the wider
component into account� the dilution factor in sin 	�� measurement turns out to be compatible
with the case of a single Gaussian response function with ������m�

Thus we conclude that BELLE SVD has the vertex resolution which is good enough to
measure CP asymmetry�

�



Chapter �

Physics Simulation

In this chapter� we will present the event generation� reconstruction and selection in our physics
simulation for the decay mode B� � charmonium � KS described in Section 	��� We treat the
events generated by Monte Carlo simulation as real data and make the event sample to study
CP violation�

First� we will explain the outline of physics simulation in Section ��� The event generation
of Monte Carlo data �MC�data� are described in Section �	� The event selection criteria are
described for B � J��KS in Section �� and for other modes� B � ��	S�KS � B � �c�KS and
B � �cKS � in Section ��� The number of background is estimated in Section ��� In Section
��� we summarize the result of this chapter�


�� Outline of Physics Simulation

We perform physics simulation in the following steps"

�� Event generation

	� Reconstruction of candidate B mesons�

� KS candidate reconstruction�

	 Charmonium candidate reconstruction�

� B meson candidate reconstruction with charmonium and KS candidate�

�� Flavor tagging�

�� Vertex reconstruction of the B meson at CP and tagging side�

In the following sections� we describe each step�


�� MC�data Generation

In this study� we treat the events generated by Monte Calro simulation as real experimental
data� We call that �MC�data� and distinguish them from usual Monte Calro simulation� MC�
data include both signal and background events at the integrated luminosity of ���fb��� This
integrated luminosity will be obtained in one year with the design luminosity of KEKB� We
didn�t use generator information but only reconstructed values�

	



MC�data event sample was generated with the GEANT�based simulator�hereafter GSIM�
and the smearing simulator �hereafter FSIM�� Backgrounds from continuum and B�B� don�t
have CP asymmetry �called uncorrelated backgrounds�� Since the e�ect to the measurement of
sin 	�� due to the di�erence between FSIM and GSIM was small� uncorrelated background were
generated with FSIM�

On the other hand� decay products from B� �B� can have CP asymmetry and thus can
not be ignored� All signal events and B� �B� background events of MC�data for B � J��KS �
B � ��	S�KS and B � �c�KS were therefore generated with GSIM� In order to reduce the
number of events� only speci
c event types were generated� The decay modes and branching
ratios used in the event generation are summarized in Table ��� Since B � ��	S�KS and
B � �c�KS have not been established yet� we took the same branching ratios as charged B
mesons decays assuming isospin symmetry����� In these restricted decay modes� we have set that
KS decays to ����� K� to KS�

� or K���� J�� to ���� or e�e�� �c� and �c� to 
J��� ��	S�
was set to decay to ����� e�e�� J������� 
�c�� 
�c� or �J��� B� �B� background events for
B � �cKS were generated with FSIM since they are almost uncorrelatedy�

Table �� Decay modes and its Branching ratios of B� for MC�data generation�
Decay mode Branching ratio Decay mode Branching ratio

J��KS ���� ���� ��	S�KS ���� ����

J��KS�
��� ���� ���� ��	S�K� ���� ����

J��KS�
��� ���� ���� �c�KS ���� ����

J��KS�
� ���� ���� �c�KS ���� ����

J��K� ���� � ���� �cKS ���� ����


�� Event Selection for B � J��KS

In this section� we describe the event selection for B � J��KS �

����� Reconstruction of KS candidate�

KS decays into two neutral or charged pions with branching fractions shown in Table �	� We
used only charged mode to reduce the combinatorial background� Since KS has long decay
lengthz compared to B��s� we can obtain clean signals by rejecting candidates which have short
decay length� The distance between the decay vertex of the KS and the decay vertex of BCP

was required to be larger than 	��mm� We lose few signal events with this cut�
We de
ned the decay vertex of KS

x as the crossing point of two tracks where the z�distance
between two helixes was smaller �c� in Figure ���� The z position of decay vertex of KS is
de
ned as the middle point of two helixes at the cross point in r � � plane�

�Only GSIM takes the e�ect of CP asymmetry into account�
yThe number of remaining backgrounds and their species are also estimated with independent Monte Carlo

events using generator information� The analysis and result are described in Appendix D���
z�	�cm in r�� plane at BELLE�
xReconstruction of the vertex of BCP is described in Section ������

�



Table �	 KS branching ratios�
Decay mode BR Used

KS � ���� ������ � ��	��# �
���� ������ � ��	��# �

Invariant mass was calculated assigning the nominal pion mass �M� � �����MeV�c�� to
both tracks�

M�
���� �

�q
M�

� � j�P�� j� �
q
M�

� � j�P�� j�
��
� j�P�� � �P�� j��

where �P���� was calculated at the decay vertex of KS � We require that the invariant mass be

jMKS
�M���� j � �����GeV�c��

where MKS
is the nominal KS mass �MKS

� ���MeV�c��� Invariant mass distribution of KS

for B � J��KS is shown in Figure �	�
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Figure �� Reconstruction of KS vertex�

����� Reconstruction of J�� candidate

We reconstructed J�� through its decays into ����and e�e��branching ratios shown in Table
���� Although the most straight forward way is to use 	 charged tracks with opposite charges
both tagged as � or e� we required �at least� one lepton in order to have higher reconstruction
e�ciency� We identify � with KLM and e with the combined information from CDC� ACC� TOF
and ECL� Invariant mass was calculated assuming the nominal lepton mass for both tracks"

M�
l�l� �

�q
M�

l � j�Pl� j� �
q
M�

l � j�Pl� j�
��
� j�Pl� � �Pl� j��

where Ml is the nominal mass of identi
ed lepton �� or e�	� Figure �� shows invariant mass
distribution� For the electron mode� there is a large tail due to the 
nal�state radiation and

�Mass of muons and electrons are 
����MeV�c� and ���

 MeV�c�� respectively�
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Figure �	 Invariant mass distribution of KS for selected B � J��KS candidates in MC�data�

Table �� J�� branching ratios to decay modes of interest�

Decay mode BR Used

J�� � e�e� ����	 � �����# �
���� ����� � �����# �

	�������� ���� � ��	��# �
��������� �	�� � ����# �
������ ����� � ��	��# �
	������ ���� � ����� ���� �
������� ���� � 	���� ���� �

�



large bremsstrahlung e�ect� We selected candidates with the following criteria"

����	� � M���� �MJ�� � ����	�GeV�

����� � Me�e� �MJ�� � ����	�GeV�

where MJ�� is the nominal J�� mass �MJ�� � ������MeV�c��� In order to keep high recon�
struction e�ciency� acceptance for electrons was wider than that for the muon mode� Resolutions
of J�� mass are ��� MeV for ���� and ��	 MeV for e�e� modes�
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Figure �� J�� mass distribution for selected B � J��KS candidates in MC�data�

����� Reconstruction of B� candidate�

The invariant mass of B� candidates were reconstructed assuming that KS and J�� candidates
have their nominal mass value�

M�
J��KS

�

�r
M�

J�� � j�PJ��j� �
q
M�

KS
� j�PKS j�

��
� j�PJ�� � �PKS

j��

The invariant mass and momentum at the ���S� rest frame� p�B� � for B � J��KS are shown
in Figure ��� The candidates were selected with the following criteria 

jMB� �MJ��KS
j � ���	�GeV�c��

�



���� � P �
B� � ���GeV�c�

where MB� is nominal B� mass�MB� � ��	�GeV�c��� The resolutions of B mass are ���MeV�c�

for ���� and ���MeV�c� for e�e��
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Figure �� �a� Invariant mass distributions and �b� Momentum at ���S� rest frame of the
reconstructed B for B � J��KS in MC�data�

����� Flavor tagging

As described in Section 	����� the �avor of Btag has the correlation with daughter leptons and
kaons"

B� � l� or K�� �B� � l� or K�� ����

First of all� we reject the tracks which belong to BCP � The remaining tracks are assumed to
be from Btag� Then we try to 
nd the lepton from Btag with momentum at ���S� rest frame
larger than ��	GeV�c� The �avor of Btag is determined with the lepton charge following the
relation ����� If the high momentum lepton is not found� we look for a kaon� Charged kaon
is identi
ed with combined information from CDC� ACC� TOF and ECL� If the charge sum is
positive �negative�� Btag is identi
ed as B� � �B��k� If the charge sum is zero� this event can not
be tagged and discarded� �

The tagging probability of ���# is obtained for B � J��KS � The estimation of wrong
tagging fraction will be explained in Section ����	�

����� Vertex Reconstruction

The reconstruction of the decay vertices of two B�s is performed in the same way as described
in Section ��	� In order to reject vertices accidentally reconstructed in random combination for
VCP as we also performed in Section ��	�	� we required a candidate to have smaller reduced ��

of 
tting than a threshold �������� The distribution of the reduced �� is shown in Figure �����

kIn order to reject tracks from decay in �ight and misreconstructed one� tracks are required to have impact
parameters of dr ��mm and dz �
�mm� The de�nitions of dr and dz refer to Figure ��

��The distribution of Figure ��� includes background events since we treated event generated with simulation

as real data in this section� On the other hand� Figure ����a� does not include any background events�
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Figure �� The distribution of the reduced �� of VCP reconstruction for B � J��KS in MC�
data� The distribution includes background events from B� �B� B�B� and continuum�

We obtained the reconstruction e�ciency of ����# for CP side and ����# for tagging side�
The estimation of vertex resolution will be explained in Section ������

After all the selection� � candidate events remained�


�� Event Selection for Other Modes

The event selection for other modes� B � ��	S�KS � B � �c�KS and B � �cKS � follows the
same line as B � J��KS � However� some additional cuts are adopted to suppress background
events� especially from continuum�

In the following� selection for each decay mode is brie�y explained� A full description is given
in Appendix C�

����� Event selection for B � ���S	KS

The decay modes of ��	S� are shown in Table ��� The ��	S� reconstruction of the decays to
two leptons� ��	S� ����� and ��	S� �e�e�� follows the same procedure outlined for J���
Though these decay modes have lower branching ratio�� ��#� than that of J��� the mass
width of ��	S� is small enough �	 � ��keV� to reject combinatorial background with mass
selection� Thus this mode is as clean as J�� mode�

We also used ��	S� decaying into J����������	#�� where J�� is reconstructed with two
leptons�

In order to reject the background from continuum� we added the cut with event topologyyy�

�



Table �� ���S� branching ratios to decay
modes of interest�

Decay mode BR Used

��	S� � e�e� ���� � ��� � ���� �
���� �� � ��� � ���� �

J������ ����	 � ����# �
J������ ���� � ����# �

�c� ����� ����# �

�c� ���� ����# �

�c� ���� ����# �

Table �� �c� branching ratios to decay
modes of interest�

Decay mode BR Used

�c� � J��
 �	�� � ����# �
������� �	�	� ����# �
	������ ����� ����# �

����K�K� ��� ��� ���� �
������ ���� � ���� � ���� �

K� �K����	���� � c�c� ���	 � 	��� � ���� �
����p�p ���� � ���� � ���� �

Applying all the selection criteria� we obtained ��� candidate events�

����� Event selection for B � �c�KS

Table �� shows the branching ratios of �c�� �c� were reconstructed through its decays to 
J���
J�� � ���� or e�e�� In our analysis� we use photons only for this mode to reconstruct B
meson� When photons are included in B reconstruction� the e�ciency is generally worse due to
the detection e�ciency of photon�� �#��

The largest background for the �c� signal is due to random combination of 
 from �� � 


associated with correctly reconstructed J�� from B meson decays� Therefore if a 
 candidate
forms an invariant mass within �����	�MeV�c� of the known �� mass when combined with any
other 
 �energy above ���MeV�c�� in the event� it is rejected� The same event topology cut as
that for B � ��	S�KS was also added�

Applying all the selection criteria� we obtained �	� candidate events�

����� Event selection for B � �cKS

The reconstruction of B� � �cKS is challenging from the experimental point of view� Because
of the large width����	��������MeV� of �c���� ���� a substantial number of combinatorial background
events remain after mass and momentum cuts alone� Also the large track multiplicity causes
lower reconstruction e�ciency�

At the BELLE experiment� however� we have a good K�� separation capability up to ���
GeV�c and good vertex resolution with the silicon vertex detector� These features are quite
powerful in order to reduce the background fraction substantially� Since we anyway need to
know the decay vertex position of both B�mesons to observe indirect CP violation� we practically
have negligible loss in the reconstruction e�ciency by introducing cuts on a vertex quality�

Table �� shows the branching ratios of �c� In this study� we reconstruct the following three
modes in which �c decays into four charged hadrons 

�c � K�K����� �Branching Ratio �	��#�
�c � 	������ � ���	#�
�c � 	�K�K�� � �	��#�

yyWhile the continuum event has jetlike structure� B� �B� event has spherical structure�

�



�c��S� DECAY MODES Fraction��i��� Con
dence level

Decays involving hadronic resonances

��������� ����� ��� #
�� �	��� ���� #
K����	��K��� � c�c� �	��� ��� #
K����	� �K����	� ����� ���� �����

�� ���� 	��� �����

a������� � 	 # ��#
a����	��� � 	 # ��#
K����	� �K�c�c� � ��	� # ��#
f���	��� � ��� # ��#
�� � ��� ����� ��#

Decays into stable hadrons
K �K� ����� ��� #
��� ����� ���� #

� K�K�������	� �	����������� #
� 	�K�K������ �	��� ��	� #
� 	���������� ���	� ���� #

p�p ���	� ���� �����

K �K� � ��� # ��#
����p�p � ��	 # ��#
&�& � 	 ����� ��#

Radiative Decays


 ����� ��	� �����

Table �� Decay table of �c�����

We don�t take care of intermediate resonance states in decay modes above and assume that
all modes decay according to the phase space� The branching ratios of these three decay modes
in Table �� were measured with no constraint of intermediate states��	� ��� ���� We didn�t
use the decay modes including KS " e�g� �c � K� �K����K�K���� These modes have di�erent
event topology compared with above three modes and the vertex reconstruction of B meson
becomes more complicated�

Since �c has large width� the B� candidates are reconstructed with the combination of KS

and �c using mass and vertex constrained 
t� In addition to cuts on event topology� we applied a
cut on the momentum of �c daughters� Requiring all the selection criteria� 	� candidate events
remained�


�� Background Estimation

The number of background was estimated by 
tting the mass distribution of B mesons� We
used the region of ���� � mB � ����GeV�c� in order to include the candidates outside signal

��



region�
Figure �� shows the distributions of reconstructed B mass and 
tted results� We used a

linear function plus double Gaussian function for B � J��KS � The number of background in
the signal region was estimated to be ���� ��� events�

For other modes� a linear function plus single Gaussian was used since the S�N ratio is
not good as that of J��KS � The number of background in the signal region was estimated to
be 	��� � �	 for B � ��	S�KS � ��� � �	 for B � �c�KS and ��� � �	�� for B � �cKS �
respectively�

In order to check the validity of the background estimation method� we generated indepen�
dent Monte Carlo events and counted the number of background events quoting the generator
information� The full description of such studies is given in Appendix D and the results are
consistent with the numbers obtained in this section�


�	 Summary

Table � shows the selection criteria and the number of survived events at each step� While
J��KS has the largest contribution� we also see that other modes in total has the similar number
of events�

We also list the numbers of estimated background events and their ratios to the numbers
of observed events� which should include all the types of backgrounds� i�e� B� �B�� B�B� and
continuum� From the table we see that the background fractions are reasonably low for all
modes�

Table � Results of event selection for all modes�
Mode B � J��KS B � ��	S�KS B � �c�KS B � �cKS

B� recon ���� ��� ��� ����

Event topology cut � �		 ��� 	��	
Flavor tagging �� 	�� ��� ����
CP�vertex ��� 	� ��� �	�
Tagging�vertex ��� �� ��� ���
Mass constraint 
t � � � �	�
KS vertex cut � ��� �	� ���
�c daughter momentum � � � 	�


nal candidate � ��� �	� 	�

estimated background ��� � ��� 	��� � �	 ��� � �	 ��� � �	��

background�events�� rbg� ���� ���	 ���� ��	�
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Figure �� The mass distribution of B mesons for �a� B � J��KS  �b� B � ��	S�KS  �c�
B � �c�KS and �d� B � �cKS in MC�data� Solid lines are �tted results to estimate the number
of background� Dashed lines show the signal region�
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Chapter �

Measurement of sin ���

In this chapter� we extract the parameter sin 	�� from the MC�data sample selected in the
previous chapter� We will estimate the sensitivity and its statistical and systematic errors at
the integrated luminosity of ��� fb��� which will be obtained with one year of running if the
design luminosity of KEKB is achieved�

In Section ���� we will explain the proper time distribution taking detector e�ect into account�
Then� we give the 
t results in Section ��	� Systematic errors are discussed in section ���� Section
��� summarizes this chapter�

��� Proper time distribution

The parameter of CP asymmetry� sin 	��� is obtained from the proper time distributions� The
proper time distribution is shown in Figure ��� for B � J��KS events selected in the previous
chapter�

Since the proper time�  � is measured as the distance of decay vertices of two B mesons� the

nite resolution of vertex reconstruction degrades observed CP asymmetry� The asymmetry is
also diluted by wrong B��avor tagging mainly due to imperfection of the detector response�� Un�
der the condition of 
nite  resolution and imperfect �avor tagging� the proper time distribution
����� becomes

F �� � ��� rbg�

Z �

��
g��  ��

�
�

	
e�j�

�j��� ��� 	�� sin 	�� sinxd
��
�
d � � rbgfbg�������

where rbg is the ratio of the number of backgrounds� which is the sum of B� �B�� B�B� and the
continuum events� to that of observed events� g the response function from 
nite proper time
resolution and � is the wrong tagging fraction in �avor tagging of B meson� and fbg the proper
time distribution of background events�

In the 
tting of proper time distribution� therefore� we need to de
ne the following parameters
and functions 

� the background function� fbg�

� the tagging correction factor� ��� 	���� Atag��

� the response function� g�

��
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Figure ��� The proper time distribution of events selected in B � J��KS MC�data� The solid
line is for events tagged by B�� The dashed line is for events tagged by �B��

����� Background function

The background function� fbg� is de
ned as 

fbg�� �
�

	
e�j� 
�B��bg j��� CPbg sinxd�� ���	�

where� the plus �minus� sign in front of CPbg corresponds to BCP tagged by B� � �B��� bg
and CPbg were decay time and CP asymmetry value of background� Since the decay time of
background� bg� includes proper time resolution� fbg was not smeared with response function�

The decay time and CP asymmetry of background were measured with the events collected
in the �mass sideband� region for B � �cKS � For other modes� we collected events in the �mass
and momentum sideband� region since the number of events inside the mass sideband was too
small to measure decay time and CP asymmetry of background� The de
nition of the sideband
region is shown in Figure ��	� The mass and momentum of reconstructed B at ���S� rest frame
for B � J��KS MC�data is also shown� Since there is no way to know what the background
source is� any type of background� B� �B�� B�B� and continuum� was treated simultaneously�
Then we measured the decay time and CP asymmetry by 
tting the �z distribution with the
following function  

f�� �
�

	
e
� jzj
�bgc�� �� � CPbg sinxd

�z

c	

�� �����

�Proper time distribution ����� in reality must be modi�ed to

f�
 � � �
� �� �



	
e�j� j�
� sin 	�� sin xd
� � � �




	
e�j� j�
� sin 	�� sinxd
 �

�



	
e�j� j�
� �
� 	�� sin 	�� sinxd
 ��

where � is the wrong tagging fraction�
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Figure ��	 The de�nition of sideband region� The double hatched area is mass sideband� The
hatched area is momentum sideband� Dots are events selected for B � J��KS in MC�data�

Table ��� The estimated number decay time and CP asymmetry of background�

B � J��KS B � ��	S�KS B � �c�KS B � �cKS

Decay time� bg�ps� ��������� �������� 	��	���		 ���������

CPbg ���	����	� ���������� ���������� ����������

where bg and CPbg were decay time and asymmetry of the background� Figure ��� shows the �z
distribution for the mass and momentum sideband events in B � J��KS MC�data� together
with the background function� In the 
gures� the distribution of events tagged by B� was
inverted and added to events tagged by �B�� In this way a systematic shift of the �z distribution
is canceled out in the 
tting of the background function� The estimated CP asymmetry and
lifetime of background are summarized in Table ����

����� Correction factor for �avor tagging

As described in ������ the observed asymmetry is diluted with the factor ���	�� where � is the
wrong tagging fraction for �avor tagging of B meson � In order to calculate the true sin 	��� we
need to measure the correction factor� ���	���� Atag�� and its error�

We estimated Atag using the mode where one B is fully reconstructed as B � J��K�� and
K��� K���� The �avor of this B is given by the charge of daughter particles� K� and ���
from K���

Suppose there was no B�� �B� mixing� the �avor of the other B should be opposite to that of
B � J��K���� K����� Therefore by applying the standard �avor tagging procedure to the
other B� we obtain the following relation"

Ncorrect �Nwrong

Ncorrect � Nwrong
�

��� ��NOBS � �NOBS

NOBS
� ��� 	��� �����

��
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Figure ��� �z distribution of the mass and momentum sideband events for B � J��KS in
MC�data� The distribution of events tagged by B� is inverted and added to events tagged by
�B��

where Ncorrect�Nwrong� is the number of the events with the correct �wrong� answer and NOBS

is the number of observed events� Since the �avor of neutral B mesons change by B� �B� mixing�
Equation ��� is modi
ed as a function of �� �t�B�� We de
ned the quantity AOBS as

AOBS�� �
Ncorrect���Nwrong��

Ncorrect�� � Nwrong��
� ��� 	�� cos xd � I � Atag cos xd� �����

where xd is the B� �B� mixing parameter ���m��B� and I is the intrinsic asymmetry which we
ignore in this study��

The event selection for B � J��K�� is described in Appendix E� Since this mode has larger
branching ratio than that of B � J��KS � we obtained ���� events� The signal to background
ratio was estimated to be quite high �� ���� The observed asymmetry� AOBS � de
ned as �����
is shown in Figure ���� Taking the e�ect of shift with vertex reconstruction into account� the
distribution was 
tted with the following function"

f��z� � Atag � cos�xd
�z � �z

Bc	

�� �����

where Atag� xd and �z are free parameters� We obtained the result

Atag � ���	 � ���	��

which is consistent to the value obtained in the analysis of independent Monte Calro events
using generator information shown in Table D�	 in Appendix D�

�The intrinsic asymmetry arises mainly from the di�erence in the detector response between positively and
negatively�charged particles� This e�ect� however� cancels by �tting the proper time distributions of B� and
�B��tagged events simultaneously�
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����� Response function of vertex reconstruction

In a decay mode where B decays into non CP eigenstate� the proper time distribution� f��� is
a simple exponential function since CP asymmetry doesn�t appear"

f�� �
�

	B
exp�

�j j
B

�� ����

where � �� is the normalized proper time� �t�B � �t is related to the vertex position di�erence
of two B mesons by �t � �z�c
	 � �ztag�zCP ��c
	� This exponential distribution is smeared
due to a 
nite vertex resolution� which is expressed with the response function� g� which in this
study is de
ned as a single Gaussian function for simplicity 

g��  �� ��m� �
�p
	��

exp�
�� �m�  ���

	��
�� �����

where m is mean and � is standard deviation� The proper time distribution is 
tted to reproduce
the given lifetime of B meson with the convolution of f and g"

F �� �

Z �

��
d �g��  �� ��m�f� ��� �����

������

The 
t was performed with � and m as free parameters� The lifetime of B meson was set to be
���� � ����ps�����

We used the mode J��K�� K�� � K��� studied in Section ����	� This mode has a similar
decay topology with B � J��KS � Although the momentum distribution of J�� is not identical
due to the mass di�erence between KS and K��� the e�ect would be small since leptons from J��
have high momentum �� ���GeV�c� and the di�erence of J�� momentum is about ���MeV�c�

�
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Figure ��� Estimation of response function� The proper time distribution of B � J��K�� was
�tted with the exponential function convoluted with the Gaussian response function�

Also the resolution of �z is dominated by that of the tagging side which is identical for both
decay modes� Therefore we expect that the response function obtained with B � J��K�� is
approximately the same as that for all signal modes�

Figure ��� shows the 
tting result� The both samples tagged as B� and �B� were merged in
the 
t and �z vertex distribution was 
tted with response function� We obtained the following
values 

� � �	��� � �����m� m � 	��� � �����m�

This result was consistent to the values obtained in Chapter �� We use them for all signal modes�

��� Fitting Result

The proper time distributions were 
tted for the events tagged as B� and �B� simultaneously
with an unbinned maximum likelihood method����� The likelihood function for i�th event� Li�
is determined as Equation ������ The total likelihood for event sample� Ltot� is

Ltot �
nY
i

Li

�
nY
i

�
��� rbg�

Z �

��
g�i� 

��
�

�

	
e�j�

�j���Atag sin 	�� sinxd
��
�
d � � rbgfbg�i�

�
�������

We calculate the sin 	�� which maximizes Ltot� Fitting was performed for each mode� Figure
��� shows the case for B � J��KS � Table ��	 summarizes the results with statistical errors�
For the combined result� all the distributions were 
tted simultaneously�

��



Since event samples to measure sin 	�� are independent with that in B � J��K�� used for
measuring Atag� the tagging correction factor has statistical �uctuation which is included in the
errors in Table ��	� We calculated this �uctuation as 

��Atag� � ���� 	�� � 	�
s
���� ��

NOBS
� ����	�

where NOBS is the number of observed events� � is the measured wrong tagging fraction�

Table ��	 Fitting result of proper time distribution

Decay mode B � J��KS B � ��	S�KS B � �c�KS B � �cKS Combined

sin 	�� ����������������� ���������������� ����������������� ����������������� ����	������������
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Figure ��� An example of CP 
tting results� Fitting was performed for the events tagged �a�
by B� and �b� by �B� for B � J��KS in MC�data�

��� Systematic Errors

����� Physics parameters

The world average value of the B meson lifetime is ����

B � ����� � ����� � ����� sec� ������

By varying the lifetime of B meson within the error shown above� � and mean of the response
function varied by ��	�m and �����m� respectively� Variation of mean value changes sin 	��
by less than ������ In the 
tting of proper time distribution� the lifetime of B mesons and � of
response function were varied within above errors� We estimated that the systematic error from
B meson lifetime is ������ � ������ for each mode�

��



The e�ect of B�� �B� mixing parameter� xd� was also estimated with the same method� The
world average value is

xd � ���	� � ����	�� ������

where the error of xd is mainly due to the ambiguity of B ����� If we only changed xd with the
above error� variation of sin 	�� is ���� and smaller than that from B� Therefore we ignore the
systematic error from xd�

����� Flavor tagging

The systematic error from the estimation of the correction factor is calculated as

Systematic Error � sin 	�� � ���� 	��

��� 	��
� ������

which is �#�� ���	�����	� of the results�

����� Response function from vertex reconstruction

The errors of the mean and � have correlation but the e�ect from the mean was smaller than
that from �� Therefore we varied � and mean within its errors independently� We calculated the
change by the both � and mean� and added them in quadrature� The systematic error ranges
������ � �������

����� Background function

The systematic error on sin 	�� from ambiguity in the background function was estimated by
recalculating sin 	�� with varying the number �Nbg� CP asymmetry �CPbg� and decay time �bg�
of the background events within the range of errors� Although CPbg and bg have correlation�
it is ignored� since the e�ect from change of bg was small compared to that from CPbg and Nbg

with the S�N ratio we obtained�

����� Summary

In table ���� systematic errors are summarized� The dominant error is from the estimation of
response function in the case of B � J��KS and from background function for other modes�
The sum of systematic errors was smaller than statistical errors for all modes as well as for the
combined result�

��� Summary

We obtain the result for the integrated luminosity of ��� fb�� as follows"

sin 	�� � ������������������stat��� ������sys�� �B � J��KS��

� �����������������stat���������������sys�� �B � ��	S�KS��

� ������������������stat���������������sys�� �B � �c�KS��

� ������������������stat���������������sys�� �B � �cKS��
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Table ��� Sources of systematic errors for the measurement of sin 	���

The source of systematic error B � J��KS B � ��	S�KS B � �c�KS B � �cKS Combined

B life time ������ ������
������

������
������ ����	� ������

������
Wrong tagging factor ����	� ����	� ����� ������ ����	�

Response function ������ ������
������ ������ ������ ������

������
Background function ������

������
������
������

������
������

������
������

������
������

Total ������ ������
������

������
������

������
������

������
������

where the 
rst error is statistical and the second is systematic� respectively� By combining all
charmonium modes� we obtain"

sin 	�� � ����	�������������stat���������������sys���

The result is consistent to the input value�sin 	�� � ������
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Chapter �

Discussion

In this chapter� we discuss the result on the measurement of sin 	��� In Section ���� we make
experimental consideration about the results� The impact of the results to the Standard Model
and new physics are discussed in Section ��	�

�� Experimental Consideration of the Result

In Chapter �� we estimated the sensitivity for measurement of sin 	�� with the integrated lu�
minosity of ���fb�� and sin 	�� of ����� It will take about a year to obtain this integrated
luminosity assuming the design luminosity of KEKB accelerator� It is also important to discuss
how accurately we can measure sin 	�� with less amount of data at the early stage of BELLE
experiment� Since the systematic error is estimated with experimental data as demonstrated in
this thesis� not only statistical but also systematic errors will increase with the smaller luminos�
ity� We estimated the sensitivity of sin 	�� assuming all errors except that from the uncertainty
of B are scaled by �pL � where L is the integrated luminosity� Figure ��� shows the ��sin 	��� as a

function of integrated luminosity with sin 	�� � ���� with all the B � charmonium�KS modes
combined� We see that if sin 	�� is ����� we can observe the asymmetry with �� signi
cance
with the integrated luminosity of 		fb���

We also estimated required integrated luminosity for smaller values of sin 	��� Although the
sensitivity for sin 	�� would change as a function of the value of sin 	��� the di�erence is small��

Assuming that the sensitivity doesn�t depend on the value of sin 	��� we calculated required
integrated luminosities to measure various values of sin 	�� with a �� signi
cance� Figure ��	
shows the result� We see from the 
gure that we can measure sin 	�� larger than ��	� with
���fb��� Since the present allowed region is ���� � sin 	�� � ��� based on experimental data
and the Standard Model� any value of sin 	�� in the allowed region can be measured�

�� Sensitivity to New Physics

����� General Discussion

If �� from measured sin 	�� is inconsistent to the allowed region with the Standard Model
hypothesis� this would be a possible indication of new physics beyond the SM with new CP

�Because of the change of the dilution factor�see Section ��	���� the sensitivity for sin 	�� change� With the
same number of events� ��sin 	��� for sin 	�����
 is about �� smaller than that for sin 	�����������

�	
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violation phase� In this section� we concentrate on the impact of the measurement of sin 	�� to
new physics�

Angle �� has four�fold ambiguity as

��� �� � ��
�

	
� ���

��

	
� ��� �����

where we assume that sin 	�� is measured value and � � j��j � ��	� A measurement of sin 	�� will
specify four regions bounded by two rays in the ������� plane� each originating at ������Figure ���
for sin 	��� ����	� ������� In search for new physics� all four solutions need to be considered�
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Figure ��� Four fold ambiguity for ���

Figure ��� shows the present constraints on the unitarity triangle� The allowed region is
constrained with three parameters extracted from individual experiments� jVtdV �

tbj is obtained
from �mBd

in B� �B� mixing� jVub�Vcbj is obtained from B � Xul�� �k is obtained from indirect
CP violation in K� �K� mixing �Ref� Section 	���� In the Standard Model� two solutions of
four�fold ambiguity which extend into the negative �� are always inconsistent with allowed region
and excluded�

The allowed region with con
dence level of ��# is also shown in Figure ��� when we obtain
sin 	��� ����	������� The sensitivity for new physics is provided in the region of sin 	�� � ����
and ���� � sin 	�� � ���� with con
dence level of ��# with ���fb��� Figure ��� shows the region
where new physics can be observed�

In an extreme case in that sin 	�� is negative� all solutions are inconsistent with allowed
region determined with �k within SM assumption� Figure ��� shows the case of sin 	�� �
�����	 � ������ Some theoretical work on extra quark model shows a possibility that sin 	��
would be negative����

As already mentioned in Chapter 	� we will be able to measure all the angles and sides of
unitarity triangle with good accuracy in the BELLE experiment� Therefore it is possible to
provide the better sensitivity to new physics by combining other measurements at BELLE� The
uncertainty on jVub�Vcbj is expected to decrease from 	�# to about ��#����� The angle �� is
expected to be measured for the 
rst time� Figure �� and �� show the new constraint� We used
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Figure ��� The hatched area is the region where new physics can be observed� The double�
hatched area is the region with the present constraint in the Standard Model�
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Figure ��� In the case that sin 	�� measured is negative value� The constraints are same
de�nition as that in Figure ��	� All solutions are inconsistent with allowed region�

jVub�Vcbj of ���� � ���� and �� of � � ��� at ���fb�������� If we add the constraint from new
jVub�Vcbj� the sensitivity for new physics is provided in the region of ���� � sin 	�� � ���� and
sin 	�� � ���� with con
dence level of ��# with ���fb��� Figure �� shows the region where new
physics can be observed� The region would be wider because of the new constraint for jVub�Vcbj�
If �� is measured to be the above value� the sensitivity for new physics is further provided in
the region of ���� � sin 	�� � ���� and sin 	�� � ����� Figure ��� shows the sensitive region for
new physics�

����� �� in Physics beyond the Standard Model

In this section� we describe the model on new physics which a�ect �� measurement� The e�ects
from new physics beyond the SM exist in both the decay and the mixing amplitude of B meson�
Since the decay of b � c�cs is dominated by the tree diagram� the deviation of �� from the
prediction of SM may originate from the virtual e�ects of new physics in loop�mediated process
in B�� �B� mixing� �

The e�ect from new physics in B�� �B� mixing can also vary the length of the side� especially
jVtdV �

tbj� of unitarity triangle� Even if new physics a�ect only sides of the unitarity triangle�
we can observe this e�ects by checking that the value of the angles is inconsistent with the
measured sides of the triangle� However� the ambiguity for jVtdV �

tbj is large because of theoretical
uncertainty� Since the inconsistency due to the change of the side is hard to be measured� here
we concentrate on the change of ���

�The uncertainty on jVtdV
�
tbj is dominated by theoretical one and will not be improved with the data at

B�factory�
�The e�ect from new physics in the decay amplitude can be measured with comparison of the �� measured in

B � �KS with that measured in B � charmonium�KS � since B � �KS is a pure penguin decay mode�
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Figure �� The expected new constraints at the integrated luminosity of ���fb��� The double
hatched area is constrained with new measurement of jVub�Vcbj� The hatched area is the region
where new physics can be observed�
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Figure ��� The expected new constraints at the integrated luminosity of ���fb��� The double
hatched area is constrained with new measurement of jVub�Vcbj and ��� The hatched area is the
region where new physics can be observed�
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Following are the descriptions about the variation of �� of the unitarity triangle by major
new physics beyond the Standard Model�

Multi Higgs doublets

The Higgs sector of the Standard Model� which has a single Higgs doublet� has not yet been
experimentally tested� The possibility of extended Higgs sector is certainly consistent with
experimental data����� The simplest extensions are models with several Higgs doublets�

The B�� �B� mixing amplitude receives extra contributions from box diagrams� where one or
two of the W �s are replaced by the charged Higgs� When imposing Natural Flavor Conservation�NFC�������
within the framework of multi�Higgs�doublet model� CP violation could arise in charged scalar
exchange if there are at least three Higgs doublets���� CP violation from charged scalar ex�
change� however� may have a small e�ect on CP asymmetries in neutral B decays� at most ���	
shift in the measured CP asymmetry in B � J��KS ������

The requirement of spontaneous CP violation in Higgs sector forces afCP �����	�� In this
case� CP non�invariance arises solely from charged scalar exchange� However� it seems that with
the new limits on scalar masses from LEP� this class of models is phenomenologically excluded�

Extra quark

Although from accelerator experiments� the number of neutrinos lighter than MZ�	 is limited
to three� the SM have no reason to rule out the possibility of a fourth sequential generation with
a very massive neutrino �avor� If there is a fourth generation� the unitarity triangle becomes a
unitarity quadrangle� Since many of the constraints on the KM elements arise from the assumed
unitarity of the ��� matrix� a value of CP asymmetry inconsistent with allowed region in three
generation case may be indicated� Since new ��� matrix is parameterized by � angles and �
phases� the evaluation is more complicated compared with three generation case���� As already
mentioned in previous section� �� has a possibility to be signi
cantly di�erent value from the
SM prediction�

Supersymmetry�SUSY�

There could be signi
cant new contributions to B�� �B� mixing from box diagrams with interme�
diate gluinos and squarks�

In the minimal Supersymmetry� only left�handed squarks contribute� The couplings are
proportional to the elements of KM matrix and thus no new phases are introduced����� �����
CP asymmetry is not modi
ed in minimal SUSY models� The e�ects in B�� �B� mixing will
change only the estimation of jV �

tbVtdj� �MB can increase by � 	�# of the Standard Model
value������

However� in less restrictive SUSY models� there are contributions from box�diagrams with
right�handed squarks as well� The mixing matrices are not related to KM�matrix and carry�
in general� new phases� Some models predict the deviation of �� of order ��� from the SM
value������

To summarize� we have shown that some models beyond the SM predict the deviation of ��
from that expected by SM� According to SUSY �non�minimal� or extra generation quark model�
�� can have a signi
cant di�erence and can be within the region of our sensitivity�
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Chapter �	

Conclusion

The primary goal of the KEK B�factory experiment is to measure angles of the unitarity triangle
and to perform the test of the Standard Model� The B � charmonium � KS mode is expected
to provide the best information to measure angle �� with small theoretical uncertainty and a
small experimental error� A simulation study was performed to estimate the sensitivity of sin 	��
measurement for B � charmonium � KS at the KEK B�factory experiment�

Since CP asymmetry appears in the time�independent decay rate of B mesons� silicon ver�
tex detector is the most crucial part of the BELLE detector� The sensitivity to CP violation is
directly a�ected by the vertex resolution� In order to con
rm the correctness of the detector sim�
ulation and the performance of silicon vertex detector� the testbeam experiment was performed�
For the silicon strip detector prototype� the intrinsic spatial resolution was measured with large
incident angles to produce a similar condition to BELLE� The result was well consistent to the
simulation expectation�

In order to evaluate the vertex resolution of B decays with BELLE SVD� we performed
simulation study for B � J��KS � Using double Gaussian resolution function� we obtained the
vertex resolution of �z of �����m for a narrower component with a fraction of ���	� which is
much smaller than the decay length of B meson in z� Taking the e�ect of the wider component
into account� the dilution factor in sin 	�� measurement turns out to be compatible with the
case of a single Gaussian response function with ������m� Thus we conclude that BELLE SVD
has the vertex resolution which is good enough to measure CP asymmetry�

We also performed simulation study to measure sin 	��� We treated events generated with
Monte Carlo simulation as experimental data� We developed the method to measure the param�
eters such as the wrong tagging probability� the response function of vertex reconstruction and
the background function from only experimental data in order to avoid the systematic errors
from Monte Carlo information in the real experiment� We obtained � events for B � J��KS �
��� for B � ��	S�KS � �	� for B � �c�KS and 	� for B � �cKS with the integrated lu�
minosity of ���fb��� The number of background was small and was estimated to be �	� � �
events� We calculated the value of sin 	�� and its statistical error with 
tting the proper time
distribution of B meson decays� We also estimated the systematic error� For the input value of
sin 	��� ����� we obtained the results for the integrated luminosity of ��� fb�� as follows"

sin 	�� � ������������������stat��� ������sys�� �B � J��KS��

� �����������������stat���������������sys�� �B � ��	S�KS��

� ������������������stat���������������sys�� �B � �c�KS��

� ������������������stat���������������sys�� �B � �cKS��
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By combining all charmonium modes� we obtain"

sin 	�� � ����	�������������stat���������������sys���

The systematic error was reduced to the level lower than the statistical error� The dominant
systematic error came from the estimation of the response function of vertex reconstruction for
B � J��KS and the inaccuracy of background function for the other modes�

With the result of simulation� it is found that we can observe CP asymmetry with ��
signi
cance if the value of sin 	�� is larger than ��	� with ���fb��� which covers the entire
allowed region with the present indirect experimental results� Thus assuming the SM and the
present allowed region� it is guaranteed that the BELLE experiment observes CP violation in
B decays�
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Appendix A

Precision Alignment in Testbeam

Setup

In the testbeam setup� we have aligned the position of the sample SSD using data of the beam
tracks� There are three degrees of freedom of the sample SSD location� Figure A�� shows these
degrees of freedom� i�e� ��� a rotation angle����� �	� a rotation about z�axis� ��� a displacement
in z�direction� To obtain the exact position� we put a �reference plane� near the sample SSD
and corrected the di�erence between the reference plane and the sample SSD in the following
way�

Figure A�� Alignment of the sample SSD in space

First of all� we obtained the rotation angle� �� of the sample SSD about y�axis�Figure A�	��
The reference plane was located on the center of the telescope parallel to the reference SSDs� This
is the expected position of the sample SSD in case of � � ��� The hitpoint of the reconstructed
track on the reference plane� Xr� was then calculated� Figure A�	 shows the correlation between
Xr and the position on the sample SSD� XSSD� Each point on the reference plane corresponds
to each point on the sample SSD� We obtained the rotation angle�� incident angle�� �� of the
sample SSD about y�axis by a linear 
tting to this plot� since the slope is related to � as below"

XsampleSSD �
Xr

cos�
� constant� �A���

Next� we corrected the small rotation� ��� about z�axis due to imperfection of our alignment�
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Figure A�	 Alignment of the sample SSD in the rotation about y�axis�

The reference plane was located nearer to the sample SSD with using equation �A���� The
residual in x�direction changes as a function of yr� y position on the reference plane� because of
the rotation� ��� Figure A�� shows the correlation between yr and the residual on x�direction�
By a linear 
tting to this 
gure� we obtained �� with the following equation"

�Residual� � tan �� 	 yr � constant� �A�	�

Finally� we obtained the position of the sample SSD in z�direction�Figure A���� The reference
plane was located nearer to the sample SSD with using equation �A��� and �A�	�� The residual
in x�direction changes as a function of the angle of the beam track� which is proportional to
the di�erence between hitpoints upstream and downstream� Xdiff � as illustrated in Figure A���
Figure A�� shows the correlation between Xdiff and the residual on x�direction� We obtained
the di�erence in z�direction� �z� of sample SSD with the following equation"

�Residual� �
�z

L
	Xdiff � constant �A���

where L is the distance of ��mm between reference SSD upstream and downstream�
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Figure A�� Alignment of the small rotation angle of sample SSD about z�axis due to imperfec�
tion of alignment�
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Figure A�� Alignment of sample SSD in z�direction�
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Appendix B

Track Finder

In this chapter� we explain a method to 
nd the tracks of charged particles in CDC�

The measurement of momentum and sign of the charge of a charged particle is performed by
reconstructing its trajectory in CDC� The trajectory of charged particle form the helical path
in the magnetic 
eld� Reconstructed tracks are expressed with 
ve helix parameters�dr� �� ��
dz� ��� The de
nition of these parameters are shown in Figure B���

z

y

x dzdr

ρ

φ
o

θ

Srφ

Srφ

Figure B�� Helix parameters� The charged tracks are expressed with �ve helix parameters dr
� � dz and �� In the �gure Sr� is the arc length�

The track reconstruction in ��dimension� which amounts to determination of 
ve helix pa�
rameters� is performed in the following order�

�� Track reconstruction in r � � plane�

�a� The drift distance from a wire in each hit cell is reconstructed with TDC data� Each
hit form a circle around the wire in r�� plane�

�b� Hit points are translated to a conformal plane de
ned with the coordinate �u� v� as
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follows"

u �
�x

x� � y�
� v �

y

x� � y�
�

The circle� which passes near the origin point� will be mapped to a straight line with
this translation �see Figure B�	 and ������

�c� Taking a seed point from outer side in the conformal plane� a histogram of number
of hit is made around the seed point� The horizontal axis of the histogram is the
azimuthal direction around seed point and divided to bins with 
nite width� �Figure
B���

�d� A seed track is made with hit points which belong to a bin of the largest number�

�e� Then hits which have smaller distance than threshold� from the seed track are col�
lected� The track are 
tted using all collected hits with a circle in r�� plane� Param�
eters �� � and dr are determined by this 
tting results�

	� Track reconstruction in z�Sr� plane� where Sr� is the length of arc along the track in r��
plane�

�a� Stereo wire hits which are associated with track candidates reconstructed in r�� plane
are collected��Figure B���a��

�b� The position of hits in z and Sr� is calculated with cross point of stereo wire and r��
track� B���b��

�c� A seed track is reconstructed assuming the track is straight line in z � Sr� plane �
Figure B���c��� Then hits on stereo wire which have smaller distance than threshold
from the seed track are collected�

�� The track was 
tted using all collected hits� axial and stereo wire hits� with helix trajectory
in � dimension� All helix parameters are determined by this 
tting results�

x

y

u

v

Figure B�	 Conformal translation� The circle which through the origin point is mapped to a
straight line�

�Threshold is 
� times of the error of reconstructed hit position�

���



u

v
seed point

θ

θ

Track candidate

E
ve

n
ts

Figure B�� In order to make a seed track the histogram was made around a seed point in
conformal plane� The bin which has the largest number of hits is taken as a seed track�
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Figure B�� Reconstruction of track in z�Sr� plane� �a� Stereo wire hits which are associated
with the track candidate reconstructed in r�� plane are collected� �b�The position of hits in z
is calculated with cross point of stereo wire and r�� track� �c� A seed track is reconstructed
assuming the track is straight line in z � Sr� plane�
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Appendix C

Reconstruction of B � ���S�KS�

B � �c�KS and B � �cKS

In this chapter� reconstruction of B candidates is described for B � ��	S�KS � B � �c�KS

and B � �cKS � We also describe cluster 
nding methods in ECL and particle identi
cation for
charged particles�

C�� Candidate reconstruction

C���� Clustering in ECL

Since an electromagnetic shower made by photons or charged particles generally spreads over
several crystals� a clustering algorithm is necessary to obtain the shower energy and its incident
position�

A cluster is a group of connected crystals with energy deposit greater than a threshold��MeV�c���
The procedure to 
nd all possible clusters are as follows��	� ����

�� First� we 
nd the 
rst seed by choosing a crystal with the highest energy deposit from
all hit crystals� Neighboring crystals are considered as part of the cluster attached to the
seed crystal� The seed and its neighboring crystals are removed from candidates of the
next seed crystal�

	� Iterating this procedure until no candidates of seed crystal remain�All crystals which have
larger energy than threshold are regarded as seed or its neighboring crystals��

�� Two quantities� E��� and Eexcl
��� � are calculated for each seed crystal where E��� is energy

sum of ��� crystals around the seed� Eexcl
��� is the same quantity but excluding the crystals

whose energies are shared by the two seed crystals�

�� If the ratio� Eexcl
����E���� exceeds a threshold value of ����� it is identi
ed as a cluster� If

not� it is regarded as part of other clusters and is rejected�

�� The cluster energy is calculated with ��� crystals�

The cluster reconstructed with this algorithm is a candidate of photon� If the cluster is not
matched to an intersection point of a charged track on ECL within ���cm� this cluster is identi
ed

��



as a photon�

The energy resolution of ECL for 
 has been studied with our GEANT�based simulation and
clustering software����� The energy dependence of the resolution is

�E��E �
���#q
E�GeV �

� 	��#� �C���

for the case in which all inner detectors are included� Here ��� means quadruple sum� This
results are consistent with that measured with a photon beam with BELLE ECL prototype�����

C���� Particle Identi�cation

We need to identify electrons and muons to reconstruct J�� and ��	S�� and pions and kaons to
reconstruct �c and KS � Identi
cation of electrons� muons and kaons are also required for �avor
tagging�

For electrons� pions and kaons� particle identi
cation is performed combining the parti�
cle probability calculated from CDC� ACC� TOF and ECL� The calculation of probability
of a track being a particular particle type i��e� ��K� from each sub detector� CDC pid�i��
ACC pid�i�� TOF pid�i� and ECL pid�i�� were described in Section ������ The probability
combined� cmb pid�i�� is calculated as 

cmb pid�i� � CDC pid�i��ACC pid�i� � TOF pid�i� �ECL pid�i�� �C�	�

Muons were identi
ed with KLM only� PID was performed in the following order�

�� A track tagged by KLM is identi
ed as �

	� else if cmb pid�e��pid sum  electron threshold������� identify it as e

�� else if cmb pid�K��pid sum  kaon threshold������� identify it as K

�� else identi
ed as ��

where �pid sum� is de
ned as follows 

pid sum � cmb pid�e� � cmb pid��� � cmb pid�K�

Leptons from J�� and ��	S� have high momentum� The lepton used for �avor tagging was
required to have high momentum at the ���S� rest frame� In the momentum region higher than
��	GeV� identi
cation e�ciency for muon and electron were ��# and ����#� respectively�
Since pions and kaons from �c have a momentum lower than �GeV�c� TOF and CDC�dE�dx�
are e�ective to separate them� The identi
cation e�ciency for kaon was about ����#� The
probability for misidentifying pion as kaon was ���#�

C���� Reconstruction of �	�S
 candidate�

��	S� � l�l� mode

The ��	S� reconstruction of the decays to two leptons� ��	S� �����and ��	S� �e�e�� follows
the procedure outlined for J��� Resolution of invariant mass distribution of ��	S� is about
��MeV� Figure C����
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Candidates are selected with the criteria 

������ � M���� �M�	�S
 � ������GeV�

������ � Me�e� �M�	�S
 � ������GeV�

The reconstruction e�ciency for ��	S� is ���# for ����and ����# for e�e��
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Figure C�� Invariant mass distribution of ���S� in B � ��	S�KS  ��	S� ����� or e�e� MC�

��	S� � J������ mode

In order to reconstruct ��	S� decaying into J������� J�� candidates were selected with wider
mass criteria than that for B � J��KS � We didn�t require any particle identi
cation for the
pions to have higher reconstruction e�ciency for ��	S�� ��	S� were reconstructed through these
J�� and two tracks which have opposite charge assuming the nominal J�� and pion mass�

The pions from ��	S� have very low momenta�� 	��MeV�c� and tracking e�ciency should
be worse����#�� The momentum distribution of pion from ��	S� is shown in Figure C�	� To
keep the reconstruction e�ciency� we have loosed the criteria of invariant mass of ��	S�� To
reduce the number of tracks misreconstructed or produced by decay in �ight� the pions were
required to have impact parameter� of dr � �mm and dz � �cm�

������ � M���� �MJ�� � ������GeV�

������ � Me�e� �MJ�� � ������GeV�

�Impact parameter is de�ned as the distance of particle helix to the origin point�������� The distance in r��
and z are dr and dz which are de�ned in Section ��
�
�
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of ��	S� for B � ��	S�KS  ��	S� �
J������ MC�

������ � MJ������ �M�	�S
 � ������GeV�

The reconstruction e�ciency of ��	S� is ���	# for ����and 	���# for e�e��

C���� Reconstruction of �c� candidate�

�c� were reconstructed through its decays to 
J��� J�� was selected with the wider mass
window than that for B � J��KS � The reconstructed J�� was assumed to have the nominal
J�� mass� The largest background for the �c� signal is due to random combination of 
 from
�� � 

 associated with correctly reconstructed J�� from B meson decays� If 
 candidate
forms an invariant mass within �����	�MeV�c� of the known �� mass when combined with any
other 
 in the event� it is rejected� If all 
 were used for this suppression� the signal 
 was
occasionally vetoed when it was combined with a low energy 
 from uncorrelated ��� To reduce
this e�ect� 
 candidate was required to have at least ��� MeV�c�� This cut rejects few signal 
�
The energy distributions of 
 from various sources were shown in Figure C��� Figure C�� shows
invariant mass with all combination of 
 above the threshold�

The invariant mass distribution of �c� is shown in Figure C��� The peak of this distribution is
slightly shifted from nominal �c� mass� This shift was due to the correction of a low reconstructed
mass of J�� with e�e� to the nominal J�� mass�

The mass resolution of �c� is degraded by the energy resolution and the production vertex
uncertainty for gamma� We have obtained about ��MeV for J�� � ����and e�e�modes� The
candidate was required to have the criteria as

������ � M���� �MJ�� � ������GeV�

������ � Me�e� �MJ�� � ������GeV�

������ � MJ�� �M�c� � ����	�GeV�

The reconstruction e�ciency of �c� is ����# for ����and ��# for e�e��
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Figure C�� Invariant mass distribution of �c� in B � �c�KS MC�
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C���� Reconstruction of �c candidate�

The �c candidate was reconstructed through its decays to four charged hadrons� K� and ��� To
reduce the combinatorial backgrounds� we performed cuts on the impact parameters dr ��mm
and dz ��cm�Figure C��� These cut parameters were determined from the beam bunch size
and the �ight length of B mesons� This requirement also rejects the tracks which were from
decay in �ight as well as misreconstructed tracks�

We have used three decay modes� �c � K�K������ �c � 	������ and �c � 	�K�K���
We reconstruct �c with daughter particles identi
ed as speci
c particle kind except �c �
	�K�K�� mode� In order to improve the reconstruction e�ciency for �c � 	�K�K��� the
�c candidates were also reconstructed with three identi
ed K and a not�identi
ed track �����
where all tracks are assumed to have nominal kaon mass�

Invariant mass of �c was required to be within about �� around the nominal mass� where
� is the width obtained by 
tting the distribution with the Gaussian function� This width was
wider than resolution because of the 
nite mass width of �c� Figure C�� shows the distribution
of �c invariant mass� We have required to have the invariant mass to be

����� � jM	c �MK�K����� j � �����GeV�

����� � jM	c �M�	����
j � �����GeV�

����� � jM	c �M�	K�K�
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Figure C� Impact parameter distribution of daughters of �c candidates for B � �cKS MC�
Solid line is track from the true �c and dashed line is all tracks�

C��� Reconstruction of B� candidate�

The B� candidates were reconstructed with the combination of KS and charmonium candidates�
The reconstruction of KS follows the same line of B � J��KS � KS � J��� ��	S� and �c��
candidates were assumed to have their nominal mass value� The mass of �c was not constrained
in order to take the wide mass width of �c into account� The invariant mass and momentum at
the ���S� rest frame for all modes are shown in Figure C��� The candidates were selected with
the following criteria 

jMB� �M�	�S
KS
j � ���	�GeV� �B � ��	S�KS�
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jMB� �M�c�KS
j � �����GeV� �B � �c�KS�

jMB� �M�h�KS
j � �����GeV� �B � �cKS�

���� � P �
B� � ���GeV�

Since the mass of charmonium and KS were constrained except B � �cKS � the mass resolutions
of B meson depend on the mass of charmonium�
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Figure C�� �a��c��e� Invariant mass distributions and �b��d��f� Momentum at ���S� rest frame
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C�� Mass and vertex constrained �t

For B � �cKS � the mass of �c was not constrained because of its larger width� In order to obtain
the better mass resolution of B meson for this mode� we further performed mass and vertex�

constraint 
t with FITVER������ which was developed by DELPHI collaboration� FITVER
reconstructs BCP with helix parameters of daughter particles directly� The mass of �c and KS

candidate were constrained to its nominal value taking its mass width into account� Three decay
vertices� KS � �c and BCP � were constrained� Fitting mass and vertex simultaneously� we could
reduce background events� Figure C��� shows the results of mass and vertex constrained 
t for
B � �cKS � The resolution of B mass was improved� The following criteria were required 

jMB� �MFitj � ���	�GeV�

��	� � P �
B�Fit � ����GeV�c�
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Figure C��� Fitting results of mass and vertex constraint �t in B � �cKS MC�

C�� Background Rejection

To reject a certain kind of background� simple event selections were performed�

�Except the case of KS reconstruction� we have ignored the e�ect of the di�erence between production and
closest point to beam axis of particles� This e�ect is serious for low momentum tracks as it�s the case for c�
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C���� Fox�Wolfram parameter cut

Candidates of B � ��	S�KS and B � �c�KS � were selected with larger mass criteria than that
of B � J��KS in order to improve the reconstruction e�ciency� For B � �cKS � backgrounds
from continuum were not reduced with mass cut alone� To reduce the continuum background
events for these modes� we have adopted a cut with Fox�Wolfram parameter������ First� we
de
ne the k�th Fox�Wolfram moment as 

Hk �
�

s

NX
i

NX
j

�j�pij 	 j�pjjPk�cos�ij�� �C���

where N is the number of particles� s is the square of the center�of�mass energy� Pk�cos �ij� is
the Legendre polynomial of order k and �ij is the angle between the vector momenta of the i
and j particles� Then the Fox�Wolfram parameter R� is de
ned as H��H�� R� is close to � for
jetlike events and to � for spherical events� Figure C��� shows the distribution of Fox�Wolfram
parameter� R�� for B � ��	S�KS � B � �cKS and continuum events� We rejected the events
which had R� larger than ��� for B � ��	S�KS and B � �c�KS � and ���� for B � �cKS �
Since B � �cKS mode has more continuum background events� we set a smaller cut value than
that of B � ��	S�KS and B � �c�KS �
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Figure C��� The distribution of Fox�Wolfram parameter R�� Left� B � ��	S�KS  Right�
B � �cKS � Solid line is signal MC and dashed line is continuum MC events�

C���� Thrust angle cut

In order to remove the remaining continuum background for B � �cKS � thrust angle cut was
performed� The quantity called thrust������ T � is de
ned as

T � max

�PN
i j �Pi�njPN
i j �Pi j

�
� �C���

where �Pi is the momentum vector of the i�th particle� The axis along the unit vector �n is de
ned
as the thrust axis� The de
nition is only valid in the c�m� frame� The thrust angle is chosen
for each event so that the value T is maximized� Then we calculate the angle �T between the
thrust axis of candidate B� mesons and that of the remaining charged and neutral particles in
an event� Since the continuum q�q events have a jetty structure whereas the B� �B� events have
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Figure C��� The distribution of momentum of �a� all daughters from �c in B � �cKS MC� �b�
The distribution of maximum momentum of daughters from �c� Solid line is B � �cKS MC�
Dotted line is continuum MC events�

no axis correlation� the distribution of cos �T is strongly peaked near cos �T � �� for q�q events
and nearly �at for signal events as shown in Figure C��	� We have required the candidate to
have cos �T � ����

C���� Momentum distribution of ��K from �c

The momentum of the �c daughters was constrained kinematically� We can reduce fake �c
with checking the daughter momentum� Fig� C����a� shows the momentum distribution of �c
daughters for all signal modes� Fig�C����b� shows the distributions of the highest momenta
among four �c daughters for signal events and for the continuum background events� which
survived the 
ducial selection and the Fox�Wolfram cut� We rejected a �c candidate if at least
one of �c daughters had momentum larger than 	�� GeV�c� The cut with the �c daughters�
momenta reduced the continuum background events by ��# whereas the loss of signal events
was only a few #�
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Appendix D

E�ciency and background Analysis

with MC

In this thesis� we treat the event generated by Monte Carlo simulation as real experimental
data� In chapter  and �� we called that �MC�data� and distinguish from usual Monte Carlo
simulation�

We also generated independent Monte Carlo events for each signal mode�B � J��KS �
B � ��	S�KS � B � �c�KS and B � �cKS� and the background events� For each signal mode�
��� events are generated� background events were generated with the statistics corresponding
to an integrated luminosity of ���fb���

In this chapter� we describe the evaluation of the e�ciency� the vertex resolution� the wrong
tagging fraction and remaining background which are studied only with using generator infor�
mation�

D�� E�ciency for candidate reconstruction

In the reconstruction of KS � charmonium and B candidate� we evaluated the reconstruction
e�ciencies for all signal modes� The reconstruction e�ciencies and the 
tting width of mass
distribution with Gaussian are summarized in Table D��� Since the mass of �c has wide width
and was not constrained� the mass width of B meson is larger than that of other three modes�

D�� Flavor tagging

Table D�	 summarize the results of �avor tagging for all signal modes with the method described
in Section �����

D�� Vertex resolution

For B � ��	S�KS and B � �c�KS � we used the same method as that for B � J��KS described
in Section ��

For B � �cKS � we used the decay vertex of �c as the decay vertex of B�
CP � The vertex of

�c was reconstructed with using four daughter particles� In order to keep the high e�ciency� we
required at least three tracks matched SVD� The beam constraint was not adopted�
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Table D�� B mesons reconstruction e�ciency��� and mass resolution��M� unit in MeV�c�� at
�ducial sample selection�

KS Charmonium B

���� e�e� ���� e�e�

B � J��KS �� ���# ����# �	��# ����# ����#
�M� 	�� ��� ��	 ��� ���

��	S� � l�l� ��	S� � l�l�

���� e�e� ���� e�e�

����# ���# ����# ����# ���#
	�	 ���� ���� ��	 ��

B � ��	S�KS ��	S� � J������ ��	S� � J������

���� e�e� ���� e�e�

���	# 	���# 	���# ����#
	�� 	�� ��� ���

���� e�e� ���� e�e�

B � �c�KS ����# ����# ��# 	���# 	���#
	�� ��� ��� ��� ��

�c � K�K����� �c � K�K�����

	���# ��#
���� ����

�c � 	������ �c � 	������
B � �cKS ����# ����#

��� �	�� ����
	�� �c � 	�K�K�� �c � 	�K�K��

	���# ���#
�	�� �	��

Table D�	 Results of �avor tagging�

Lepton tag Kaon tag Total

�l �l �l�eff �K �l �K�eff �t �t �t�eff ��� 	��

J��KS ����� ����� ����� ����� ����� ����� ����� ����� ��	�� ���	 � �����
��	S�KS ����� ���� ����� ���	� ����� ���� ����� ����� ��	�� ���� � ���	�
�c�KS ����� ����� ��� ����� ����� ��� ����	 ���	� ��	�� ���� � ���	�
�cKS ����� ���� ����� ���	� ����� ����� ����� ����� ��	�� ��	� � ���	�
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Table D�� Results of vertex reconstruction� The fraction of narrow component is fn� The mean
and width are mn �mw� and �n ��w� for narrow �wide� component respectively� The units for
mean and width are �m�

Mode CP vertex Tagging vertex

fn mn �n mw �w fn mn �n mw �w

B � J��KS ���� ��	� ���� ����� 	���� ���� ��� ���� ���� 			��
B � ��	S�KS ���� ���� ���� ���� ����� �� ��	 ���� ��� 	�	��
B � �c�KS ���� �	��	 ���� ����� 	���� ���� ���� ��� ���� 	���	
B � �cKS ���� ��� ���� ���� ����� ��� ��	 ��� ���	 ����

�z vertex

fn mn �n mw �w

���	 	��� ���� ��� 		��
��� �� ���� ��� 	���
���� 	��� ���� ���� �����
���	 ���� �	�� ��� 	�	��

We have 
tted the residual distribution with double Gaussian function� The parameter of
the 
tted function obtained is summarized in Table D���

D�� Background Estimation

In this section� we estimate the number of background events and categorize them� We also
estimate the decay time of background for each category� A possible CP asymmetry of these
background is brie�y mentioned� At the integrated luminosity of ���fb��� the number of events
of �������� for ���S� and 	������ for continuum will be generated� Since it takes too much time
to generate the required number of events with the GEANT�based simulator�hereafter GSIM��
We used the fast smearing simulator�hereafter FSIM� to generate large amount of background
events�

D���� Remaining background

For the background samples� we have adopted the same selection criteria as that developed for
the signal selection� The number of remaining background events for ���fb�� is summarized in
Table D��� In the table� �Others� include the mis�reconstruction of J�� with random leptons
from semileptonic decay or misidenti
ed leptons�

For B � J��KS � B � ��	S�KS and B � �c�KS � continuum events are much reduced
with the reconstruction of J�� or ��	S� from two leptons� Therefore for these modes� the
background is dominated by B� �B� and B�B� events� In the case of B � �cKS � however�
continuum background events has a sizable contribution�

The backgrounds from continuum and B�B� have no CP asymmetry� These are uncorre�
lated backgrounds�� If J�� or ��	S� was reconstructed correctly� some background events from

�Here we have ignored the small CP asymmetry of charged B mesons�
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Table D�� The number of remained background

B � J��KS B � ��	S�KS B � �c�KS B � �cKS

B� �B� J��K�� 	 J��KS�
��� 	 J��KS�

� �
��	S�KS�

� � J��K�� �
�c�KS �

Others � � � ��

B�B� � � � �

Continuum 	 � � ��

Sum � 	� � ��

B� to CP eigenstate shows CP asymmetry we can�t ignore for B � J��KS � B � ��	S�KS

and B � �c�KS �
For B � �cKS � almost of the remaining background events fromB� �B�are not CP eigenstates�

For example� the decay chain of such one background are shown in Figure D��� Then all
backgrounds remained for B � �cKS can be treated as uncorrelated�

D���� Decay Time of Background

We de
ne the decay time including the smearing due to the 
nite resolution� We 
t �z distri�
bution with the following function 

f��z� �
�

	Bc	

exp�

�j�zj
Bc	


�� �D���

Figure D�	 shows the �z distributions of �a� signal and �b� background from ���S� for B �
�c�KS mode� We obtained B � ����	ps for signal and 	����ps for background� respectively�
Due to the 
nite resolution of vertex reconstruction� larger decay time was obtained even for
the signal�

Figure D�	�c� shows the distribution of �z of B� �B� and B�B� backgrounds for B �
�cKS mode� We obtained B � ����	ps� The shorter life time is attributed to the fact that
the combinatorial BCP � which is the dominant source for this mode� is reconstructed with
higher probability when the distance of two B mesons are smaller� Finally Figure D�	 is the
�z distribution of continuum background events for B � �cKS � which gives us the smallest
lifetime����		ps��

D�� Summary

In Figure D��� the invariant mass distributions of BCP for all modes are shown at the integrated
luminosity of ���fb��� Table D��� D��� D� and D�� show the selection criteria and e�ciencies
for signal and the number of survived background events�

�	�



e  +  e B B

γ γ

γ γ

γγ

+ − 0 0

0

Υ(4S) D π
∗+ −

D π+

K π  π+
S

D ρ  ρ  π  π0 + 0 0 -

π π+ -

π  π0 +

ω Κ π+ -

π  π  π-+0

π  π + -

-

ηc

KS
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Figure D�� The mass distribution of B mesons with MC events for �a� B � J��KS  �b�
B � ��	S�KS  �c� B � �c�KS and �d� B � �cKS � The mass at B � �cKSwere obtained by
mass constraint �t� The number of all signal and background events are normalized to that at
the luminosity of ���fb��� The solid histogram is signal events� The dashed one is B� �B� and
B�B� MC background events� The dotted one is continuum MC background events�

Table D�� Results for B � J��KS MC�

Cut Signal B� �B� B�B� Continuum

Generated ������e��� ��� � ��� ��� � ��� 	��� ���

B� recon ���	� �� � ��

Flavor Tagging ��� � � �
CP vertex ����� � � 	
TAG vertex ����� � � 	
KS vertex ����� 	 � 	

survived ����� 	 � 	
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Table D�� Results for B � ��	S�KS MC�

Cut Signal B� �B� B�B� Continuum

Generated ������e��� ��� � ��� ��� � ��� 	��� ���

B� recon ����� �� 	� �

Fox�Wolfram ����� �� 	� �	
Flavor Tagging ���	� �� � ��
CP vertex ����� �� � ��
TAG vertex ����� �� � ��
KS vertex ����� � � �

survived ����� � � �
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Appendix E

Reconstruction of B � J��K��

We have generated the MC�data events using the value of Br�B � J��K�������� � ���� and
K�� � K��������#���� for an integrated luminosity of ���fb���

The K���s were reconstructed with identi
ed K� and ��� The invariant mass of K���

system was required to be within 	��MeV of the nominal K�� mass �MK� � �����MeV�c��
taking the wide mass width of K�� ���MeV� into account� Figure E�� shows the invariant mass
distribution of K�� reconstructed�

The selection criteria for J�� and B are the same as the case of B � J��KS�Figure E�	��
In the reconstruction of B�� only J�� mass was constrained to nominal J�� mass �Figure E����

The criteria for the invariant mass and momentum at ���S� rest frame are as follows"

jMK� �MK��� j � ��	��GeV�

jMJ�� �Ml�l� j � ���	�GeV�

jMB� �MJ��K��� j � ���	�GeV�
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Figure E�� Invariant mass distribution of K�� in B � J��K�� K� � K��� MC�
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In order to reduce fake K���s from wrong combination� we took both K� and �� tracks
originated from the J�� vertex requiring that the distance of closest approach be less than
����m�

Finally ���� events remained� which corresponds to an e�ciency of ���#� The reconstruction
e�ciency is lower than that for B � J��KS since particle identi
cation was required for both
K� and �� from K��� The background events were simulated with smearing simulator and 	�
events remained for B� �B� and B�B� events� Since the S�N ratio was quite high �� ���� we
ignored these backgrounds� The continuum background was estimated to be also small�
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Appendix F

Result of CP �tting

F�� Estimation of the decay time and CP asymmetry of back�
ground

We 
tted the �z distribution of background events for all modes in MC�data� We have already
shown the 
tting of decay time distribution of background for B � J��KS in Figure ���� Figure
F�� shows the 
tting results� In the 
gures� the distribution of events tagged by B� was inverted
and added to events tagged by �B�� In this way a systematic shift of the �z distribution is
canceled out in the 
tting�

F�� Results of �t to calculate sin ���

We have already shown the 
tting of proper time distribution for B � J��KS in Figure ����
For all signal modes� Figure F�	 and F�� show the 
tting of proper time distribution of selected
events� We performed 
tting for each signal mode� B � J��KS � B � ��	S�KS � B � �c�KS

and B � �cKS�Figure F�	�� We calculated sin 	�� for each mode�
We also performed 
tting for all modes with each background function simultaneously�Figure

F����
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Figure F�	 CP 
tting results� Fitting was performed for each signal mode� Events are tagged
�a��c��e��g� by B� and �b��d��f��h� by �B� in MC�data of the following channels �a��b� B �
J��KS � �c��d� B � ��	S�KS � �e��f� B � �c�KS � �g��h� B � �cKS �
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Figure F�� CP 
tting result for the all modes combined� All distributions were 
tted simultane�
ously� Events were tagged �a��c��e��g� by B� and �b��d��f��h� by �B� in MC�data of the following
channels �a��b� B � J��KS � �c��d� B � ��	S�KS � �e��f� B � �c�KS � �g��h� B � �cKS �
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