

Exploration of New Physics – Muon to Positron Transition at COMET experiment

TingSam Wong^A

CLFV and **LNV**

- In minimal extension of the standard model considering neutrinos as **Dirac particles and lepton number symmetry**
- E.g. of CLFV µ-e conversion: Neutrino Oscillation + Stand model

$$\mathrm{BR}(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{k=1,3} U_{ej} U_{\mu j}^* \frac{m_{\nu_j}^2}{M_W^2} \right|^2 \simeq \mathcal{O}(10^{-55} - 10^{-54}),$$

 Leads to the search of CLFV for experiments like , DeMee, COMET, Mu2e

Apart from µ-e- conversion,

$$\mu^- + N(A,Z) \rightarrow e^+ + N(A,Z-2)$$

- A process violating both **flavour** and **lepton number** $(L_e-L_\mu = \Delta L=-2)$
- Extended SM : Majorana neutrinos, we can calculate the branching ratio ~ $O(10^{-24})$ [1] → New Physics !

[1] :P.Domin, et al.

History of Search of Muon Positron conversion

Table 1: Past experiment on $\mu^- \to e^+$ conversion						
Year	Location	Process	Upper limit	Reference		
1982	SIN	$\mu + S \rightarrow e^+ + Si^*$	$< 9 \times 10^{-10}$	[1]		
1988	TRIUMF	$\mu + Ti \rightarrow e^+ + Ca^*$	$< 1.7 \times 10^{-10}$	[2]		
1993	\mathbf{PSI}	$\mu + Ti \rightarrow e^+ + Ca$	$<4.3\times10^{-12}$	[3]		
		$\mu + Ti \rightarrow e^+ + Ca^*$	$< 8.9 \times 10^{-11}$			
1998	\mathbf{PSI}	$\mu + Ti \rightarrow e^+ + Ca$	$< 1.7 \times 10^{-12}$	[4]		
		$\mu + Ti \rightarrow e^+ + Ca^*$	$< 3.6 \times 10^{-11}$			

- Best one Titanium by SINDRUM experiment,
- Branching ratio ~ 1.7×10^{-12}

Annual Presentation T.S. Wong

COMET Phase-I experiment

$\mu^- + Al \rightarrow e^+ + Na$	(3.1)
-----------------------------------	-------

$$\mu^- + Al \to e^- + Al \tag{3.2}$$

$$\mu^{-} + N(Z) \to \mu^{+} + N(Z - 2)$$
 (3.3)

$$\mu^- \to e^- + X \tag{3.4}$$

$$\mu^- + e^- \to e^- + e^-$$
 (3.5)

$$m_{\mu} + M_{Al} + B_{\mu} = E_{\mu} - e^{+} + M_{Na} + E_{recoil}$$

- Nucleus:
 - Ground state : 92.32 MeV
 - Excited state : [73.58 MeV 92.32 MeV]
- Bonus for COMET: Technically the same process for compare to µ-e conversion

Cylindrical Detector Section

How e-/e+ becomes a USEFUL signal?

Design of trigger hodoscope

Defintion

N-fold coincidence : Number of modules electron/positron pass through and produce a coincidence

Signal Sensitivity calculation

$$B(\mu^{-} + N(Z) \to e^{+} + N(Z - 2)) = \frac{1}{N_{\mu}(Z) \cdot f_{\text{cap}}(Z) \cdot f_{\text{gnd}}(Z) \cdot A_{\mu - e}(Z)}$$
(4.2)

Dependence of the branching ratio:

- Number of stopped muons
- Fraction of muons captured by nucleus
- Fraction of nucleus with ground state at the final state
- Acceptance of signals

	Signal Electron	Signal Positron
Muon Capture rate (f _{cap})	0.61 (AI)	0.61 (AI)
Fraction of ground state (fgnd)	0.9	0.4

Acceptance of signals

- Online trigger efficiency
- DAQ efficiency

•

- Track finding efficiency
- Track Fitting efficiency

- Momentum && Time Cut efficiency
- Geometrical Acceptance

Stopped muons for Aluminum

Models	Simulator	$N(\pi^{-} + \mu^{-})/p$ at 3 m
CEM	MARS	0.061 ± 0.001
CEM/LAQGSM	MARS	0.138 ± 0.001
LAQGSM	MARS	0.144 ± 0.001
LAQGSM	GEANT	0.1322 ± 0.0007
QGSP_BERT	GEANT	0.0511 ± 0.0002
QGSP_BIC	GEANT	0.1278 ± 0.0005
FTFP_BERT	GEANT	0.0440 ± 0.0002

TABLE 3.2: Comparison of the π^- and μ^- yields three meters backwards from the proton target for different hadron production codes from TDR of COMET [3]

Positrons/Electrons acceptance studies

105 MeV Electron Mainly 4-5 folds 92.3 MeV Positron

Annual Presentation T.S. Wong

Simulation of signal e+e- Acceptance (A)

Signal Sensitivity calculation

 $SES = Br(\mu^{-} + Al \rightarrow e^{-} + Al) = \frac{1}{N_{\mu} \cdot f_{can} \cdot f_{and} \cdot A_{\mu-e}}$

	- μ)	cup Jynuµ-e
105MeV e-	92.32 e+	Commets
0.9	0.9	
0.9	0.9	
0.99	0.99	
0.21	0.042	
0.91	0.62	e-: 103.6 MeV < Pe < 106.0 MeV e+:91.5 MeV < Pe < 92.5 MeV
0.50/0.31	0.78/0.48	500 ns or 700 ns cut
0.077/0.048	0.016/0.010	
3 x 10 ⁻¹⁵	3 x 10 ⁻¹⁴	2 orders than the current limit
1.3 x 10 ¹⁶ (7.9 x 10 ¹⁵)	9.1 x 10 ¹⁵ (5.7 x 10 ¹⁵)	
2.7 x 10 ¹⁹ (1.7 x 10 ¹⁹)	1.9 x 10 ¹⁹ (1.2 x 10 ¹⁹)	($R_{\mu-stop}$) Stopping ratio 4.7 x 10 ⁻⁴
	105 MeV e- 0.9 0.9 0.99 0.99 0.21 0.21 0.91 0.50/0.31 0.077/0.048 3 x 10 ⁻¹⁵ 1.3 x 10 ¹⁶ (7.9 x 10 ¹⁵) 2.7 x 10 ¹⁹ (1.7 x 10 ¹⁹)	105MeV e-92.32 e+0.90.90.90.90.990.990.210.0420.910.620.50/0.310.78/0.480.077/0.0480.016/0.0103 x 10 ⁻¹⁵ 3 x 10 ⁻¹⁴ 1.3 x 10 ¹⁶ 9.1 x 10 ¹⁵ (7.9 x 10 ¹⁵)(5.7 x 10 ¹⁵)2.7 x 10 ¹⁹ 1.9 x 10 ¹⁹ (1.7 x 10 ¹⁹)(1.2 x 10 ¹⁹)

88 days

(55 days)

3.2kw 8GeV proton 0.4µA

122 days

(76 days)

Time for Physics run

· <u>Backgrounds</u>

- Decay In orbit
- Internal/external Radioactive Muon Captured
- Internal/external Radioactive Pion Captured
- Cosmic ray background
- Beam background (Not mentioned here, very small)
- Anti proton (Not mentioned here)

Cosmic ray background

Assume Muon Flux	:	1 [cm-2/min]
Experimental hall size	:	$(50 \times 50) m^2 = (5000 \times 5000) cm^2$
Physics measurement	:	100 days = 144000 mins
Veto Efficiency (E _{CRV})		: 99.99% ~ 1e-4 (for now)
Duty factor w/ time gate	:	0.25
(144000 mins)*(5000*5000c	m2	$(1/cm^2/mins/\mu) * (\epsilon_{CRV}) * 0.25 \sim 9e11 * \epsilon_{CRV}$

Number of cosmic muons needed ~ $10^{12} \varepsilon_{CRV}$, where ε_{CRV} is the CRV veto efficiency

Cosmic ray background

Cherenkov can do PID, it can identify muons

DIO Charge IDentification (CID)

 $P(e^- \rightarrow e^+)$: Charge Misidentification Rate of e^- as $e^+ \rightarrow 0.2 \%$ $P(e^+ \rightarrow e^-)$: Charge Misidentification Rate of e^+ as $e^- \rightarrow 8.5 \%$

 $N_{MICp} = N_{p} \cdot R_{\mu-stop/p} \cdot (1-f_{cap}) \cdot Br(DIO) \cdot A_{DIO} \cdot P_{e \rightarrow e+}$

Parameters	Value	Description
Np	1.9 x 10 ¹⁹ (1.2 x 10 ¹⁹)	Number of needed protons
Rµ-stop/p	4.7 x 10 ⁻⁴	Muon stopping rate
f _{cap}	0.61	Nuclear capture rate
Br(DIO)	6.77 × 10 ⁻¹⁰	90 - 105MeV/c
P _{e-→e+}	0.002	MIC rate
ADIO	100%	DIO acceptance

Even 100 % -> you only have 7.3e-4 event

CM28 Meeting T.S. Wong

Radiative pion capture (RPC)

1. Two types of RPC

External : $\pi^- + Al \rightarrow \gamma + Na$ followed by $\gamma \rightarrow e^- + e^+$ Internal : $\pi^- + Al \rightarrow e^- + e^+ + Na$

- 2. RPC depends highly on the Extinction factor
- 3. From 8GeV/c experiment extinction factor (<1e-10) is guarantee

- 1. Simulated 1e7 gamma for xRPC studies according to the experimental data
- 2. Mainly to check if the RPC is negligible or not

Radiative pion capture (RPC)

Event selection	Value	Remark
Online event selection efficiency	0.9	TDR
DAQ efficiency	0.9	TDR
A _{xRPC}	8.7e-6 (1.4e-5)	
Total (A _{RPC_e})	7.0e-6 (1.1e-5)	700 ns (500 ns) cut
Expected xRPC in physics run	8.2e-4 (1.3e-3)	

 $N_{xRPCe} = N_p \cdot R_{ext} \cdot R_{\pi-stop/p} \cdot Br(E\gamma) \cdot A_{xRMC_e}$

Parameters	Value	Description
Np	1.9 x 10 ¹⁹ (1.2 x 10 ¹⁹)	Number of needed protons
Rext	< 1e-10	Extinction rate
R π-stop/p	3.1 x 10 ⁻⁶	Pion stopping rate
Br(Eγ)	0.02	Branching ratio of YRpC
A _{xRMC_e}	7.0e-6 (1.1e-6)	xRPC acceptance

RPC rate is at negligible level

Radiative muon capture (RMC)

1. Two types of RMC

External : $\mu^- + Al \rightarrow \nu_{\mu} + Mg + \gamma$ Followed by $\gamma \rightarrow e^- + e^+$ Internal : $\mu^- + Al \rightarrow \nu_{\mu} + Mg + e^- + e^+$ (Virtual Photon)

- 2. Endpoint energy of photon ~ 101.85 MeV \rightarrow 101.34 MeV for e+
 - Experimentally Br(Eγ > 57 MeV) ~ 1.9 x 10⁻⁵
 - 2. Spectrum is calculated in "Phy Rev C, Volume 32,Number5, Nov 1985"
 - Spectrum of gamma can be described as:

$$P(x) = C(1 - 2x + 2x^2)x(1 - x)^2, \qquad x$$

CM28 Meeting T.S. Wong

Br(Eγ > 88.32 MeV) ~ 1 x 10⁻⁸

O(1e7) of RMC gamma are generated

$$E_{end}^{\gamma}$$

How to avoid x/iRMC background?

CDC cross section

We cannot avoid it actually...they are all from the disk....

CM28 Meeting T.S. Wong

External Radiative muon capture (xRMC)

Event selection	Value	Remark
Online event selection efficiency	0.9	TDR
DAQ efficiency	0.9	TDR
Geometrical acceptance (coincidence)	0.006	
+ Momentum window	0.002	
+Time window	0.17 (0.42)	700 ns (500 ns) cut
Total (A _{RMC_e})	1.4e-6 (3.6e-6)	
Expected xRMC in physics run	120 (310)	FATAL

$$N_{xRMCe} = N_p \cdot R_{\mu-stop/p} \cdot f_{cap} \cdot Br(E\gamma) \cdot A_{xRMC_e}$$

Parameters	Value	Description
Np	1.9 x 10 ¹⁹ (1.2 x 10 ¹⁹)	Number of needed protons
R µ-stop/p	4.7 x 10 ⁻⁴	Muon stopping rate
f _{cap}	0.61	Nuclear capture rate
Br(Eγ>88.32MeV)	1 x 10 ⁻⁸	Branching ratio of YRMC
A _{xRMC_e}	1.4e-6 (3.6e-6)	xRMC acceptance

CM28 Meeting T.S. Wong

Momentum of RMC

Too many e- for 92.32 MeV electrons

Annual Presentation T.S. Wong

Prospective : Change of targets?

Atom	$E_{\mu^-e^+}$	$E_{\mu^-e^-}$	E_{RMC}^{end}	N.A.	f_{cap}	$ au_{\mu}$ –
	$({ m MeV})$	$({ m MeV})$	(MeV)	(%)	(%)	(ns)
$^{27}\mathrm{Al}$	92.30	104.97	101.34	100	61.0	864
^{32}S	101.80	104.76	102.03	95.0	75.0	555
40 Ca	103.55	104.39	102.06	96.9	85.1	333
$^{48}\mathrm{Ti}$	98.89	104.18	99.17	73.7	85.3	329
$^{50}\mathrm{Cr}$	104.06	103.92	101.86	4.4	89.4	234
54 Fe	103.30	103.65	101.93	5.9	90.9	206
58 Ni	104.25	103.36	101.95	68.1	93.1	152
64 Zn	103.10	103.04	101.43	48.3	93.0	159
$^{70}\mathrm{Ge}$	100.67	102.70	100.02	20.8	92.7	167

Prospective : Change of targets?

Summary

- Aluminium target is not a good target for Muon-Positron conversion search
- RMC shows bad results, we have to find a target material that has a energy peak further away from it
- Potential targets shows promising result in terms of RMC background with a branching ratio

Annual Presentation T.S. Wong

COMET: Muon to positron process

$$\mu^- + N(A,Z) \rightarrow e^+ + N(A,Z-2)$$

- A process violating both flavour and lepton number (ΔL=2)
- Analogous to neutrinoless double beta decay
- Signal is monenergetic 92.3 MeV/c positron (ground state)
- Current limit : SINDRUM II: 1.7 x 10⁻¹² (90% CL) on Ti
- Intrinsic background
 - Radiative Muon Capture (RMC)
 - Radiative Pion Capture (RPC)
 - Comsic Ray Background (CRB)
 - Muon Decay-in-orbit (DIO)

Positron/Electron signal studies

Annual Presentation T.S. Wong

Simulation setup

- 1. Not official ICEDUST (will be soon after merge request OK)
- 2. Updated geometry with CTH x 48
- 3. Shielding
- 4. RECBE
- Magnetic field: 150630_defaultFieldmap_opt

Trigger Algorithm on CTH

1. Remove hits

- ➡ cherenkov : beta < 1/1.5</p>
- ➡ scintillator : energy deposition < 63 keV</p>
- 2. Loop over each module from scintillator/cherenkov
- 3. Count if there are hits in clockwise direction
 - ➡ in the case I show there are 4 combinations picked up
- 4. Pick up the best type
 - → type = countSci + (countChe+1)*2³, where type=(0,71)

Acceptance of e- (104.5MeV)

Graph

Acceptance of e+ (92.32MeV)

Graph

Annual Presentation T.S. Wong

Mon, Dec 23, 2019

Summary for electron and positron with cut

Annual Presentation T.S. Wong

Electrons acceptance studies

105 MeV Electron

92.3 MeV Positron

Annual Presentation T.S. Wong

TDR comparison

	Event selection		Value	Comments
	Online event selection	n efficiency	0.9	Soction Chould be
	DAQ efficiency		0.9	TDR Shoted!!
	Track finding efficien	cy	0.99	update
	Geometrical acceptar	rce + Track qualit	y cuts 0.18	
	Momentum window ($(\varepsilon_{\rm mom})$	0.93	$103.6 \text{ MeV}/c < P_e < 106.0 \text{ MeV}/c$
	Timing window (ε_{time}	e)	0.3	700 ns < t < 1170 ns
	Total		0.041	
		105MeV e-	92.32 e+	Commets
Online event selection		0.9	0.9 ?	
DAQ efficiency		0.9	0.9	
Track finding efficiency		0.99	0.99?	
Geometrical			0.040	
acceptance + track quality cuts		0.21	0.042	
Nomentum window		0.91	0.62	e-: 103.6 MeV < Pe < 106.0 MeV e+:91.5 MeV < Pe < 92.5 MeV
Time window		0.50/0.31	0.78/0.48	500 ns or 700 ns cut
Total		0.077/0.048	0.016/0.010	
	TDR value	0.041		700ns cut

Sensitivity estimation

$$SES = Br(\mu^- + Al \rightarrow e^- + Al) = \frac{1}{N_{\mu} \cdot f_{cap} \cdot f_{gnd} \cdot A_{\mu-e}}$$

	e-	e+
Muon Capture rate (fcap)	0.61 (AI)	0.61 (AI)
Fraction of ground state (fgnd)	0.9	0.4
Conversion rate (Aµ-e)	0.048(0.077)	0.010(0.016)

	e-	e+	Commets
Aimed Single Event Sensitivity (SES)	3 x 10 ⁻¹⁵	3 x 10 ⁻¹⁴	2 orders than the current limit
N muons needed	1.3 x 10 ¹⁶ (7.9 x 10 ¹⁵)	9.1 x 10 ¹⁵ (5.7 x 10 ¹⁵)	
N protons needed	2.7 x 10 ¹⁹ (1.7 x 10 ¹⁹)	1.9 x 10 ¹⁹ (1.2 x 10 ¹⁹)	Sam@CM23 (R _{µ-stop}) Stopping ratio 4.7 x 10 ⁻⁴
Time for Physics run	122 days (76 days)	88 days (55 days)	3.2kw 8GeV proton 0.4µA

Only positron's Background studies

Annual Presentation T.S. Wong

Radiative muon capture (RMC)

1. Two types of RMC

External : $\mu^- + Al \rightarrow \nu_{\mu} + Mg + \gamma$ Followed by $\gamma \rightarrow e^- + e^+$ Internal : $\mu^- + Al \rightarrow \nu_{\mu} + Mg + e^- + e^+$ (Virtual Photon)

- 2. Endpoint energy of photon ~ 101.85 MeV \rightarrow 101.34 MeV for e+
 - Experimentally Br(Eγ > 57 MeV) ~ 1.9 x 10⁻⁵
 - 2. Spectrum is calculated in "Phy Rev C, Volume 32,Number5, Nov 1985"
 - Spectrum of gamma can be described as:

$$P(x) = C(1 - 2x + 2x^2)x(1 - x)^2, \qquad x$$

Br(Eγ > 88.32 MeV) ~ 1 x 10⁻⁸

O(1e7) of RMC gamma are generated

External Radiative muon capture (xRMC)

Event selection	Value	Remark
Online event selection efficiency	0.9	TDR
DAQ efficiency	0.9	TDR
Geometrical acceptance (coincidence)	0.006	
+ Momentum window	0.002	
+Time window	0.17 (0.42)	700 ns (500 ns) cut
Total (A _{RMC_e})	1.4e-6 (3.6e-6)
Expected xRMC in physics run	120 (310)	

$$N_{xRMCe} = N_p \cdot R_{\mu-stop/p} \cdot f_{cap} \cdot Br(E\gamma) \cdot A_{xRMC_e}$$

Parameters	Value	Description
Np	1.9 x 10 ¹⁹ (1.2 x 10 ¹⁹)	Number of needed protons
R µ-stop/p	4.7 x 10 ⁻⁴	Muon stopping rate
f _{cap}	0.61	Nuclear capture rate
Br(Eγ>88.32MeV)	1 x 10 ⁻⁸	Branching ratio of γ _{RMC}
A _{xRMC_e}	1.4e-6 (3.6e-6)	xRMC acceptance

Annual Presentation T.S. Wong

How to avoid x/iRMC background?

CDC cross section

We cannot avoid it actually...they are all from the disk....

Annual Presentation T.S. Wong

Internal Radiative muon capture (iRMC)

Internal : $\mu^- + Al \rightarrow \nu_\mu + Mg + e^- + e^+$ (Virtual Photon)

- 1. iRMC is very dangerous
- 2. Energy can go up to 101.34 MeV
- 3. Can happen in the disk
 - ➡ We cant know if the event is from RMC or µ-e+

The paper by Norman M. Kroll [6] gave an estimation of Internal Radiative Pion Capture (RPC) Branching ratio compared to External RPC. (Material independently)

$$\rho = \frac{Br_{Int-RPC}}{Br_{Ext-RPC}} \approx 0.007 (\approx \alpha?)$$

1. If this is true, we can have 0.7 or 0.4 events of Internal RMC

Radiative pion capture (RPC)

1. Same as RMC, two types of RPC

External : $\pi^- + Al \rightarrow \gamma + Na$ followed by $\gamma \rightarrow e^- + e^+$ Internal : $\pi^- + Al \rightarrow e^- + e^+ + Na$

- 2. RPC depends highly on the Extinction factor
- 3. From 8GeV/c experiment extinction factor (<1e-10) is guaranteed @CM25

- 1. Simulated 1e7 gamma for xRPC studies according to the experimental data
- 2. Mainly to check if the RPC is negligible or not

Radiative pion capture (RPC)

Event selection	Value	Remark
Online event selection efficiency	0.9	TDR
DAQ efficiency	0.9	TDR
A _{xRPC}	8.7e-6 (1.4e-5)	
Total (A _{RPC_e})	7.0e-6 (1.1e-5)	700 ns (500 ns) cut
Expected xRMC in physics run	8.2e-4 (1.3e-3)	

 $N_{xRPCe} = N_p \cdot R_{ext} \cdot R_{\pi-stop/p} \cdot Br(E\gamma) \cdot A_{xRMC_e}$

Parameters	Value	Description
Np	1.9 x 10 ¹⁹ (1.2 x 10 ¹⁹)	Number of needed protons
Rext	< 1e-10	Extinction rate
R π-stop/p	3.1 x 10 ⁻⁶	Pion stopping rate
Br(Eγ)	0.02	Branching ratio of YRpC
A _{xRMC_e}	7.0e-6 (1.1e-6)	xRMC acceptance

RPC rate is at negligible level

Mis-Identification of Charge (MIC)

	p i i µ-stop/p (i -i cap) Di (L	
Parameters	Value	Description
V p	1.9 x 10 ¹⁹ (1.2 x 10 ¹⁹)	Number of needed protons
R μ-stop/p	4.7 x 10 ⁻⁴	Muon stopping rate
сар	0.61	Nuclear capture rate
Br(DIO)	6.77 × 10 ⁻¹⁰	90 - 105MeV/c
P _{e-→e+}	0.002	MIC rate

DIO acceptance

???

ADIO

Beam related background

Annual Presentation T.S. Wong

Beam related background

Previous studies: MC3b analysis by Beomki @ CM20 → No e+ even with out momentum cut

However, I will do mass production of MC4 or 5 data for later purpose soon!

Occupancy of CDC ~ 784/4482 = 17.5%

Updated geometry

Annual Presentation T.S. Wong

Anti proton background

Cosmic ray background

Annual Presentation T.S. Wong

Background summary

		TDR	e+
Type	Background	Estimated events	
Physics	Muon decay in orbit	0.01	0.01
	Radiative muon capture	0.0019	120 (310)
	Neutron emission after muon capture	< 0.001	< 0.001
	Charged particle emission after muon capture	< 0.001	< 0.001
Prompt Beam	* Beam electrons		
	* Muon decay in flight		
	* Pion decay in flight		
	* Other beam particles		
	All $(*)$ Combined	≤ 0.0038	< ?
	Radiative pion capture	0.0028	< 8.2e-4 (1.3e-3
	Neutrons	$\sim 10^{-9}$	~ 10 ⁻⁹
Delayed Beam	Beam electrons (positron)	~ 0	~ 0
	Muon decay in flight	~ 0	~ 0
	Pion decay in flight	~ 0	~ 0
	Radiative pion capture	~ 0	~ 0
	Anti-proton induced backgrounds	0.0012	~ 0.0012
Others	Cosmic rays [†]	< 0.01	<0.01
Total		0.032	~ 120 (310)

[†] This estimate is currently limited by computing resources.

Other possibilities

Endpoint energies for $\mu^- \rightarrow e^+$ conversion and radiative muon capture for the various titanium isotopes

А	abundance (%)	$E_{\mu^-e^+}^{\max}$ (MeV)	E_{RMC}^{\max} (MeV)	
46	7.94	102.26	91.4 ± 2.0	
47	7.44	100.66	93.2 ± 2.0	
48	73.78	98.99	89.7 ± 2.0	
49	5.51	95.98	91.8 ± 2.0	
50	5.34	91.39	86.9 ± 2.0	

If we go higher in Z, we may find lower endpoint of energy of RMC, some works have been carried out by our collaborators already! But still many room to improve!

Ofcos not only the RMC, but RPC and DIO, which are important for muon positron studies

PHYSICAL REVIEW D 96, 075027 (2017)

Future experimental improvement for the search of lepton-number-violating processes in the $e\mu$ sector

Beomki Yeo,^{1,*} Yoshitaka Kuno,^{2,†} MyeongJae Lee,^{3,‡} and Kai Zuber^{4,§}

¹Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea ²Department of Physics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan ³Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34051, Republic of Korea

⁴Institute for Nuclear and Particle Physics, Technische Universität Dresden, 01069 Dresden, Germany (Received 20 August 2017; published 18 October 2017)

The conservation of lepton flavor and total lepton number are no longer guaranteed in the Standard Model after the discovery of neutrino oscillations. The $\mu^- + N(A, Z) \rightarrow e^+ + N(A, Z-2)$ conversion in a muonic atom is one of the most promising channels to investigate the lepton number violation processes, and measurement of the $\mu^- - e^+$ conversion is planned in future $\mu^- - e^-$ conversion experiments with a muonic atom in a muon-stopping target. This article discusses experimental strategies to maximize the sensitivity of the $\mu^- - e^+$ conversion experiment by introducing the new requirement of the mass relation of M(A, Z - 2) < M(A, Z - 1), where M(A, Z) is the mass of the muon-stopping target nucleus, to eliminate the backgrounds from radiative muon capture. The sensitivity of the $\mu^- - e^+$ conversion is expected to be improved by 4 orders of magnitude in forthcoming experiments using a proper target nucleus that satisfies the mass relation. The most promising isotopes found are ⁴⁰Ca and ³²S.

DOI: 10.1103/PhysRevD.96.075027

Annual Presentation T.S. Wong

Summary

Signal acceptance studies for e+e- shown

- e+:~0.010(0.016)
- e- : ~ 0.048(0.077)

Days of physics run for e+e- predicted (aiming at 2 orders higher than current limit)

- e+ : 88 days (55 days)
- e-: 122 days (76 days)

Background

RMC and RPC revisited

RMC is the dominant part of the background ~ 120 (310) events

Timing and Momentum window cut of e-

Reasons for low acceptance

Electron 92.32

Positron 92.32

e+ e- measured at first layer of CDC

Annual Presentation T.S. Wong

e+ e- layer distribution at 92.32 MeV/c

Annual Presentation T.S. Wong

Trigger Algorithm on CTH

Muonic atom process

Why occupancy is low compare to TDR value?

Overlapping problem in SimG4

Annual Presentation T.S. Wong

105MeV CTH has hits

fNUniHitSciCut:fNUniHitCheCut {fNUniHitSciCut>0 && fNUniHitCheCut>0}

105MeV 2fold coincidence

fNUniHitSciCut:fNUniHitCheCut {fNUniHitSciCut>0 && fNUniHitCheCut>0 && nfold>=2}

105MeV 3fold coincidence

fNUniHitSciCut:fNUniHitCheCut {fNUniHitSciCut>0 && fNUniHitCheCut>0 && nfold>=3}

105MeV 4fold coincidence

105MeV 4fold coincidence

105MeV 4fold coincidence +>= 5 CDC layer

105MeV 4fold coincidence +>= 5 CDC layer

105MeV 4fold coincidence +>= 5 CDC layer && >=30 CDC hits

105MeV Electrons just signal

fold.E_104.5_NE_10000_e:Number of CDC hits VS number of folds

Annual Presentation T.S. Wong

105MeV Electrons just signal

fold.E_104.5_NE_10000_e:Maximum layer CDC:CDC

105MeV Electrons just signal

Annual Presentation T.S. Wong

Momentum distribution e+ 92.32

Annual Presentation T.S. Wong

Yohei's slide

Chen's updated results

my result & TDR

single CDC hit 35.4% CTH 4-fold 16.6% CDC 5layer 12.7%	single CDC hit 0.3706 CTH 2-fold 0.1911 CTH indirect 0.1911 CTH 4-fold 0.1353 CDC 5layer 0.1073	case2 0.3764 0.1949 0.1888 0.134 0.1039	case3 0.34656 0.18119 0.18031 0.12457 0.09873	TDR 0.3456 0.2125 0.1871 0.1628 0.1270
multi CDC hit 13.7% CTH 4-fold 7.4% CDC 5layer 7.3%	multi case1 CDC hit 0.1316 CTH 2-fold 0.086 CTH indirect 0.086 CTH 4-fold 0.0614 CDC 5layer 0.0611	case2 0.1405 0.0916 0.0916 0.0653 0.0646	case3 0.13647 0.0823 0.08228 0.05819 0.05742	TDR 0.1773 0.1283 0.1208 0.0999 0.0972