
340230312:

Mario Gonzalez, Yamanaka Lab

SOFTWARE 	E
E�O�E�T
for the QA/QC and the DCS

p��e� �od��e protot�pe�
of the ne� A��AS

• The framework used to configure
and test the ASIC is called YARR
(Yet Another Rapid Readout).

Introduction to my work

340230312: 2

Currently testing the prototype ASIC for the new ATLAS pixel detector

Goal: Provide useful feedback to the ASIC’s designers (the Rd53 collaboration).

The ATLAS Inner Tracker

The ASIC “Rd53a” assembled
in a Single Chip Card

• They will use this feedback to build the final version for ATLAS and CMS

Zfbs!Foe!qsftfoubujpot

The Threshold and the ToT

340230312: 3

Main function of each pixel: To distinguish an actual hit from the background noise.

Tuning
the T	T

Tuning the
Th
e�h	�

T	T � �

S
ig
n
al
S
tr
en
g
th
[c
h
ar
g
e]

Time [4� ��� cl�c� c�cle�]

The behaviour of the pixels is mainly defined by the Threshold and the ToT (Time
over Threshold)

See Yamagaya’s presentation for the details regarding the tuning procedure

The Target threshold and the measured one

4

1300 1350 1400 1450 1500 1550
Threshold [e]

0

500

1000

1500

2000

2500

3000

3500

4000

N
um

be
r o

f P
ix

el
s Entries: 31

Mean: 1434.7
std: 34.0

0 200 400 600 800 1000
Threshold [e]

0

50

100

150

200

250

300

350

N
um

be
r o

f P
ix

el
s Entries: 101

Mean: 182.9
std: 162.8

500 1000 1500 2000 2500
Threshold [e]

0

50

100

150

200

250

300

350

400

450

N
um

be
r o

f P
ix

el
s Entries: 221

Mean: 1441.1
std: 223.9

1. Global Threshold 2. Pixel Threshold

We start from an untuned state.

A global register affecting all the pixels. Tuning it
returns a wide distribution centered in the target value.

A register that exist for each pixel. This is the finer
tuning step to be run after the global threshold tuning.

We set the Global Threshold to 1500

We set the Pixel Threshold to 1500

mean = 1438 < 1500!

• The target threshold and the measured one where
observed to be always slightly different.

• We have found the origin of this issue, and we have
already solved it.

• We have also written a small framework to show on
the web an interactive version of these plots. Just
click on them!

https://mariog.web.cern.ch/mariog/jsroot/?nobrowser&file=../plots/thresholdTuning/dat3_ThresholdDist-0_1D_.root&item=c;1
https://mariog.web.cern.ch/mariog/plots/thresholdTuning/index.html
https://mariog.web.cern.ch/mariog/jsroot/?nobrowser&file=../plots/thresholdTuning/dat2_ThresholdDist-0_1D_.root&item=c;1

Zfbs!Foe!qsftfoubujpot

Decomposing the overall time when operating the ASIC

340230312: 5

• Any operation on the ASIC takes some time:

Only the software side is in principle optimizable.

Total Time = Time on the software side (the YARR framework)
+ the actual hardware operations.

We need to know how worth is to do it.

How big is the ratio ?ujnf!ublfo!cz!uif!gsbnfxpsl
pwfsbmm!tdbo!ujnf

Zfbs!Foe!qsftfoubujpot

Time consumption during a threshold scan

340230312: 6

CPU usage is small during
the Mask Stage. Most of the
time is consumed by the
hardware.

The core stage during an ASIC operation is the “Mask
stage”. In this phase, the ASIC is tuned / scanned at the
hardware level.

There are still some parameters affecting the Mask Stage that we can tune to reduce the overall
consumed time. Vtfgvm!xifo!xf!lopx!uif!tqfdjgjd!xpsljoh!dpoejujpot

Dbo!jodsfbtf!uif!vodfsubjouz!pg!uif!sftvmut!jo!puifs!dbtf/

Zfbs!Foe!qsftfoubujpot

Conclusions

340230312: 7

What I have done so far?

Solved the issue that led to a mismatch between the target and the measured thresholds

And reported it to the developers.

Measured the overall scan performance and reduced its consumed time under specific
conditions

Completely timed a full electrical test on the ASIC

Finding the appropriate configuration parameters for each scan can significantly increase its
speed without compromising precision.

An electrical test consist on a sequence of scan / tuning phases to check whether the ASIC is
working properly after making a QA/QC test on it. My results are indeed helpful to estimate
the overall time needed for the whole QC procedure.

Also, I got used to work in a collaboration, and I learnt a lot from the work of my mates. Also improved my
Japanese, although is still one of the main TODOs for the next year. Let’s keep doing our best!

I will continue working on it next year.

BACK��

Zfbs!Foe!qsftfoubujpot

The QC Flow during production

340230312: 9

Digital Scan 12.4 s

8.1 sAnalog Scan

Global thr. t�ning

�hr��hol� Scan

TOTAL: 1686 s (58% Fine ��� T�nin��

�i��l thr. t�ning

�o� t�ning

�in� �i��l t�ning

�ro���al� �can

Analog �can

Digital �can

�hr��hol� �can

�o� Scan

�oi�� Scan

143 s

89 s

42 s

44 s

982 s

14	 s

8.
 s

193 s

1.�
 s

8.3 s

13.� s

Different QC tests (such as visual inspections, thermal cycles or electrical tests) are currently being
performed on the modules to control their quality. The whole QC flow takes a lot of time (in the order
of days), and it’s therefore important to have a rough estimation on how much time it could take to
complete each phase of it.

An electrical test consists on sequential scans that we have already timed. The total needed time is
roughly 30 minutes.

Zfbs!Foe!qsftfoubujpot

Rd53a and its Pixel Matrix

340230312: 10

400 columns and 192
rows of pixels

A total of 76800 px in a
11.8 x 20 mm matrix

Three different Front
Ends built for testing
purposes

The Differential FE has
been decided to be the
most efficient under the
real working conditions

Four pixels form an Analog
Island. A matrix of 4x4
analog Islands is grouped
under a Digital Core, that
configures the islands and
handles all the processing
of the pixels.

Digital Logic

Pixel Anal	
 ��lanAnal	
 ��lan Pixel �	�e

FE
35 μm

50
μm

�5 μm

Zfbs!Foe!qsftfoubujpot

From Charge to Vcal, and from Vcal to Charge

340230312: 11

Rd53aCfg.cpp::toVcal (charge) Fei4Cfg.h::toVcal (charge)
V = (charge * ElectronCharge) / (m_injCap);
vcal = (V)/(m_vcalPar[1]) // Note: no offset applied
return vcal

V = (charge * ElectronCharge) / (sCap + lCap)
vcal = (V - vcalOffset)/(vcalSlope)
return vcal

The offset is not applied when converting charge to Vcal

m_vcalPar is declared in Rd53aCfg.h
std::array<double, 4> m_vcalPar;
//mV, [0] + [1]*x + [2]*x^2 + [3]*x^3

default_rd53a.json
"Parameter": {
 "chipId": 0,
 "lCap": 3.8,
 "sCap": 1.9,
 "vcalOffset": 0.0,
 "vcalSlope": 1.5
 }

"Parameter": {
 "ChipId": 0,
 "InjCap": 8.2,
 "Name": "JohnDoe_0",
 "VcalPar": [-1.0,0.195,0.0,0.0]
 }

default_fei4b.json

The “offset” is defined by m_vcalPar[0]

toVcal and toCharge are not symmetric. We should either remove the offset from toCharge or
include it in toVcal: vcal = (V)/(m_vcalPar[1]) vcal = (V - m_vcalPar[0])/(m_vcalPar[1])

Rd53aCfg.cpp::toCharge (vcal)
V = (m_vcalPar[0] + m_vcalPar[1]*vcal)/ElectronCharge;
return V*m_injCap;

The offset is applied when converting Vcal to charge

Zfbs!Foe!qsftfoubujpot

Before and after our modification in Yarr

340230312: 12

Given threshold: 1000 e

OFFSET Measured THRESHOLD

2
1
0

-1
-2

1100 ± 33
1049 ± 35
998 ± 32
947 ± 33
897 ± 34

Before the modification

OFFSET Measured THRESHOLD

2
1
0

-1
-2

1001 ± 32
997 ± 30
999 ± 33
997 ± 35
996 ± 34

After the modification

Before / After our modification
Given threshold:
Measured threshold:

500 900 1300 1700
498 899 1294 1695

Given Offset: 0 mV

{
 "scan": {
 ...
 "loops": [
 ...
 {
 "config": {
 "max": 50,
 "min": 33,
 "step": 1,
 "nSteps": 2
 },
 "loopAction": "Rd53aCoreColLoop"
 },
 ...
],
 "name": "AnalogScan",
 "prescan": {
 "InjEnDig": 0,
 "LatencyConfig": 50,
 "GlobalPulseRt": 0,
 "InjVcalHigh": 2500,
 "InjVcalMed": 500,
 "SyncVth": 500,
 "LinVth": 500,
 "EnCoreColLin1": 0,
 "EnCoreColLin2": 0,
 "EnCoreColSync": 0
 }
 }
}

{
 "scan": {
 ...
 "loops": [
 ...
 {
 "config": {
 "max": 50,
 "min": 0,
 "step": 1,
 "nSteps": 5
 },
 "loopAction": "Rd53aCoreColLoop"
 },
 ...
],
 "name": "AnalogScan",
 "prescan": {
 "InjEnDig": 0,
 "LatencyConfig": 48,
 "GlobalPulseRt": 16384,
 "InjVcalHigh": 2500,
 "InjVcalMed": 500,
 "InjVcalDiff": 0
 }
 }
}

Zfbs!Foe!qsftfoubujpot

The YARR’s configuration files

340230312: 13

std_analogscan.json diff_analogscan.json

The differential FE starts at the 33th core column

Zfbs!Foe!qsftfoubujpot

Tuning time consumption as a function of the Target Threshold

340230312: 14

diff_tune_globalthreshold.json
diff_thresholdscan.json

> scan > loops > DiffVth1 > max = 500
> scan > loops > InjVcalDiff > max = 400

We can shift this cliff tuning

this parameter

Disconnected bump scan

Zfbs!Foe!qsftfoubujpot

Measurements to be done for the QC document I

340230312: 15

Digital scan

Tot tuning

We will include the following scans in the
Sequential Operator:

There is no implementation in the
Master branch, but Yarr has a
branch called “stuck_pixel_scan”

We have std_crosstalk_scan but
not diff_crosstalk_scan

We have std_digitalscan but not
diff_digitalscan

Crosstalk scan

Stuck pixel scan

Fine tune pixel

ToT scan

Noise occupancy scan

Analog scan

Pixel Failure Test (Tuning), sec. 4.4.4

Threshold scan

Tune global threshold

Tune pixel threshold

https://indico.cern.ch/event/866809/attachments/1951051/3240019/WIP__RD53A_Module_QC20191125.pdf

1300 1350 1400 1450 1500 1550
Threshold [e]

0

500

1000

1500

2000

2500

3000

3500

4000

N
um

be
r o

f P
ix

el
s Entries: 31

Mean: 1434.7
std: 34.0

Zfbs!Foe!qsftfoubujpot

Std deviation calculation in Yarr

340230312: 16

σ2 =
1

N

∑
(xi − µ)2

The variance of a set of data is defined as

The starting point is an histogram where we know the width and content of each bin

sum += data[i] * pow(((i*binWidth)+xlow+(binWidth/2.0)) - mu, 2);

Yarr computes the sum as

xi µ

Bmm!uif!fwfout!
jo!uif!tbnf!cjo Bmm!uif!fwfout!jo!uif!tbnf!cjo!ibwf!uif!fybdu!tbnf!dpousjcvujpo!up!uif!wbsjbodf

And then the standard deviation as

std += sqrt(mu/(double)sum);
This value is returned as uncertainty by Yarr after a threshold or a ToT scan.

And the standard deviation as

σ =

√

σ
2

