
COMET-CTH simulation Kuno-lab M1 Yoshiki Sato

CTH(Cylindrical Trigger Hodoscope)

- Trigger system in CyDet(Cylindrical Detector System), which is a main detector in COMET Phase-I
- CTH consists of plastic scintillator, cherenkov counter, light guide, PMT
- CTH is placed at the upstream and down stream ends of the CDC
- 48 channels at each side

Purpose

We should improve the CTH design

<Example>

- Channel number 48 is enough?
- Light fiber can be used instead of light guide?
- Cherenkov counter is necessary?
- Background rate is no problem?

→ Purpose is to consider some improvements with simulation

Problem of The Simulation

 Software : ICEDUST (Integrated Comet Experimental Data User Software Toolkit)

Current Monte Carlo Simulation File

The last large-scale Phase-I simulation was MC4(o):

- Proton bunches simulated: 1216
- Total number of POT events: 1010
- Average calculation time per event: 2.7 seconds
- Total end-to-end calculation time: 833 years
- Equivalent real-time: 1.4 ms
- Disk space occupied: 8+ terabytes

Although MC4 is our best Phase-I database so far, it only corresponds to a tiny fraction of our real run time.

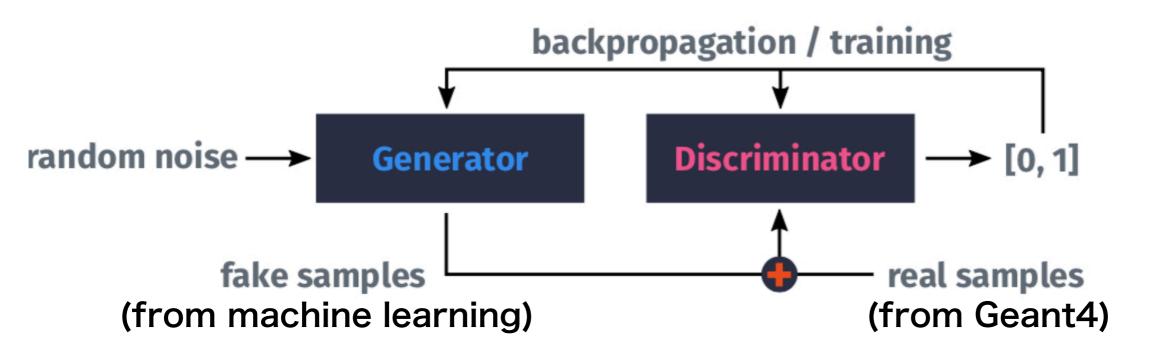
Phase-I All Simulation

Could we simulate the real-time equivalent of the Phase-I run time?

- Phase-I run time: 150 days
- Total number of POT events: 10²⁰
- Required end-to-end calculation time: 8×10^{12} years
- How many MC4's is that? 9 billion
- How much disk space? $9 \times 10^9 \times 8 \text{ TB} = \text{too much.}$

Simulating the full run time of COMET Phase-I through traditional simulation seems difficult.

Space and computing resources are the primary constraints.


We can't simulate all the data of COMET Phase-I using Monte Carlo simulation

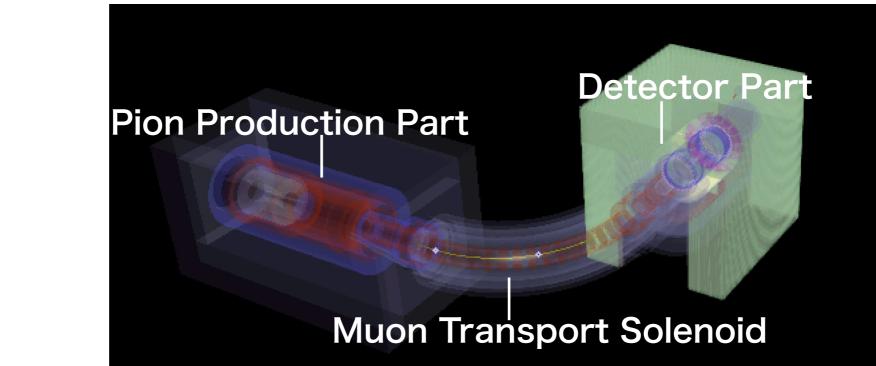
From COMET CM29 Matthias' slide

Machine Learning

Speed up the simulation using machine learning
(We use machine learning to make much fake data using real samples from Geant4)

Two neural networks, a generator and a discriminator, are thrown against each other into a game.

The discriminator tries to tell the difference between real samples and fake samples, while the generator tries to fool the discriminator.


From COMET CM29 Matthias' slide

Machine Learning

- After training the two networks together using real samples from Geant4, the generator can produce large amounts of fake data very quickly
- Typically, the sampling rate is many orders of magnitude faster than a full Geant4 simulation
- •Imperial College group (in UK) is working on this study of CDC
- •So I went to UK, and I worked with them

CTH Hit Simulation(from MC4o file)

- As a first step, I simulated the CTH hits using MC4o RooTracker file(only Monte Carlo simulation)
- This RooTracker file includes particles which insert to transport solenoid
- I simulated 50/210 bunch of POT(Protons On Target) = 1,904,000 protons

- This result is only from 50/210 bunch, but I can get about 536,256 hits using all MC40 file (1214 bunches)
- This number is enough to make fake data with machine learning

<Result>

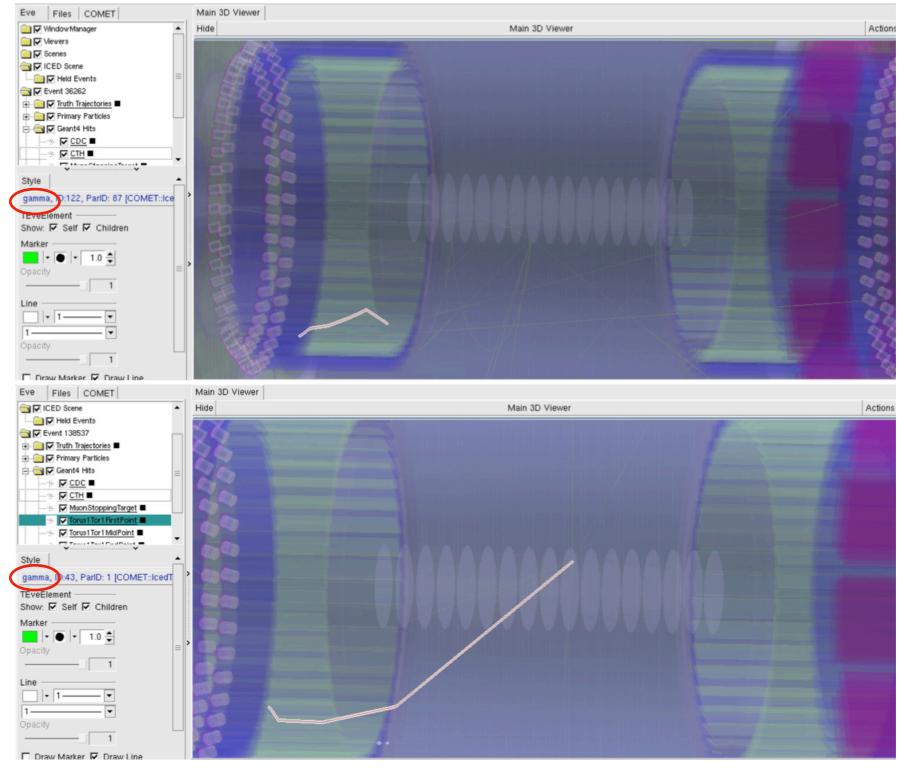
 $\circ \gamma : 22$

Types : number

• electron : 14

• proton : 69

• (total : 105)


 However, it takes about 6 hours to simulate 50/210 bunch, and too much time for all MC40 file…

Events of Hit Simulation

<Event Example>

These are hits which are detected as electron hits, they seem to be generated

from gamma.

Future

- MC4o file has a problem (2/5 data doesn't include inserting particles)
- So I should simulate CTH hits with MC4r file
- I will make fake data of CTH hits using real samples from Geant4
- This process will be done with Imperial group which is working on the same process of the CDC.

Summary

- CTH(Cylindrical Trigger Hodoscope) is a rigger system in CyDet(Cylindrical Detector System), which is a main detector in COMET.
- We should consider some improvements of the CTH design with simulation improve.
- However, simulation has a problem. We can't simulate all the data of COMET Phase-I using Monte Carlo simulation.
- Using machine learning, we can solve the problem.
- As a first step, I simulated CTH hits with MC4o file.
- I will start making fake data of CTH hits.