Study of Halo $K_L \rightarrow 2\gamma$ Background in the KOTO experiment

Yuya Noichi

Year End Presentation 2019

KOTO Experiment

Halo $K_L \rightarrow 2\gamma$ Background

• If beam halo K_L decay for 2γ , it may be confused with $K_L \rightarrow \pi^0 \nu \overline{\nu}$ signal.

• P_T of Halo K_L must be measured correctly because it may cause Halo $K_L \rightarrow 2\gamma$ background.

COE(Center of Energy)

• COE can be calculated from CsI information; Hit position and energy of each gamma.

$$Xcoe = \frac{\sum(HitX_i E_i)}{\sum E_i}$$
 $Ycoe = \frac{\sum(HitY_i E_i)}{\sum E_i}$

• This can be indicator of halo K_L because COE represents the arrival point of K_L for the case angle between P_T and P_Z is small.

Motivation

- Conventional reconstruction method assumes mass of each 2gamma is m_{π_0} and vertex position is on z axis.
- Transverse position of K_L was determined by the interpolation between target and COE.

- However, assumption that K_L fly from target to COE may not be correct because K_L can scatter at the downstream of target.

We want to develop new method without using this assumption.

New Method

Decay position of K_L may be determined by minimizing χ^2 of following formula.

$$\chi^{2}(x, y, z) = \left(\frac{p_{1}^{2}(x, y, z) - m_{\pi^{0}}^{2}}{\sigma_{1}}\right)^{2} + \left(\frac{p_{2}^{2}(x, y, z) - m_{\pi^{0}}^{2}}{\sigma_{2}}\right)^{2} + \left(\frac{p_{3}^{2}(x, y, z) - m_{\pi^{0}}^{2}}{\sigma_{3}}\right)^{2}$$

$$\pi^{0}$$

$K_L \rightarrow 3\pi^0$ Toy Simulation

Event Selection Criteria

- 6 gamma positions are all inside the fiducial region of the Csl
- Minimum gamma energy > 150 MeV
- Minimum 2 gamma distance > 150 mm
- 0 < Decay z < CsI (6168 mm)

Using this toy simulation, I checked whether this new method can reconstruct the decay position.

True information of Toy Simulation

We want to reconstruct these vertex positions

Reconstructed Vertex position(1)

Comparison of new and conventional

Chi2 distribution

1 sigma(Δ Chi2 = 2.3) contour (for example 1 event)

• The failure of reconstruction using new method is due to this bad position resolution.

Reason for bad resolution

• Constraint from 6 gamma looks like sphere, and sum of them become too shallow to minimize.

Summary and Next

- Halo K_L cause $K_L \rightarrow 2\gamma$ background, so we need to measure halo K_L correctly.
- I tried to develop new reconstruction method minimizing chi2 function of reconstructed mass of π^0 .
- Position resolution of new method was not enough to reconstruct vertex position correctly.
- To know whether we need to develop more reconstruction method, I'm checking discrepancy of COE between data and MC.

Backup

Reconstructed Vertex position(1)

Reconstructed Vertex position(2)

Sigma of M²

$$\sigma_{\mathsf{M2}} = \left(\frac{\partial M^2(E_1, x_1, y_1, E_2, x_2, y_2)}{\partial E_1}\right) \sigma_{E_1} + \left(\frac{\partial M^2(E_1, x_1, y_1, E_2, x_2, y_2)}{\partial x_1}\right) \sigma_{x_1} + \dots + \left(\frac{\partial M^2(E_1, x_1, y_1, E_2, x_2, y_2)}{\partial y_2}\right) \sigma_{y_2}$$

$$\frac{\partial M^2(E_1, x_1, y_1, E_2, x_2, y_2)}{\partial E_1} = \frac{M^2(E_1 + \epsilon, x_1, y_1, E_2, x_2, y_2) - M^2(E_1, x_1, y_1, E_2, x_2, y_2)}{\epsilon}$$

Chi2 distribution

[1]Nakagiri-san's Dr.thesis https://www-he.scphys.kyoto-u.ac.jp/theses/doctor/nakagiri_dt.pdf

KL Generation in Toy Simulation(2)

KL Generation in Toy Simulation(3)

MINUIT Detail

- used "MIGRAD" minimizer (also checked HESSE, MINOS)
- used some limits in order to prevent the parameter from taking on unphysical values e.g.) 0 < z < Csl, -1000< x,y <1000
- fitting step width of (x,y,z)... (10,10,100)
- max call ... 1000 times (500~ not chenged)

Problem of Conventional Reconstruction Method

23

Resolution of Csl

124	// See	https://journals.jps.jp/doi/pdf/10.7566/JPSCP.8.024007
125	double	<pre>GetEres(double Edep){</pre>
126		double e = Edep/1000; // in GeV
127		double sigE_E = sqrt(0.99*0.99+1.74*1.74/e)/100.0;
128		return Edep*sigE_E;
129	};	
130	double	<pre>GetPosres(double Edep){</pre>
131		double e = Edep/1000; // in GeV
132		double sigpos = sqrt(2.5*2.5+4.4*4.4/e);
133		return sigpos;
134	}	

Only Position Resolution of Csl

Only Energy Resolution of Csl

Conventional method

First, we reconstruct a π_0 assuming mass of $\gamma\gamma$ is m_{π_0} and vertex position is on z axis.

