Evaluation of 50 μm square pixel detector with test ASIC for the HL-LHC ATLAS upgrade

Yamanaka Group M2

Daiki Yamamoto

LHC-ATLAS Experiment

LHC(Large Hadron Collider)

End-cap disk layers

Beam Test

goal

efficiency study of pixel detector ✓ structure effect

tracking resolution must be less than 10 μm

Beam Test @Fermilab

Experimental Setup

SVX4 telescope track reconstruction

Merit of Tilting the Sensors

7

Residual Distribution (after alignment)

Position Resolution of Sensor

Assumption

- Track is parallel to the Z axis
- Each sensor has almost same resolution

$$\sigma_{1residual}^2 = \sigma_1^2 + \sigma_{track}^2$$

$$=\sigma_1^2 + \left(\frac{\sqrt{\sigma_2^2+\sigma_3^2+\sigma_4^2}}{3}\right)^2$$

 $\sigma_{1residual} \sim \sigma_{4residual}$

layer	σ_x [µm]	σ_{y} [µm]
0	6	6
1	5	6
2	5	6
3	6	7

Analysis of Position Resolution

Factors

- fluctuation of dE/dx according to the FWHM of cluster charge, $\frac{\delta Q_{tot}}{Q_{tot}} \sim 0.2$ $x = \frac{x_1 Q_1 + x_2 Q_2}{Q_1 + Q_2}$ $\delta_x \sim \frac{\sqrt{2}(width) Q_1 Q_2}{(Q_1 + Q_2)^2} \frac{\delta Q}{Q}$ if $Q_1 = Q_2$, $\sim 4 \,\mu\text{m}$
- multiple scattering $\sim 2 \, \mu m$
- noise of ADC ~ 1 ADC ~ 1 ke
 (this effect is included in δQ)

Tracking Resolution

Evaluating by weighting of each sensor resolution

$$\begin{array}{c|c} \sigma_{x-track} \ [\mu m] \\ 3 \end{array} & \begin{array}{c} \sigma_{y-track} \ [\mu m] \\ 3 \end{array} \end{array}$$

 $\checkmark\,$ Enough resolution (< 10 μm) for evaluating pixel sensor

FE65 pixel detector

track vs hit Correlation

Residual Histogram

To Do

• Draw Hit Efficiency map

like this

Backup

High Luminosity LHC

ATLAS実験の目的
 ◆ Higgs粒子の精密測定
 ◆ 超対称性粒子の探索

HL-LHCにおける検出器への要求

High Luminosity 5倍の粒子密度

より細かい目のピクセル

新型ASIC搭載 50μm角ピクセル検出器

Integrated Luminosity

1.7×10¹⁵ [*n_{eq}/cm*²] 相当のダメージ @ピクセル3層目

高放射線耐性 陽子線照射後、 ビームを用いて性能評価

Silicon Strip Sensor (Telescope)

13mm

位置分解能とノイズ

 $x_2 - x_1 = 50 [\mu m] (ストリップ間隔)、 \delta Q_1 = \delta Q_2 とする$ $x = \frac{x_1 Q_1 + x_2 Q_2}{Q_1 + Q_2}$ $\delta x = \sqrt{\left(\frac{\partial x}{\partial Q_1}\right)^2} \,\delta Q_1^2 + \left(\frac{\partial x}{\partial Q_2}\right)^2 \,\delta Q_2^2$ $= \sqrt{\left(\frac{wQ_2}{(Q_1 + Q_2)^2}\right)^2 \delta Q_1^2 + \left(\frac{-wQ_1}{(Q_1 + Q_2)^2}\right)^2 \delta Q_2^2}$ $=\frac{w\delta Q_1}{(Q_1+Q_2)^2}\sqrt{(Q_1+Q_2)^2-2Q_1Q_2}$

Convert ADC to Charge

✓ Evaluate pedestal of each strips

✓ charge = (ADC-pedestal) × gain

Definition of Global Coordinate

Prealignment

✓ Convert local position to global position

 ✓ Calculate difference of hit positions of first layer and other layer, then shift the each layers

Rotation Yaxis, Xaxis

28

Rotation (before alignment)

Rotation (after alignment)

位置分解能と多重散乱

多重散乱による寄与

$$\theta_{plane}^{rms} = \frac{13.6[MeV]}{\beta cp} z \sqrt{\frac{x}{x_0}}$$
 silicon 600 µm
= 5.9×10⁻⁶

評価対象検出器における散乱の寄与は

$$\tan(\theta_{plane}^{rms}) \times 0.35 \approx 2 \ \mu m$$

35cm

TDC cut

ADC_vs_TDC_tele1

シグナルの大きさはTDCの値に 依存する。

今回の位置分解能の最小値の 見積もりには、 4<TDC<16

+ < 1 D <

を用いた。

10²

alignment前の残差分布

位置分解能の評価

位置分解能に影響するファクター

• 電離損失の揺らぎ cluster chargeの幅より、 $\delta Q \sim 2.4$ ke cluster total charge の幅から見積もり $x = \frac{x_1 Q_1 + x_2 Q_2}{Q_1 + Q_2}$ $\delta_x = \frac{\sqrt{(x_1 - x_2)^2 (Q_2^2 \delta Q_1^2 + Q_1^2 \delta Q_2^2)}}{(Q_1 + Q_2)^2 (Q_2^2 \delta Q_1^2 + Q_1^2 \delta Q_2^2)} \\ \sim \frac{d\delta Q_1}{2\sqrt{2}Q_1} \\ \sim 3.9 \ \mu m$

● 多重散乱 ~

ADCのnoise ~ 1ADC ~ 1ke
 δQに含まれる

35

Data Structure of detectors

	SVX4 (telescope)	FE65 (pixel sensor)	TLU (trigger)
EventNumber	0	0	0
TimeStamp	0	×	0
ADC	0	×	×
ТоТ	×	0	×

However, There is mismatching of EventNumber...

correlation disappear after event mismatching occurred

39

✓ Making list of EventNumber whose TimeStamp matching → This will resolve mismatching between SVX4 and TLU

However, there is also mismatching between TLU and FE65