

Quick report of a beam test for CsI both-end readout system

28/12/2017 Tomoo Mari Osaka Univ.

Outline

- KOTO experiment
- Beam test @ELPH
- Energy resolution of PMT
- Conclusion, Prospects

KOTO experiment, halo neutron B.G.

Signal:

Csl both-end readout system

Timing difference between MPPC and PMT = z position

Some detail

Current readout system

4MPPCs + Quartz

Reflector

Tomoo Mari

Nenmatsu

Energy resolution of the PMT

Energy resolution of the PMT is expected to change, because

- Reflector will be replaced with smaller one
 - (material can also be changed)
- MPPCs will cover the upstream surface of CsI

To evaluate σ_E of the PMT...

• 200-800 MeV positron beam data (tested at ELPH)

Beam test at ELPH

Cosmic ray data were also acquired while the beam was off.

Stacked Csl crystals

Setup

Beam

LO	L1	L2
L7	S0 S1 S3 S2	L3
L6	L5	L4
beam injection		

8 large (50x50x500mm³) CsI crystals 4 small (25x25x500mm³) CsI crystals

	w/o MPPC	w/ MPPC
MPPC	none	4 MPPCs for L crystals 1 MPPC for S crystals
reflector	KOTO-reflector (different between crystals)	Nishimiya-reflector (silver, square hall)
calibration	800MeV positrons	cosmic rays (40mm from the up- stream surface of Csl)
beam-run	200-800 MeV, beam position was the center of the stack	

Other informations: Beam spot size > 10mm

Beam position shift

Large crystals: 50mm x 50mm Small crystals: 25mm x 25mm

Beam position was deviated 4.5 ~ 6.5 cm from expected position.

Calibration (w/o MPPC)

800MeV positron beam was injected at the center of each crystal

Tomoo Mari

Nenmatsu

Scale factor (w/o MPPC)

Geant4 simulation

Calibration (w/ MPPC)

Cosmic rays at 40mm from the upstream surface of CsI

- Fitting function: (landau*gaussian) + pol1
- MPV of landau is used for calibration
- Scale factor between large and small crystal = 2.0

Energy resolution of PMT

Nenmatsu

Energy resolution of PMT

Energy resolution := FWHM / MPV

Conclusion / Prospects

Conclusion

- We tested new CsI readout system for the calorimeter upgrade.
- I checked how the MPPCs affect energy resolution of PMTs.
 - Energy resolution got worse (max: 12% @200MeV)

Prospects

- Analysis of timing resolution of both-end readout system
- Analysis of other runs (backward run, rotated run, etc...)
- Optical photon simulatoin

Back up

Setup

Asymmetric Gaussian

$$G_A(x) = N_0 \exp\left[-\frac{(x-\mu)^2}{2(\sigma_1 x + \sigma_0)^2}\right]$$

4 parameters: $N_0, \mu, \sigma_0, \sigma_1$

 $MPV = \mu$
error = $\delta\mu$

$$FWHM = \frac{\mu + \xi \sigma_0/2}{1 - \xi \sigma_1/2} - \frac{\mu - \xi \sigma_0/2}{1 + \xi \sigma_1/2} \qquad \xi \equiv 2\sqrt{2 \ln 2}$$

error =
$$\sqrt{\frac{\xi}{1 - (\xi\sigma_1/2)^2} [(\sigma_1\delta\mu)^2 + (\delta\sigma_0)^2] + (\frac{\xi}{2})^2 \left[\frac{\mu - \xi\sigma_0/2}{(1 + \xi\sigma_1/2)^2} - \frac{\mu + \xi\sigma_0/2}{(1 - \xi\sigma_1/2)^2}\right] (\delta\sigma_1)^2}$$

Asymmetry of energy deposition

Blue -> (Rotated run) -> Red -> (Backward run) -> Green

X asymmetry: S1 - S0 Y asymmetry: S0 - S3

Total energy deposition (Geant)

Geant4 simulation. Incident beam energy 800 MeV

