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Short Introduction

u The R2015 run of AlCap measured the charged particle emission 
rate and energy spectrum after muon nuclear capture in 
aluminium.

u E < 40MeV for aluminium, and titanium has never been measured 
before. (A. Wyttenbach, 1978 doi:10.1016/0375-9474(78)90218-X)

u Muons interact weakly with the protons in the nuclei emitting 
neutrons and muon neutrinos, µ + p à n + 𝝼 µ.

u Precompound nuclei may also be created that has some 
probability to emit protons (and/or other charged particles) to 
return to a stable nuclear configuration (P E Hodgson 1987 Rep. 
Prog. Phys. 50 1171)
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Motivations for and difficulty of 
unfolding

u To reveal the true energy of particles before detector effects, e.g. due 
to finite detector resolution, unknown energy loss.

u To compare the result between two different experiments. Different 
experiments have different detector responses so unfolding is 
necessary.

u However, unfolding is difficult and ill-posed (solutions may not exist, 
unstable and is not unique).

u The opposite to unfolding is forward-folding which is to fit the data with 
a smeared theoretical spectrum, which is considerable easier.

u For AlCap and muon-conversion experiments like COMET/Mu2E the 
proton emission results were used in the design of the detectors.

u It is also possible to use protons for normalization in addition to looking 
at the K-alpha muon x-ray count if the rates are known for Al.
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AlCap experiment setup

u Charged particles, neutrons 
and gammas are emitted 
from the target (Al, Si, Ti) after 
nuclear muon capture

u These particles lose energy 
(unknown amount) when 
passing through the 100micron
target.

u Charged particles that reach 
the counter telescopes 
deposit the remaining 
energies.

u References: arXiv:1501.04880
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Charged particle identification
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Likelihood probability method

u From the previous slide, we had 
compared the data with Monte 
Carlo truth (which were the red lines 
labelled with particle names)

u We can use a Gaussian model to fit 
the data for every energy bin and 
select particles that lie within 3σ to 
be classified as one of the charged 
particles. σ is determined from the 
counter telescope energy resolution. 
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LLP cut selection results
u Energy bin size of 500keV is used. This is 

convenient later for unfolding.
u The LLP method is applied on all three 

charged particle types: protons, 
deuterons and tritons separately.

u Only energies less than 10MeV is not 
used due to particles not stopping in 
the thick Silicon detector.

u Those particle do not fit in the dE/dx 
curve.

u The upper limit of this technique at 
about 10MeV is set by punch through 
particles.
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Artificial neural network 
architecture for classification

u Input layer consists of two nodes, thin 
detector energy deposit, E1 and thick 
detector energy deposit, E2.

u Hidden layer consists of 20 nodes.
u Output layer is a softmax node used 

for classification of signal and 
background. It outputs a probability 
value between 0 and 1.

u Training is done on all types of 
particles that may exist which is the 
background and the signal would be 
the charged particle we want to 
classify.

H20
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(Dis)Advantages of neural networks 
in AlCap

u [Good] Compared to the cut selection, this technique offers a 
chance to automate the particle ID process and recover higher 
energy particles beyond 10MeV where it was not possible to be 
done using the LLP cut method.

u [Not so convenient] Unlike the cut selection method, it is necessary 
to model all the noise and particles that can be detected by the 
counter telescopes for good identification.
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Classification results
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Left counter proton selection
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Bayesian inference

u Based on a priori knowledge of the experiment, usually from Monte 
Carlo it is possible to use Bayesian probability inference methods to 
ascertain the cause Ci from measurement of the event Ei.

P Ci Ei =
P Ei Ci P(Ci)

P(Ei)

u The probability of the truth cause Ci if Ei data is measured is thus 
determined by the Bayesian formula above.

u For AlCap, a Monte Carlo simulation provides the truth data which can 
then be used to produce a response matrix that relates the truth and 
measured data by a particle counter telescope.

u However, it is also the difficulty of this technique as it is sensitive to 
variations in the Monte Carlo initial run conditions and setup.

u Unfolding in ROOT: RooUnfold (arXiv:1105.1160)
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Muon stopping distribution
u The muon beam profile hitting the Aluminium target has been 

measured by a 14-strip silicon detector (both horizontally and 
vertically)

u The muon beam energy was inferred both from beam 
measurement of punch-through muons using a 14-strip silicon + 
thick silicon and the muon stopped and punch through 
energies.

u However, it is only possible to use Monte Carlo to infer the muon 
stopping depth in the 100micron target.
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Response matrices
u Essentially this matrix relates the truth energy (energy of the charged 

particles at creation) and the measured energy at the detector.
u Starting particle energy is unknown so to reduce bias, a uniform 

distribution between 0 to 12 MeV is used.
u This is then used to unfold the measured data to obtain the charged 

particle energy spectrum at creation.
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Bayesian unfolding results
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Artificial neural network unfolding

u The architecture used is not the 
same as for classification. There is 
still only one hidden layer but it 
only consists of two nodes. The 
output node is also not a softmax
node, but outputs the unfolded 
energy.

u This network is trained on each 
charged particle separately.

u Similar to the Bayesian inference 
method, this is also sensitive to 
variations in the Monte Carlo.
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Neural network unfolding 
verification with Monte Carlo
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Neural network unfolding results
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Preliminary results
u Total number of captured muons is (6.36 ± 0.10) x 107 and this is used

as the normalization factor.
u Charged particles emitted between 2 to 10 MeV using the Bayesian

method
u The value for protons is comparable to the previous R2013 result.
u Systematic errors are now being quantified. This includes detector

nonlinearity, noise, etc.

19

Charged Particle Measured by right det. [%] Measured by left det. [%]

Proton 1.714 ± 0.031 0.577 ± 0.013

Deuteron 0.449 ± 0.010 0.132 ± 0.004

Triton 0.111 ± 0.004 0.0339 ± 0.002



Summary

u Two techniques for charged particle identification and cut selection 
were discussed.
u Gaussian based likelihood probability cut

u Artificial neural network classifier

u Two techniques for unfolding for the true charged particle emission 
spectrum was also discussed.
u Bayesian inference

u Artificial neural network regressor

u Preliminary results of charged particles emitted per captured muon 
was shown.
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Backup

u Gaussian probabilities
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