スペクトロメータを用いた KOTO実験Cslカロリメータの性能試験

山中研 佐藤和史 19. Dec. 2011

$K_L \rightarrow \pi^0 \nu \overline{\nu}$

KOTO実験:J–PARCで予定されるBr(K_L→π⁰νν̄)を測定する実験

SMではCP対称性の破れはCKM行列 の複素成分(lm(Vtd))によって引き起こされる

Br(K_L→ $\pi^0 \nu \overline{\nu}$) ∝ | Im(V_{td}) |²

☆ theoretical uncertainty I~2% ⇒Clean process ! ☆ SMの予測値 Br(KL→π⁰VV)=3e-II ⇒new physicsに感度がある

<u>Csl カロリメータ</u>

- ・2.5x2.5x50cm-Csl:2240本 5x5x50cm-Csl:476本
- ・2011年2月全結晶の積載 が完了
- ・震災も影響無し
- ・FADCで各結晶の波形を 記録
- ·γの入射位置、エネルギー
 を測定可能

・電磁シャワーを測定し、各結晶のcalibration constant

(ADC count → energy)を決定する

- ・建設途中の2010年10~11月にKLビームを用いてテスト
- ・中心付近のCsl~1200本を使用

Ke3を用いたCsl calibration

- ・Ke3崩壊(K∟→πev:Br~40.6%)で生成される電子の...
 - エネルギー(E)をCsl calorimeterで測定
 - 運動量(p)をspectrometerで測定

⇒ E/p=IとなるようCslのcalibration constantを最適化

spectrometer setup

\star track electrons by 4 drift-chambers (3~4m upstream of Csl) **\star0.7 T magnet (KURAMA)** around chambers.

trigger scintillators in front of Csl

E/p分布

★electronは電磁シャワー を作り全エネルギーをCslに 落とすのでE/p~l *Cslのcalibration constantは宇 宙線MIP peakから算出 ★T、µのtail ⇒eとの識別が必要

★tailはKL de	ecay mode起因	-
-------------	-------------	---

πev (Ke3)	40.55%	
πµν (Kµ3)	27.04%	
π+π-π0	12.54%	

クラスター形状によるelectron ID

近くにある結晶をひとつに まとめて(クラスター), energyと入射位置を読み出す **★**クラスターの形状がeとπ,µで 異なる electron ⇒ 電磁シャワー •π,μ ⇒• MIPとして突き抜ける ハドロンシャワー

cut(1):shape χ^2

測定されたクラスター形状をsimulationで得られたクラ スター形状と比べる

cut(1):shape χ^2

shape $\chi^2 < 2.5$ を要求

3MeV以上のエネルギーを持つcrystalが5以上を要求

★# of electron ~ 40,000 events ★electron peakが E/p<Iに偏っている

non-linearity

★pが大きいほどE/pが小 さくなる傾向が見える ⇒non-linearity

★PMT-FADC間にあるAMPが原因と考えられる

calibration constantの最適化 Cslのcalibration constantの最適化には最小自乗法を用いる ★全eventのelectron like なclusterについてx²を計算 $\chi^{2} = \sum \left(\frac{E_{chamber} - E_{CsI}}{\sigma}\right)^{2} = \sum \left(\frac{E_{chamber} - \sum_{cluster} \Delta_{i} e_{i}}{\sigma}\right)^{2}$ event (e: 各結晶のedep [count], Δ:calibration constant [MeV / count]) χ^2 を最小にする $\{\Delta\}$ は次の式を満たす。 $\frac{\partial \chi^2}{\partial \Delta_n} = \sum_{event} 2(\frac{E_{chamber} - E_{CsI}}{\sigma^2}) \cdot e_i = 0$ ⇒1200個の連立方程式。解析的に解く。

Csl calibration

0.9 < E/p < 1.1のtrackについて前ページの方法を適用

⇒ electron peakが細くなった=エネルギー分解能が向上

red : data (with calibration) blue : simulation (assuming 12 p.e /MeV) (calib. const. are correct)

 $p1 \oplus p2/\sqrt{E[GeV]} \oplus p3 \cdot E[GeV]$

	pl [%]	p2 [%]	p3 [%]
data	I.44±0.35	1.90±0.12	3.20±0.08
simulation	I.78±0.23	1.60±0.12	2.76±0.07

⇒Csl E分解能がEに比例して悪くなる

• spectrometer p分解能を小さく見積もりすぎている?

run in the beginning of 2012 ★J-PARC加速器の復旧を待ち(来年初頭?)、Csl全数 を用いて同様の試験を計画中 electron 入射位置の分布 ★全体の3/4の結晶について (simulation) 1%以内の精度で 700 **1000** 800 600 _____[_ 600 calibration constantを決定 500 200 400 ★E分解能.位置分解能を場 200 所依存性も含めて測定 100 ★small-large境界,外周部付 1000000 1000 0 -500 500 X方向[mm] 近での挙動

summary

★2010 10~11月にかけKOTO実験Cslカロリメータの 動作試験をJ-PARCで実施

★Ke3崩壊のelectronを利用し、Cslのcalibration constant を最適化

★calibrationによりCslのE分解能は

 $1.43\% \oplus 1.97\% / \sqrt{E[GeV]} \oplus 1.79 \cdot E[GeV]$ から

 $\rightarrow 1.85\%/\sqrt{E[GeV]} \oplus 1.61 \cdot E[GeV]$ に向上

★E分解能がEに比例して増加している(ように見える) 原因を調査中

★来年初頭、Csl全数を用いて同様の試験を計画中

backup

spectrometer

Frackの曲率から荷電粒子の運動量が測定可能

trackx:trackz-5490+6700 {ievt==278}

[inv. mass ($Pt^2 < 20MeV^2$)

SolibrationにはK_L→π⁺π⁻ を利用 2 charged trackの不変質量が K_Lに一致するようscaleを調整

event sample

↓ trackの曲率から荷電粒子の運動量が測定可能

trackx:trackz-5490+6700 {ievt==278}

width of e peak

E/p VS p (w/ calibration)

Csl fidutial region

chamber resolution

subtract the contribution of chambers resolution

p resolution of chambers (simulation)

• based on simulation chamber p resolution is $\sigma_{chamber} = 1.59\% \oplus 2.73\% * E[GeV]$

E/pVS p after calibration

without e selection cut

with $\pi\pi\pi$ kinematic cut

&& cluster size cut

