KOTO実験のためのビーム軸 周辺のVETO用検出器の設計

Design of the veto detector around beam axis for the KOTO experiment

山中卓研究室 MI 伴野真太郎

ABOUT KOLLE EXPERIMENT

Col#2

CO3

CC01 CC02

• Observation of the rare decay $K_L \rightarrow \pi^0 \nu \nu$

K1.1 Q2 / K1.1 D2

• Csl Calorimeter detects 2γ to reconstruct π^0

BACKGROUND

Other kaon decays with particles escaping detection

BACKGROUND

Other kaon decays with particles escaping detection

VETO DETECTOR (CC04)

SIMULATION METHOD(1)

 particles which don't decay of total beam particles

beam

plate

study the CC04 hole size

Cs

Cs

CC03

BEAM SIZE

 2416652 neutrons which hit on the CC04 rear position of 4678099 total beam

For the default design, 99.9996% neutrons get through the CC04 hole

DIRECT HITS ON THE CC04

- statistics of $K_L \rightarrow \pi^0 \pi^0$ are 6×10^7
- 1/1000 of 3 years run
- vertex cut 3000<zvtx<5000mm

DIRECT HITS ON THE CC04

- statistics of $K_L \rightarrow \pi^0 \pi^0$ are 6×10^7
- 1/1000 of 3 years run
- vertex cut 3000<zvtx<5500mm

CSI GAP PROBLEM

2011年12月19日月曜日

PUNCHTHROUGH(CC03)

2011年12月19日月曜日

HITS(PUNCHTHROUGH CC03)

vertex cut
3000<zvtx<5000mm

vertex cut
3000<zvtx<5500mm

SUMMARY

- The hole size of the default CC04 is enough
- Considering CC03 punch through, wider coverage (~±400mm) may be required
- There are some γs that pass through the gap of the CsI crystals $TO\ DO$
- To estimate the background number using inefficiency of CC04
- \bullet To study γs that pass through the gap