Developmental status of read-out circuit for Straw Tube Tracker

Kuno Laboratory M1 Tatsuya Hayashi

Introduction

μ-e conversion

$$\mu^- + N \rightarrow e^- + N$$

Standard Model impossible to detect: $Br < 10^{-54}$

Theory beyond standard model (ex:supersymmetry theory) possible to detect: $Br \le 10^{-16}$

If μ-e conversion are discovered, the discovery indicates new physics

Layout of COMET experiment instrument

COMET experiment: Exploration of µ-e conversion

- detect only electron around 105MeV/c from μ-e conversion
- ${ullet}$ aim at the experiment for the sensitivity that is better than 10^{-16}

Demand to Board

Experiment specifications	To Board	
 High rate measurement(3.6KHz/ch) 	→Treatment of pile-up	
Many channels(4160ch)	Low consumed power	
Behavior in vacuum	Minimization of number of feed-through	
• Position resolution($^{\sim}100 \ \mu m$) Time resolution($^{\sim}1ns$)		
• Low quantity of charge	→ Charge Amplification (I-V convert)	

ROESTI (Read-Out Electronics for Straw Tube Instrument)

As read-out circuit for straw tube tracker,

we decide to use Waveform Digitizer

Block diagram Waveform Signal from Front-end **FPGA EHTERNET** Straw tube Digitizer I-V convertWaveform Sampling Data Data Shaper suppression transmission Low noise treatment of pile-up high speed data transmission The point that Minimization of number Low consumed power should be settled time resolution of feed-through by each block

Description of functions

Front-end

•Low noise ⇒ Satisfaction to implement AMP/Shaper

Waveform Digitizer

Sampling waveform

If waveform data are left, we can treat pile-up by offline analysis

Signal when pile-up happen

We can't distinguish whether pile-up happen or not.

- Optimize capability of read-out circuit by 500MSPS ~ 1GSPS sampling speed
 - clear demand for time resolution
- By combination use of analog memory and ADC, low consumed power

Analog memory: sampling waveform (quickly sampling)

ADC: digitalize sampling data (slowly readout)

Description of functions

FPGA

 Many quantification of data due to digitalizing waveform
 ⇒ Need to suppress data

(ex: In 500MSPS sampling and 8bit ADC resolution, data rate is 0.5GByte/sec)

Example

Limit region of read out

GbE

• high speed data transmission by use of Giga bit Ether(1Gbit/sec)

Read-out circuit prototype

Front-end

ASD (Amplifier Shaped Discriminator)

• Gain: 1pC → 1.1V

Waveform Digitizer

FPGA

EHTER NET Analog memory: DRS4

 1024 switched capacitor are connected in parallel

•Sampling speed 700MSPS∼5GSPS

ADC: 12bit resolution

Read-out circuit prototype

Front-end Waveform Digitizer **FPGA EHTER NET**

Firmware

Control the whole board Initialize Control timing

Data suppression

Connect to Ether Net

FPGA

Giga bit Ether Net chip
Use of SiTCP

GbE チップ

Now I am debugging

One channel result

DRS(Analog memory) output

ADC Data

Wavwform

This noise is unknown

Each channel output is different <- because of ASD gain

To Do List

- 16ch readout
- Search DRS noise
- ASD gain study

BackUp

Artifice of COMET experiment

Large intensity pulse beam

Lifetime of muon in muonic atom

 \sim 1 μ sec

By looking at only delay component, suppress prompt background

It is useful to prevent pile-up and to increase event number. (But pile-up happen in fact.)

Beam profile

Detecrtor

Measure electron around 105MeV/c with 1% energy resolution

As one countermeasure

Scale back the influence of multiple scattering (lessen amount of material, place in vacuum)

Straw tube Tracker

Detector in vacuum
 It is very difficult to operate
 popular chamber in vacuum

Use of straw tube (Small amount of material and operation in vacuum)

Main specification of straw tube

Diameter	5mm	Low consumed power	
Thickness	25μm	Low consumed power	
Number of channel	4160ch		
Position resolution	100~200μm	Time resolution: 2nsec	
Drift velocity (Ar/C_2H_6)	4.8cm/μsec	Time resolution. 2018	
Assumed minimum charge	16fC	Amplifier	