Development of EM calorimeter for COMET Dec 19/2011 久野研究室 M2 日浅貴啓

outline

- Introduction
- Experiment in Russia
- Energy resolution
- To do

EM calorimeter

for COMET

- A role of calorimeter
 - To measure the energy of electron and make an efficient event trigger
 - To recognize kinds of particle
 - To support some measurement at tracker

- The demands of COMET experiment
 - To be available in 1T magnetic field.
 - To withstand the 1MHz hit rate
 - Time resolution $\sigma_t/t < 1$ ms @105MeV
 - Energy resolution $\sigma_{E}/E < 5\%$ @105MeV

Energy resolution

a: fluctuations from shower and photon statistics etc...
b: detector non-uniformity and calibration uncertainty
c: electronic noise

- $\sigma_{\rm E}/{\rm E}$ and c is experimented at 2 energy levels, and I will calculate parameter a and b.
- This means that I can estimate the energy resolution at 105MeV.
- Line : From the result of the experiment with LYSO and ²⁵⁸Pu-¹³C(2.6MeV and 6.1MeV, γ-source) in Russia on this Nov, I will estimate it.

Candidates of constructor

crystal

	ρ	MP	X0	RM	dE/dx	λI	<i>T</i> decay	λ max	Relative	Hygro-
Units	g/cm^(3)	°C	cm	cm	MeV/cm	cm	nsec	nm	output	scopic
NaI(TI)	3.67	651	2.59	4.13	4.8	42.9	230	410	100	yes
GSO(Ce)	6.71	1950	1.38	2.23	8.9	22.2	600 ^S	430	3 ^s	no
							56 ^f		30 ^f	
LYSO	7.1	2047	1.22	2.14	9.3	21.2	41	420	75	no

- LYSO: made by Dubna
- size: 20×20×100mm³
- Rapping: teflon×3+AI mylar

Photon sensor

	Type No.	Effective are (mm ²)	ea	PDE	Radiation resistance	operation voltage	Gain
APD	S8664-1010	10x10	ŢŢ	~70%	high (CMS- 2x1013 n/cm2)	~400V	~50
MPPC	S10362-33	3x3		~50%	poor (~10 ¹⁰ n/cm ²)	~70V	~10 ⁶

With LYSO single crystal and APD(S8664-1010) in Russia

Setup in Russia using LYSO and APD

Electric noise

Mean: $(5.13\pm0.02)\times10^4$ Sigma: $(1.16\pm0.01)\times10^3$ c = sigma = $(1.16\pm0.01)\times10^3$

I assume adc count of the test pulse is delta function.

Since APD is bias voltage-sensitive and temperature-sensitive, I should calibrate the results with them about the energy resolution for ²⁵⁸Pu-¹³C(2.6MeV, 6.1MeV).

Calibrations of bias voltage and temperature

 σ /ADC count~1%

Reference of fitting function Proc. SPIE Vol. 7212, 721210(Feb.6 2009) Laforce, Frederic

result after calibration

To do and summary

- To do
 - I will calculate the energy resolution of the peak for 6.1MeV.
 - I will calculate a and b parameter and energy resolution at 105MeV.
 - I will implement the simulation for real calorimeter with this result and discuss the best clustering method.
- Summary
 - Energy resolution are 4.4%@2.6MeV and 9.7%@sum of 3peaks for 6.1MeV.

back up

258Pu-13C source

Fig. 1. The gamma-ray spectrum obtained after ~ 10 h with the ²³⁸Pu/¹³C source placed 25 cm from the front face of a 110-cm³ n-type Ge detector. All events detected with energies >1 MeV are shown; no background has been subtracted. The peaks at 1173 and 1332 keV which go off-scale are due to the presence of the ⁶⁰Co calibration source.

Natural back ground of ¹⁷⁶Lu

Response of GSO

This cause comes from two APD features.

Feature of APD

- gain
 dependence
- temperature dependence

REVERSE VOLTAGE (V) hamamatsu photonics

GSO measurements were failure, since we didn't considered these features.

result after calibration

from the results at 2 energy levels.

calculations for parameters of energy resolution

Fig. 5. Dependence of the energy resolution on beam momentum.

図に関して本実験の結果を出して 差し替えを行う。

parameter a,bの算出。 105MeVの時のエネルギー分解能を求める。