ATLAS実験におけるb-taggingを用いた top quark対生成断面積の測定

久野・山中研究室合同年末発表会 2011年12月19日

廣瀬穣 山中研究室

Introduction

Large Hadron Collider(LHC)

- Proton-Proton collider
- √s = 7TeV
- The ATLAS experiment
 - General purpose detector.
 - ➡Higgs search.
 - →New physics search.

Very smooth operation!!

di-lepton final state (lepton means electron or muon)

di-lepton final state (lepton means electron or muon)

Assumed background sources

- Z/γ^* + jets
- Fake leptons (mainly W+jets)
- ► WW, WZ, ZZ + jets
- single top

Assumed background sources

including b-jet

Ŋ

 \mathcal{V}

Assumed background sources

Cut and Count method

• $\sigma_{t\bar{t}} = \frac{N_{obs} - N_{BG}}{\mathcal{A} \times \mathcal{L}}$ (\mathcal{A} : acceptance, \mathcal{L} : Integrated Luminosity)

- simple and robust (e.g. multi variate analysis etc...)
- With high purity ttbar sample ...
 - 1) validate QCD at the highest energy region
 - 2) understand main background for Higgs/SUSY etc...
 - 3) can be a good b-quark source for btag calibration

Essential step for future analyses in LHC physics !!

dilepton analysis so far...

- result with 35pb⁻¹ of 2010 data
 - $\sigma_{t\bar{t}} = 188 \pm 26(\text{stat.})^{+20}_{-16}(\text{syst.})^{+9}_{-7}(\text{lum.}) \text{ pb.}$
 - precision : ~18% (statistically limited... $\delta_{\sigma_{t\bar{t}}}(stat.) \sim 13\%$)
 - submitted to PLB.
 (arXiv : http://arxiv.org/abs/1108.3699)
- In 2011 data analysis
 - ▶ using 0.70 fb⁻¹ of data (~20 times more than 2010 !!)
 - not limited by statistics anymore
 - need to suppress systematic uncertainty

Event selection

variables for event selection

- $E_{\rm T}^{\rm miss} > 30 \,\,{\rm GeV}(ee,\mu\mu), \,\,\sum |E_{\rm T}| > 110 \,\,{\rm GeV}(e\mu)$
- $|M_{ll} M_Z| > 5 \text{ GeV}(ee, \mu\mu) \text{(referred as Z window cut)}$
- #jets ≥ 2
- ► *b*-tagging

Event selection

variables for event selection

- $E_{\mathrm{T}}^{\mathrm{miss}} > 30 \text{ GeV}(ee, \mu\mu), \quad \sum |E_{\mathrm{T}}| > 110 \text{ GeV}(e\mu)$
- $|M_{ll} M_Z| > 5 \text{ GeV}(ee, \mu\mu) \text{(referred as Z window cut)}$
- #jets ≥ 2
- ▶ *b*-tagging

• need re-optimization !!

- Due to different detector environment.
- Observing more underlying events.

b-tagging requirement

- "at least one" b-tagged jet with "high btag efficiency"
 - help to reduce systematics from btag eff. measurement.
 - $\delta_{\sigma_{t\bar{t}}} \propto 2(1-\varepsilon_b)\delta_{\varepsilon_b}$ (typically $\delta_{\varepsilon_b} \sim 8\%$)
- \cdot b-tagging algorithm
 - JetProb : charged track base
 - IP3DSV1 : charged track and secondary vertex base
 so called "advanced tagger"
- · JetProb@70% was used for the 2010 analysis.
 - Switched to IP3DSV1@80%
 - $\bullet\,{\rm can}\,{\rm reduce}\,\,\delta_{\sigma_t \bar t}\,$ by ~30%

Jet P_T threshold optimization

- \cdot Motivation : not to pick up jets from other pp collisions
- Evaluate $\delta\sigma/\sigma$ with each Jet PT threshold
 - $\delta\sigma$ is including uncertainty from...
 - ➡ Jet Energy Scale(JES)
 - ➡ btag efficiency measurement
 - observed event statistics

Jet P_T threshold optimization

"Jet P_T > 25GeV" was chosen.
--> Safe for environmental changes
(Luminosity keeps increasing !!)

Event selection optimization

similar approach as previous page.

δσ/σ

Distributions (after requiring all selection)

• $E_{\rm T}^{\rm miss}$ (ee, $\mu\mu$) and $\Sigma|E_{\rm T}|$ (e μ)

BG estimation from Z/ γ^*

Extrapolate #events in Control Region(CR) to Signal Region(SR)

$$N_{Z/\gamma^* + \text{jets}} = \frac{\text{MC}_{Z/\gamma^* + \text{jets}}(\text{SR})}{\text{MC}_{Z/\gamma^* + \text{jets}}(\text{CR})} \times (\text{Data}(\text{CR}) - \text{MC}_{\text{other}}(\text{CR}))$$

- CR definition
 - same requirement as signal (including btagging)
 - →inside Z-window with high $E_{\rm T}^{\rm miss}$

Event yields

Process	Yields(<i>ee</i>)	$Yields(\mu\mu)$	$Yields(e\mu)$	
DY+jets (data driven)	9.8 $^{+1.7}_{-1.3}$	$20.3 \begin{array}{c} +1.8 \\ -2.8 \end{array}$	—	
$Z \rightarrow \tau \tau + jets (MC)$	1.8 ± 1.1	7.6 ± 3.5	9.5 ± 4.1	
fake leptons (data driven)	7.5 ± 6.5	4.9 ± 3.1	19.8 ± 12.5	S/N : ee = 6.1(4.9)
Single top (MC)	$7.3^{+1.3}_{11}$	16.2 ± 2.3	33.5 ± 4.7	
				$\mu \mu = 64(4.3)$
Dibosons (MC)	2.2 ± 0.7	$2.6 \begin{array}{c} +0.9 \\ -0.6 \end{array}$	8.8 ± 1.7	$\mu\mu = 0.1(1.0)$
Total Predicted (non $t\bar{t}$)	26.0 ± 4.9	$47.7 \substack{+4.5 \\ -5.2}$	71.6 ± 14.1	$e\mu = 9.4(4.6)$
$t\bar{t}$	$159.4 \ ^{+17.0}_{-20.5}$	$304.3 \substack{+25.8 \\ -34.5}$	$674.5 \begin{array}{c} +57.0 \\ -74.7 \end{array}$	"()"~w/o btag analysis
Total Predicted	$185.4 \begin{array}{c} +17.5 \\ -20.8 \end{array}$	$352.0 \begin{array}{c} +26.2 \\ -34.9 \end{array}$	$746.1 \ ^{+58.7}_{-76.0}$	
Data	201	365	834	

Overlapping events against the analysis w/o btag with tight cut

Extracted cross section

consistent result with theory and the analysis w/o b-tagging

Systematic uncertainties

	combined	
Uncertainties (%)	$\Delta \sigma / \sigma [\%]$	Data statistics
Data Statistics	-3.0 / 3.0	
Luminosity	-3.9 / 3.9	Luminosity
MC Stat.	-0.5 / 0.5	
Lepton uncertainties	-2.3 / 2.3	
$\operatorname{Jet}/E_{\mathrm{T}}^{miss}$ uncertainties	-4.5 / 4.5	Jet Energy Scale
DY estimation	-0.2 / 0.0	
Fake lepton estimation	-1.1 / 1.1	~
b-tagging uncertainties	-3.1 / 4.1	btag calibration
Generator	-3.7 / 4.1	
All syst.(except Lumi)	-6.8 / 8.2	
Stat + Syst	-8.4 / 9.7	Total Uncertainty

~ 9% precision was achieved !!

Conclusions

Performed ttbar cross section measurement with b-tagging

- ▶ using 0.70 fb⁻¹ of data
 - ➡enough statistics even for di-lepton final state
- adopt b-tagging @ 80% efficiency
 - ➡help to suppress systematic uncertainty

measured Cross-Section is consistent with NNLO prediction

- combined result : $\sigma_{t\bar{t}} = 188 \pm 6(\text{Stat.})^{+15}_{-13}(\text{Syst.}) \pm 7(\text{Lumi.})[\text{pb}]$
 - ➡Precision : ~10% (~18% in 2010 analysis)
- NNLO prediction : $\sigma_{t\bar{t}} = 165^{+11}_{-16} \text{ pb.}$ @ Mt = 172.5 GeV
- Achieved comparable size of uncertainty w.r.t theoretical prediction !!

backup

Effect of underlying events

- After requiring di-lepton
 - dominated by Z/ γ^* + jets events(i.e. basically no MEt)
- $\cdot E_{\mathrm{T}}^{\mathrm{miss}}$ resolution got worse due to underlying events.
 - \blacktriangleright additional energy deposit \Rightarrow large energy fluctuation in calorimeter

at could be used, at least at the beginning, is the counting of tracks with e impact parameter significance. Requiring a few of these tracks provides The performance of such a tagging algorithm is not discussed in this note also be very useful at the lemented a compare of the of t · JetProb : charged track base white the impact parameter of all the tracks in the jet. JetProb is an impleingoalgorithm [14], "used extensively at LEB and later at the Texatren Thes from PV ficance d_0/σ_{d_0} of each selected track in the jet is compared to a resolution , in order to measure the probability that the track *i* originates from the strictly trace $= \mathscr{P}_0 \Sigma$ Likelihood of jet is light-flavor jet he individual probability of each of the N tracks associated to the jet are then combined to obtain a obability of the Mhadelis is a interview to jos jes airst light jerb (Fighte obtein) a (3) criminates bijets against light jets (Figure 11(b)) $\mathcal{P} \stackrel{\sim}{\not\sim} = (1 tn \mathcal{P})$ n be measured in data-using the negative side of the signed impact param-(4) 5.1), assuming there is no contribution from heavy-flavour particles which where **IP3DSV1** log likelihood of various discriminant $= \prod_{i=1}^{N} \mathscr{P}'_{i} \text{ using berget excernes} (1000 \text{ likelihood of various discriminant}) (1000$ ➡Secondary vertex mass →etc... -

BG Estimation for Fake Leptons

Matrix Method

- Define "Tight/Loose" lepton
 - \rightarrow count the remaining #events(N_{TT} , N_{LL} etc.)
- Measure a probability "r" and "f"

→ "r(f)": the probability of a real(fake) lepton which pass the

"loose" criteria will pass the "tight" criteria.

- "r" : measured in Z \rightarrow II process
- "f" : measured in QCD process

Solve this matrix...

 $\begin{bmatrix} N_{TT} \\ N_{TL} \\ N_{LT} \\ N_{LL} \end{bmatrix} = \begin{bmatrix} rr & rf & fr & ff \\ r(1-r) & r(1-f) & f(1-r) & f(1-f) \\ (1-r)r & (1-r)f & (1-f)r & (1-f)f \\ (1-r)(1-r) & (1-r)(1-f) & (1-f)(1-r) & (1-f)(1-f) \end{bmatrix} \begin{bmatrix} N_{RR} \\ N_{RF} \\ N_{FR} \\ N_{FF} \end{bmatrix}$

• **Results** : ee : 7.5 ± 6.5 (Stat.+Syst.) $\mu\mu$: 4.9 ± 3.1 (Stat.+Syst.) $e\mu$: 19.8 ± 12.5 (Stat.+Syst.) contribution from fake leptons

Uncertainty for Z/γ^* + jets estimation

ee channel

	MC	Data Driven
Expected Yields	11.2	9.8
Uncertainty Source	$\delta N_{DY}/N_{DY}[\%]$	$\delta N_{DY}/N_{DY}[\%]$
Data stat.	-	± 7.4
MC stat.	± 7.0	± 7.0
Method	-	± 5.2
JES	+54.7/-24.0	+10.9/- 0.0
JER	± 15.1	± 1.8
Jet ID SF	± 0.0	± 0.2
SoftJet/CellOut Term.	+ 0.4/- 1.8	+ 0.0/- 2.2
LAr Hole	+ 4.7/- 3.7	+ 3.6/- 1.6
El. ES	± 2.9	± 3.2
El. ER	+ 6.2/- 2.4	+ 4.6/- 1.3
El. ID SF	+ 5.2/- 5.1	± 0.0
El. Trig SF	± 1.9	± 1.7
MC xsec	± 28.8	-
<i>b</i> -tag eff.	± 2.7	± 0.0
<i>l</i> -tag eff.	+ 4.5/- 4.6	± 0.4
Pileup	+ 0.0/- 3.1	+ 0.0/- 2.7
Luminosity	± 3.7	-
Total	+ 65.1/-42.7	+17.3/-13.2

mumu channel

	MC	Data Driven
Expected Yields	21.9	20.3
Uncertainty Source	$\delta N_{DY}/N_{DY}[\%]$	$\delta N_{DY}/N_{DY}[\%]$
Data stat.	-	± 5.5
MC stat.	± 4.6	± 4.6
Method	-	± 0.8
JES	+42.3/-27.2	+ 1.3/-10.0
JER	± 23.6	± 3.8
Jet ID SF	± 0.0	± 0.1
SoftJet/CellOut Term.	+ 0.8/- 0.1	+ 0.6/- 3.2
LAr Hole	+ 2.8/- 1.3	+ 2.1/- 0.0
Mu. ES	+ 0.9/- 0.0	+ 1.0/- 0.0
Mu. ER	± 1.1	± 1.4
Mu. ID SF	± 0.6	± 0.0
Mu. Trig SF	+ 0.2/- 2.0	+ 0.0/- 0.1
MC xsec	± 29.7	-
<i>b</i> -tag eff.	+ 2.9/- 2.8	± 0.1
<i>l</i> -tag eff.	+ 5.1/- 5.2	+ 0.3/- 0.4
Pileup	+ 1.6/- 2.9	+ 0.0/- 2.6
Luminosity	± 3.7	-
Total	+57.5/-47.5	+ 8.7/-13.6

 $\boldsymbol{\cdot} \text{ ttbar} \rightarrow \text{di-lepton final state}$

- Assumed background sources
 - Z/ γ^* + jets
 - Fake leptons (mainly W+jets)
 - WW, WZ, ZZ + jets
 - single top

 $\boldsymbol{\cdot} \text{ ttbar} \rightarrow \text{di-lepton final state}$

 $\boldsymbol{\cdot} \text{ ttbar} \rightarrow \text{di-lepton final state}$

Distributions in Control Region

After requiring all selection but has only one jet.

