The CsI calorimeter for the KOTO experiment

12/19/2011, 年末発表会 山中卓研究室 D5 岩井瑛人

 $K_{L} \rightarrow \pi^{0} \nu \overline{\nu}$ 崩壊とは?

• ループを含むダイアグラム:New Physicsに感度がある!

 CPの破れの大きさを決めるCKM行列の複素成分ηを小さな理論 的不定性で決定できる

➡標準理論とそれを超える物理への良いプローブ:<u>Golden Mode</u>

 ● 非常に稀な崩壊 + 全てが中性の粒子: 意欲的な実験 ! Br~3×10⁻¹¹

K^oTO detector

- シグナル事象: π⁰からの2つのγ線のみ
- ●入射するγ線のエネルギーと位置を測定:CsIカロリメータ
- カロリメータのe391a実験からの改良点
 - $7 \times 7 \times 30 \text{ cm}^3 \rightarrow 2.5 \times 2.5 \times 50 \text{ cm}^3 (+5 \text{ cm} \beta)$
 - 波形読み出し

Bessel filter

Bessel filter

トークの内容

- カロリメータのアップグレード
 - ▶ 統合試験、性能評価のためのビームテスト
- ・波形読み出し
 - ▶ Bessel filterを用いた波形読み出しで得られる性能って?
- 25mm角の小さな結晶による fine granularity
 - ▶ KOTO実験のカロリメータのための新たな解析手法

● 数字は全て preliminary という事で。。。

ビームテスト

CsI beam test

- •LNS, 東北大学
- beam time : 2010/04
- energy:最大 800MeVの positron
 - (0,10,15,20,30,40) [deg] × (100,200,300,460,600,800) [MeV]

• setup

- 144本 (12×12) の CsI 結晶
- scintillating fibers 位置検出器
- 時間のreference用シンチレータ (500MHz FADCで記録)

non-linearity

● non-linearityはその波高と相関がある

➡ 各イベントでの、最大の波高とエネルギー和の相関

non-linearityを考慮した calibration

incident position dependence

energy resolution

- right : incident position is limited by scifi. tracker
 - might be suffered by calibration error for a certain channel
- left : incident position is not limited
 - might be suffered by shower leakage

Monday, December 19, 2011

timing resolution

• 2つの方法で時間分解能を評価

(I) reference 用シンチレータとの時間差の広がり

(II) 隣り合う特定の2つの結晶の時間差の広がり

✓時間分解能の要因(光量,ノイズ量,Gainなど)が同じ結晶 (いずれもK^oTO実験のCsIカロリメータの標準的な値)

波形読み出し

波形読み出しの性能は何によって決まるか?

- Bessel filter を用いる
- 分解能を決める主な要因
 - 光量
 - •ノイズレベル (高周波)
 - single photoelectron の 時間の確率密度分布
 - single photoelectron の Bessel filterを通した波形

絶対光量測定

- KOTO実験で用いるCsI結晶:相対光量は測定済
- いくつかサンプリングして絶対光量を測定

 $\Rightarrow 12.7 \text{ [p.e/MeV]}$

ノイズレベル

FADCで記録したペデスタル周りの揺らぎで評価
低周波(⇔125MHz)は問題にならない

single photoelectron の 時間の確率密度分布

single photoelectron の 時間の確率密度分布

single photoelectron の filterを通した波形

- ●適当な関数でパラメータ化
 - 非対称ガウシアン
 - Gaussian(μ , σ (t))
 - $\sigma(t)=a(t-\mu)+\sigma_0$

波形シミュレーション

波形を生成してみる ビームテストのデータと比較

ビームテストの波形パラメータ

time[ns]

時間分解能

エネルギー分解能

宇宙線のエネルギー分布を Landauでフィット

新たな解析手法

• Fittingで入射位置を決められないか?

"列エネルギー"をFitしている様子

Fittingによる入射位置の決定

E, θ, φ毎にシャワーの典型的な広がりをしらべる

Fittingによる入射位置の決定

E, θ, φ毎にシャワーの典型的な広がりをしらべる

入射位置に応じたテンプレートを動的に生成

Fittingによる入射位置の決定

shower shapeによる入射角度の識別

• signal/BGを仮定した時の列エネルギーのLikelihoodの比 を取る

まとめ

- K^oTO実験のCsIカロリメータについて研究を行った
 - アップグレード → ビームテストによる統合試験
 - non-linearityを発見するも対処し、目標精度を達成
 - 波形読み出し → 波形・分解能の理解
 - 分解能の要因を明らかにし、その測定方法を確立
 25mm角の小さな結晶 → 新たな解析手法の開発
 shower shape fittingによる入射位置導出
 - shower shape likelihood ratioによる入射角度識別