K^oTO実験144chビームテストのための シンチレーティング・ファイバーを用いた 位置検出器の開発

山中卓研究室M1 杉山泰之 2009年 合同年末発表会 09/12/21(Mon.)

J-PARC E14 K^oTO実験

* KLの稀崩壊 $K_L^0 \to \pi^0 \nu \overline{\nu}$ の分岐比を測定する実験

* vは検出できないので、 π^0 が崩壊してできる2 γ を Csl結晶で検出することで、イベントを得る。

2009年12月21日月曜日

144ch Csl BeamTest@LNS

* 東北大学 電子光理学研究センター(旧 核理研 LNS)の e⁺ ビームラインを用いてビームテストを行う。

* ビームテストは1月と3月に行う。

* 目的: K^oTO実験用CsIカロリメータの性能評価
性能: 位置/エネルギー/時間分解能

→入射位置に対するCsIの応答を見るには、ビームの入射位置を トラッカーで知る必要がある。

トラッカー 30mm Csl *LNSのビームの径は50mmの 30mm * 50mm x 50mm程度覆えれば良い * 必要な位置の精度は~1mm * 今回はシンチレーティングファイバーを用いた トラッカーを作成する。

シンチレーティングファイバートラッカー

5

* 1mm角のシンチレーティング
ファイバーを表裏各層48本ずつ
並べてトラッカーを作成する。

* 有効領域は48x48mm

* シンチレーティングファイバー はアクリル板に固定する。

トラッカーの試作

*本番用のトラッカーを作る前に、同じ固定方法でファ イバーの本数を減らした試作機を作る。

* 試作を行うことによって,

* ファイバーの加工・接着に関するノウハウが得られる。

* トラッカーの動作や分解能について調べることができる。

試作トラッカー

7

* シンチレーティング・ファ イバーを8本使用。

* ファイバーはオプティカル
セメントで固定。アクリル
板はアクリサンデーで固定
した。

*3層分作成した。

ファイバーの接着

* 厚さ10mmの銅板に押し付けて角を整え接着した。

2009年12月21日月曜日

接着が完了した試作トラッカー

PMTとファイバーの接触

 * 使用したのは浜松ホトニクスの
MAPMT(Multi Anode PMT) H8711-10MOD H6568-10P

* 16chのアノードを持っている。
各アノードの光電面は
4mm x 4mm

* ファイバーをPMTの各光電面に
接触させる必要がある。

を見た。

えられる。

ファイバーホルダー

*金工室にて、丸穴で試作

* 角穴を発注、完成。

試作トラッカー 完成

*ファイバーはオプティカルセメ ントでホルダーに接着した。

宇宙線テスト

* 作った3層を重ねて、トリガー シンチで挟み、突き抜け宇宙線 イベントを取得

* 現在取得中

まとめと今後の課題

* 試作トラッカーの制作を行った。

*現在宇宙線でデータを取得中。

* 性能評価 (光量,光漏れ、efficiency)を
これから行うとともに、ビームテスト用のトラッカーの制作にも着手する。