ミューオン-電子転換過程探索実験COMETのための Extinction Monitor開発 久野研・山中研年末合同発表会 Dec 21, 2009 中堂園 尚幸

目次

* イントロダクション * COMET * Extinction Monitor # Gating PMT * アフターパルスのStudy * まとめと今後

COMET

- * 荷電レプトン混合現象の探索
- * μ-e転換過程を10-16の感度で測定する
- * 標準理論を超える新しい物理に感度がある

3/21

パルス陽子ビーム

* *μ*-e転換過程のシグナルはメイン陽子ビーム から880nsec(Al target)遅れる * 多くのB.G.はメインの陽子ビームに同期 * 効率的にB.G.を回避するために、パルス陽子 ビームを用いる J-PARCのMRからの遅い取り出し (MR h=8, 4bunches, RCS h=2, 1bunch) • 10⁸ PROTONS/PULSE • 8-GeV ~1MHz

4/21

Gating PMT 開発

あるダイノードの電位を前段のダイ ノードの電位よりも高くする →P.E.がそれ以上増倍されなくなり、 ゲインが下がる

要求性能と比較

* 1MHzの繰り返し

* Cutoff 比 (gain@off/gain@on) < 10⁻⁶ アノード電流: 10A→10µA(仕様書より)

* フォトカソードの占有率~100%

チェレンコフ光の検出効率の最大化

	Repetition(Hz)	Cutoff ratio	Photocathode Coverage	
Requirements to Extinction Monitor	1M	< 10 ⁻⁶	100% (52 dia.)	
Creasey, Rev.Sci.Instrum, 69(1998)p4068	10k	< 10 ⁻⁵	0.3% (2.5x2.5)	
H10304 (Hamamatsu K.K.)	10k	10-7	(8 dia.)	
] [0/

開発状況

- * 1MHzスイッチング対応の回路を製作しテストした
- ★ Focusと第3ダイノードをそれぞれ400V, 300V上 げる電圧分配(H.V.=1700V時)
 - 回路は谷口敬氏(KEK)による設計
 - PMT: <u>R329-02</u>(浜松ホトニクス)、 <u>9954B(Electron Tubes社)</u>を使用 **2**"、12段のリニアフォーカスタイプ

Cutoff比<10-6を達成した</p>

アフターパルス

 * スイッチon後に大量のアフターパルス (~10⁵p.e.)が存在する

* 漏れだし陽子によるチェレンコフ光と見 分けるためには、~1p.e.程度まで減らさ なければならない

* 数百nsec~数µsecと遅くまで光るので
 イオンフィードバックが一因と考えられる

MLFビームテスト

- * レーザー光源自身の影響を調べるために、J-PARCのMLFにて ビームテストを行った
- * 11/17 12:00 ~ 11/19/ 10:00
- * ビームラインをdelayedの電子が少ない60MeV/cに設定
- * セットアップ

- * 鉛(ミューオンを止めるため)
- * プラシン+NDフィルタ(1/10000)+R329-02+普通のDivider
- * ルサイト(25mm)+R2256-02+gating回路
- * WFD(Aqiris DP235)で2ch

* 260/Trig. 20倍多い~ レーザー光源のせいか!?

19/21

* 同じ光量当てているはずなのに、レーザーではメインのパルスが見える

* レーザーはPMT(2inch)のど真ん中に当てている(\$\$\phi11mm\$)
 チェレンコフはまんべんなく当たっていると思われる

 ・ 真ん中と端ではfactor20~50 On/Off比が違う、これが効いているのではないか
 20/21

まとめと今後

- * COMET実験に向けてProton Extinction Monitorを開発中
- * Gating PMTのアフターパルスをスタディしている
- * 今後、アフターパルスの位置依存性やHV依存性を詳しく調べ、 実機としての性能が達成出来るか検証する必要がある
- * 先週行ったビームテストの解析も行います、

