ミューオンX線による停止ミューオン量の測定

o 1, MUSICについて

- 。3,X線検出器
- o 4,線源テスト

。5,まとめと今後

MUSIC 2010/6月より陽子ビームを入射して試運転開始!

世界にない最高ビーム強度、エネルギーの揃った ミューオンビームラインを大阪大学RCNPにつくる。

パイオン捕獲部

標的周辺に強磁場をかけ、 効率よく粒子を捕獲する

回周回させる。 エネルギーを揃える。

不純物粒子を削除する。

ミューオンx線による停止ミューオン量の測定

モチベーション

<MUSICにおいて>

MUSICは世界最高強度のミューオンを生成する。

・stopするミューオンの数を知りたい

・パイオン、ミューオンの粒子識別をしたい。

ミューオンX線の測定

ミューオンが原子核に捕獲される。基底状態への励 起過程でX線を放出する。粒子によってエネルギー が固有である。 ミューオンとパイオンの粒子識別。

CdTe • • Cadmium Zinc Terullide

特徴

光電吸収の確率はγ線のエネルギーに対してGeの4-5倍!Siの100倍!! エネルギー分解能がよい(5mm×5mm×2mmで662keVのγ線で1.13%) 時間応答が早い

数百keVのエネルギー範囲が測定可能

特性X線のスペクトル

	Κα	Lα	
ミューオン	347	66	
パイオン	459	87	単位∶keV

ミューオンX線、パイオンX線の識別ができるのではないか

ミューオンX線のstudy

測定原理

Statil for was some

μ

 μ -xray

宇宙線ミューオンをtargetに止め、放出 されるX線をBGOカウンターで検出す る。 放出されるX線は標的の軌道の順位に よってエネルギーが決まっている。

Table 1. Typical muonic X-ray energy in keV

Element	Κα	Kβ	Lα	Lβ	
С	75.8	89.2	13.9	18.8	
0	134	158	24.8	33.5	
Al	347	422	65.8	88.8	
Fe	1256	1704	264	357	
Cu	1513	2126	307	444	

シンチレータ	GSO	BGO	LSO	YSO	YAP	CWO	NaI:Tl
密度 (g/cm ³)	6.71	7.13	7.4	4.45	5.55	7.9	3.67
放射長 (cm)	1.38	1.11	1.14	2.75	2.67	1.06	2.6
蛍光減衰時間 (ns)	30 - 60	300	40	40	28	5000	230
蛍光出力 (相対値)	20	7 - 12	40 - 75	30 - 45	40	30 - 40	100
発光波長 λ _{em} (nm)	430	480	420	420	347	480	415
屈折率 (at λ_{em})	1.85	2.15	1.82	1.8	1.94	2.25	1.85
耐放射線強度 (gray)	10^{6}	10^{2-3}	10^{5}	10^{4}	10^{4}	10^{3}	10
吸湿潮解性	no	no	no	no	no	no	Strong
融点 (°C)	1950	1050	2050	1980	1850	1300	651

target

<logic>

y線源を使って測定

ADCのエネルギーキャリブレーショ ン&見たい μ -xrayのエネルギー範囲 (数百kev)がBGOで見えるかを確 かめたい。

 →γ線源を置き、γ線のスペクトルを 観測する。

γ線源置いて測定

the state is tor was is m

BGOのシグナル HV1200

<Na22> 1100ch-85ch(pedestal)=1015ch→1.2MeV とすると、1.2MeV/1015ch=1.18KeV/ch

511KeVのγは511KeV/1.18KeV=433chあたり にみえるはず。

b.gで埋もれているのでb.gを取り除く必要あり。

22Na-1.2MeV分解能R=227ch/ (1082-85)ch=22.8% 22Na-0.5MeVでは $\sigma=227ch\times\sqrt{0.5MeV/1.2Mev}=162ch$ 分解能R=162ch/433ch=37%

と見積もられる。

μ-xrayのエネルギー範囲は数百keV 37%の分解能は悪い BGO

The state is fort which the second state is a construction of the second state in the second state is a second state in the second state in the second state in the second state in the

線源を置いても、置かなくてもADC分布のピークの位置が変わらない!

結晶の光量が落ちているorPMTが壊れている??

結晶をNalに変えて測定

まとめと今後の課題

- ・BGOの結晶orPMTは機能しなかった。
- ・Nal結晶を用いるとµ-X線のエネルギー範囲は
- 測定できると分かった。
- ・標的にどの金属を使用するか。 標的金属の厚みなどの最適化。
- ·logicは組んだので,DAQでµ-X線の測定。
- ・CdTeで測定。

Started a . Advant

and the second states

The is for wash's me securolaragines - on Lowing

今,

0.5IIMeVのγ線のスペクトルは9600pC/0.25pC=38000ch に見えているはず。

このスペクトルをI000chあたりにを見るためには、400mV→I0mVに減衰させなければ ならない。

10.0mVΩ

91.6mV

<Nalの信号>

2 5 mv

Co60の線源

5 0 mv

Saving to E:/1109nai_na22.png

400ns 250MS/s 1000 points

℃ 91.6mV

<Nalの信号>

Na22の線源

5 0 mv

Saving to E:/1109nai_co60.png

250MS/s 1000 points

10.0mVΩ

400ns ∎→▼ 0.00000 s

さまざまなX線検出器のefficiency

ORTEC社のゲルマニウム検出器

全体的にCdTeよりも efficiencyは低い。

1MeV近くの高エネルギー 領域では、そこまで変わら ない。

AMPTEK社のSi検出器

10keV以下程度のエネルギー領域にしか適しておらず、 ミューオンX線の検出には向かない

参考:AMPTEK社のCdTe検出器

