144ch Csl beam test に向けて

12/21/09 久野・山中研究室合同年末発表会 山中研 D3 岩井瑛人

144ch Csl beam test

- ・目的:KoTO実験用CsIカロリメータの性能評価
 - ・個別に開発研究を行ってきた測定機器の統合試験
 - ・上記統合試験の結果を元に最終調整を行った後の最終的な性能評価
 - ・位置/エネルギー/時間分解能
 - ・シャワーシェイプ測定
- ・ビームタイム
 - · 1/18-1/22
 - ・3月下旬

- ・ループを含むダイアグラム: New Physicsに感度がある!
- ・CPの破れの大きさを決めるCKM行列の複素成分 η を1%程度の小さ な理論的不定性で測定できる
- ➡ 標準理論とそれを超える物理への良いプローブ: Golden Mode
- ・<u>非常に稀な崩壊</u> + 全てが中性の粒子:<u>意欲的な実験</u>
 Br~3×10⁻¹¹

K^oTO detector

・シグナル事象: π⁰からの2つのγ線、それ以外に何も観測されない事象
 ・入射するγ線のエネルギーと位置を測定: Cslカロリメータ

Cslカロリメータ

144ch Csl beam test

- ・目的:K^oTO実験用Cslカロリメータの性能評価
 - ・個別に開発研究を行ってきた測定機器の統合試験
 - ・上記統合試験の結果を元に最終調整を行った後の最終的な性能評価
 - ・位置/エネルギー/時間分解能
 - ・シャワーシェイプ測定
- ・ビームタイム
 - · 1/18-1/22
 - ・3月下旬

5cm角と2.5cm角の二種類

- ・光量:p.e./MeV
- ・Light uniformity: PMTに到達する光量がシャワーの発生位置に依らない事

PMT holder

I44chテスト用に発注 Iange that holds PMT's brake off easily Iange can be glued 残俗投い交体but i目ther vay? 以内に発注予定

- ·Cockcroft Walton型(非抵抗分割型)
- ・低発熱:150mW
- ・低ノイズ

CW base type number	HPMC-1.8N-04
Divided ratio	K 3:2:2:2:1 A
PMT gain	8000
preamp gain	4.1
1MeV signal pulse	1.15mV _{P-P}
Noise (HV 0V)	103µVrms
Noise (HV -1500V)	. 119µVrms .
Noise w/ 100µVrms GND Noise	155µV _{rms}

Bessel filter

16ch 125MHz FADC

K L1 & L2 Trigger Boards Overview

- L1 Trigger Board
 - Receives energy sum from 16 ADC board (= 256 CsI channels/module) at 2.5 Gb/s.
 - Sums and daisy-chains through VME P3 backplane to sum up all the deposited energies at Local Trigger Control Board.
 - Makes L1 trigger decision against preset threshold to MACTRIS (at Master Control Crate).
 - Synchronous with 125 MHz sampling clock.
 - L2 Trigger Board
 - Has On-board level 2 buffers
 - Retrieves data between spills.
 - Makes trigger decision to further reduce rates of the incoming data by:
 - Veto signals
 - Gaussian fitting
 - Clustering algorithm
 - Other algorithms could be implemented in FPGA...
 - MACTRIS (Master Control and Trigger Supervisor Board)
 - Generates 8 ns sampling clock and t₀
 - Generates L1/L2 decision
 - Fan-outs control signals to ADC/Trigger Crates

144ch Csl beam test

- ・目的:K^oTO実験用Cslカロリメータの性能評価
 - ・個別に開発研究を行ってきた測定機器の統合試験

・上記統合試験の結果を元に最終調整を行った後の最終的な性能評価

- ・位置/エネルギー/時間分解能
- ・シャワーシェイプ測定
- ・ビームタイム
 - · 1/18-1/22
 - ・3月下旬

テスト実験のセットアップ

- ・暗箱
 - ·Csl結晶:2.5cm角 12x12個
 - ・1mm角 scintillating fiber 48mm x 2layers
 - ・温度/湿度モニター
- ・回転台、XYステージ
- ・トリガー
 - ・エネルギー和
 - ・宇宙線
 - ・ファイバーヒット
 - · calibration用LED

・ 列毎のエネルギー和の比で入射位置を決定

- ・エネルギー和の比は入射位置に大変敏感な領域
- → <u>1mm単位での測定が必要</u>

→ Odegで2.8mm, 30degで6.7mm (1GeV e+)

エネルギー分解能測定

・本実験用Cslカロリメータの大きさと期待される分解能 (ビーム径50mmを想定)

・σ/E~1%の分解能@1GeV

時間分解能の見積もり

シャワーシェイプの測定 - КОТО実験の背景事象 -

シャワーシェイプの測定 - КОТО実験の背景事象 -

☆パラメータの値毎にmapを作る (11x11x7x6x6=計30492)							
	log(E)	θ	Φ	Xctr	Y _{ctr}		
max	log(2000MeV)	42°	45°	12.5mm	12.5mm		
min	log(100MeV)	0°	0°	-12.5mm	-12.5mm		
分割数	11]]	7	6	6		
	断続的			連続的			

E:1st, θ :1st, ϕ :1st, X_{ctr}:1st, Y_{ctr}:1st

• • • • • • • • •

E:11th, **θ**:11th, **φ**:7th, **X**_{ctr}: 6th, **Y**_{ctr}: 6th

・シャワーシェイプは入射角度にも敏感

→入射角度を5°刻みで測定

測る物まとめ/期待される結果

- ・エネルギー和トリガーでデータを読み出す仕組みを確認
- ・分解能(エネルギー、時間、位置)
 - ・エネルギー: 6点 (100, 150, 200, 300, 500, 800 [MeV])
 - ・入射位置:ビーム径50mm ϕ をトラッカーで1mmの精度で決める
 - ·入射角度: 0~40°9点
- ・Cslカロリメータとしての性能
 (クラスタリング後の性能とは別に)
- ・シャワーシェイプ測定
- ・1 度目のテストでの問題、改善点の発見 → 早期に修正→2 度目で最終性能評価

144ch Csl beam test

- ・目的:K^oTO実験用Cslカロリメータの性能評価
 - ・個別に開発研究を行ってきた測定機器の統合試験
 - ・上記統合試験の結果を元に最終調整を行った後の最終的な性能評価
 - ・位置/エネルギー/時間分解能
 - ・シャワーシェイプ測定
- ・ビームタイム
 - · <u>1/18-1/22</u>
 - ·3月下旬

- ·暗箱作成
- ・144ch用PMT holder作成
- ・パーマロイ
- ・乾燥室/除湿器
- · DAQ

準備状況

- ·暗箱作成
- ・144ch用PMT holder作成
- ・パーマロイ
- ·乾燥室/除湿器
- · DAQ

準備状況

- ·暗箱作成
- ・144ch用PMT holder作成
- ・パーマロイ
- ·乾燥室/除湿器
- · DAQ

103

まとめ

- ・144ch Csl beam test: K^oTO実験用Cslカロリメータの性能評価
 - ・個別に開発研究を行ってきた測定機器の統合試験
 - ・上記統合試験の結果を元に最終調整を行った後の最終的な性能評価
 - ・位置/エネルギー/時間分解能
 - ・シャワーシェイプ測定
- ・ビームタイム
 - · <u>1/18-1/22</u>
 - ・3月下旬