Development of a thin scintillaiton counter hodoscope for detecting the lowest energy antiprotons

久野研究室D4 堀越 篤

Contents

- ・ BESS-Polar II 実験の目的
- BESS-Polar II測定器の概要
- Middle TOFの開発
 - 開発課題と基本設計
 - PMTコネクター部分の構造
 - BESS-Polar II Middle TOF
- フライト時におけるMiddle TOFの性能
 - Npe, 時間分可能, axial position information
 - Antiproton identification

BESS-Polar II実験の目指す物理

より低エネルギー領域で、より高精度な測定が必要。
 ⇒南極における長期間飛翔実験(BESS-Polar計画)

BESS-Polar測定器

- ・ 一次起源宇宙線反陽子:低エネルギー宇宙線の捕捉が重要
- 測定器内の物質を徹底的に削減
 小部与圧容器の撤廃、ソレノイドマグネットの薄肉化
- Middle TOF(MTOF)を飛跡検出器の直下に搭載 →0.18GeV(BESS-2000)→0.1GeV(BESS-Polar,MTOFトリガー)に拡大

BESS-Polar測定器

宇宙線の観測を目的とした大気球実験(高度~36km)。
 測定器の構造:同心円状

超伝導ソレノイドマグネット → 0.8T のUniformな磁場 電荷の正負を識別

中央飛跡検出器(JET/IDC)

→ track deflection (運動量 P)

上下Time-of-Flight hodoscopes(TOF) → 粒子速度 β, charge Z

Silica aerogel cherenkov counter → バックグランドの除去

BESS Polar-Ⅱ測定器

- BESS-Polar I: 2004年に実施。南極上空における8.5日間の長期観測に成功。
- BESS Polar-II: 2007年の太陽活動極小期における観測が目的。BESS-Polar Iの経験を踏まえ、ほぼ全ての構造体、測定器について作り直し、または改善をした。

	BESS-Polar I	BESS-Polar II
HDD	3.6TB	16TB
Magnet	He tank 400L	He tank 520L
Solar System	4段構造	3段構造
JET/IDC (改良)		AIシールド(ノイズ低減)
UTOF / LTOF	PMT(ポッティング)	PMT(AI気密容器)
MTOF	片側読み出し	両側読み出し
ACC	Npe=6 p.e.	Npe=11 p.e.

• 両側読み出しのMiddle TOFの開発を担当。

BESS-Polar II Middle TOFの開発

BESS-Polar II Middle TOF開発の動機

- BESS-Polar I: 片側読み出し
 - 時間分解能の位置依存性。(300-650ps)
 - 軸方向の位置情報が取得できない。

(→飛跡情報によるBGカット、ノイズカットができない)

BESS-Polar II Middle TOFの開発

- 1. 実績のあるBESS-Polar | Middle TOFをベースにした
 - PMT : Fine-mesh 8ch multi-anode PMT
 - Light guide : Square clear fiber
- 2. 両側読み出し実現の為の3D-CADによる検討
 - CADによる詳細なインストール手法の検証
 - 組み込み可能なPMT接続部分の開発
- 3. プロトタイプによるテスト
 - インストールテスト、性能評価
- 4. 実機のインストール@NASA

– 3ヶ月間かけて根性でインストール
 Middle TOFの開発を全て担当した!

BESS-Polar IとBESS-Polar IIの比較

タンク側ファイバーの取り回し

BESS-Polar II Middle TOFの配置

- シンチレータ:95cm、48本
- ・ タンク逆側ファイバー: 70cm、タンク側ファイバー: 3m
 →全長4.65m、非常に長い

BESS-Polar II Middle TOF:組み込み構造

- 全長4.65m+タンク側ファイバーの
 取り回しが非常に手間がかかる。
- 8本まとめてインストールは無理!
 →組み込み可能な構造に!

ファイバーバンドルのアサイン

クロストーク対処: Short fiber sideとLong fiber sideで、
 隣り合うchは出来るだけ離れるアサインにした。
 (各chは同じ形状なので、いくらでも変更可能。)

マグネットボアからタンク壁面への通過

タンク壁面のインストール:二層目

マグネットボア壁面のインストール

凧糸1000本、一本一本手で通した。

18

JET/IDC インストール後

BESS-Polar II flight

Trigger rate

- トリガーレートは安定
- Trigger rateの変動
 太陽風の変動
 中性子モニター
 @Antarctica
 Trigger rate
 BESS Polar- II
- BESS Polar-Ⅱの観測
 は他の太陽活動の観測と
 似た傾向!

Flight status

- 飛翔高度:~36km
- 観測期間:約24.5日間
 磁場ライフ/HDD容量の限界まで取得

(2007Dec23-2008Jan16)

- フライト期間:約29.5日間
- 取得イベント数:47億イベント
 - BESS-Polar I の約5倍の統計量
- 回収
 - 近くのbase campが閉鎖
 - 回収用飛行機の確保が困難。

⇒データのみを回収、測定器は現在回収中(by吉村さん)。

Middle TOF performance

時間分解能の位置依存性

- ・ 解析に用いた粒子: relativistic proton (10GV, MIP)
- Weighted mean : 260-360ps

• 両側読み出し:時間分解能の位置依存性の軽減!

BESS-Polar Iとの比較

• BESS-Polar II Middle TOFは全ての領域において時間分 解能の位置依存性が改善、軽減されている。

軸方向の位置情報

 $dz = z_{JET} - z_{TOF}, \ z_{TOF} = (T_{short} - T_{Long})/(2V_{prp})$

TOFのZ:片側がnoise triggerの場合、dzが大幅にずれるので、 カット出来る。

軸方向の位置情報の効果

 ・ 両側読み出しにより、高精度かつ低エネルギー宇宙線反陽子の 捕捉に成功!(Minimum: 0.338GV→Kinetic Energy=0.11GeV)

まとめ

- BESS-Polar Iでの経験を踏まえ、低エネルギー宇宙線
 反陽子のより高精度な観測を実現する為、両側読み出しのMiddle TOFを開発した。
- 時間分解能の向上による粒子識別能力の向上のみならず、軸方向の位置情報により、noise trigger eventの 排除が可能となり、粒子識別性能が圧倒的に向上している。
- Middle TOFの改良によりBESS-Polar II実験は太陽活動 極小期における、低エネルギー領域の宇宙線反陽子 の高精度観測に成功した。

BESS Collaboration

7機関29人から成る日米共同実験 (PI, Japan A.Yamamoto,KEK PI, US J.W.Mitchell, NASA/GSFC)

National Aeronautical and Space Administration Goddard Space Flight Center

University of Maryland

University of Denver (Since/June 2005)

Axa Institute of Space and Astronautical Science/JAXA

Appendix

磁場による宇宙線の同定

$$p = 0.3ZeBr, R = p/Ze$$

$$m = \frac{p}{\beta\gamma} = \underline{ZeR}\sqrt{1/\beta^2 - 1}$$

つまり、電荷(Z)、Rigidity(R)、βが 求まれば粒子(mass)が同定できる。

Z:UTOF, MTOF, JET内でのEnergy loss R:R=cBr

c=3x10⁸m/s, B(Tesla), r(曲率半径) β : V/C, V = (T_M-T_U)/L_{path} T : TOF, L_{path} : JET/IDC

Crosstalk effect

Hit channel QDC

Crosstalk channel QDC

Short fiber side, Long fiber sideで異なるchannelにクロストークするので、 低いQDC cut (~5% of MIP mean value)でクロストークヒットを排除可能!

Rigidityとの相関

Proton event

- The Middle TOF : 低エネル ギー粒子の捕捉が目的
- Middle TOFは低エネル ギー領域において、高い 性能を発揮

(ULTOF: 120ps @~10GV)

Antiproton identification by UL+ACC

PMT : 8ch multi-anode PMT TDC : DY 19th, 1channel QDC : Anode, 8 channel

Fiber bandleのch配置 Short fiber sideで隣になるchはLong fiber sideでは離れるようにした。 →クロストーク先が異なるchになっている!

Time of FlihgtのCorrection:通常のPMTは1chのQDCを用いて行う。 **MTOF : QDC sum**

Qdc threshold study

Sample event :

Proton event identified by UTOF & LTOF

両側にQdc cut を掛ける事で、 高いSingle hit ratioを実現。

Timewalk correction with sum of qdc

• Timewalk correction : Middle TOF ~ 1.4 ns for MIP