CDF実験での $H \rightarrow WW \rightarrow lvjj$ 探索

筑波大学

佐藤構二

2012年7月6日(金)

特定領域「フレーバー物理の新展開」研究会 2012

Tevatron Run II

- $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV (1.8 TeV in Run I).
- Run II:

Summer 2001 - Autumn 2011.

- Collisions at world highest energy until Nov 2009.
 - Energy frontier for \sim 25 years!!
- Two multi-purpose detectors (CDF and D0) for wide range of physics studies.
- Delivered: 12 fb⁻¹.
 - Recorded by CDF: 10 fb⁻¹.
 - Recorded by D0: 10 fb⁻¹.

Collider Detector at Fermilab Multi-purpose detector

- Tracking in 1.4 T magnetic field.
 ➤ Coverage |η|<~1.
- Precision tracking with silicon.
 - \succ 7 layers of silicon detectors.
- EM and Hadron Calorimeters.
 - $\succ \sigma_{\rm E}/{\rm E} \sim 14\%/\sqrt{{\rm E}}$ (EM).
 - ≽ σ_E/E ~ 84%/√E (HAD).
- Muon chambers.

SM Higgs Properties at Tevatron

- Production cross section: O(0.1) fb.
- $m_H < 135 \text{ GeV}/c^2$ (low mass):

0.0

00

W,Z

H

W,Z

- Look for WH/ZH with leptonic vector boson decays.
- m_H >135 GeV/ c^2 (high mass):
 - Easiest to look for H→WW with one or two W decaying to lepton.

Status of CDF Higgs Search

- At CDF in the high Higgs mass region (m_H >135 GeV/ c^2):
 - We had a state of art analysis on $H \rightarrow WW \rightarrow l\nu l\nu$ channel.
 - Search in the high Higgs mass region were dominated by this single analysis.
 - Not many other channels had been explored.

Motivation and Analysis Idea

$H \rightarrow WW \rightarrow Ivjj$

- H→WW is a promising decay mode for SM Higgs search for m_H≥135 GeV.
- The branching ratio of $WW \rightarrow Ivjj$ is 6 times larger than $WW \rightarrow IvIv$.
- It has a huge QCD *W*+*jets* background.
- We can take advantage of the decay kinematics of the Higgs (spin=0) in reducing background.
- Finally compose Likelihood discriminant for S/B separation.
- - Angular distribution between lepton and down type jet.
- - Dijet mass, reconstructed higgs mass,

W Decay Mode *lv* ~ 10 % *ud, cs* ~ 30 %

- Easy to obtain very clean search sample.
 - Backgrounds: dibosons (WW,
 WZ, ZZ) , Z/γ*, tt, Wγ, W+jets
- Dominant high mass search mode at CDF.
- 2 neutrinos in the final state
 - Event reconstruction is very difficult.

- Challenging to control the huge W +jets background.
 - Backgrounds: W+jets,
 dibosons (WW, WZ, ZZ), single
 top, tt, non-W
- Addition of this mode will enhance CDF sensitivity.
- 1 neutrino in the final state
 - mass reconstruction not too hard.

Event Selection

- Using 4.6 fb⁻¹ of data.
- Signal topology: $H \rightarrow WW \rightarrow Ivjj$
- Event Selection:
 - One electron or muon

 $-E_{T}(p_{T}) > 20 \text{ GeV}, |\eta| < 1$

- MET > 20 GeV
- Exact 2 jets

 $- E_T > 20 \text{ GeV}, |\eta| < 2.0$

 $- 60 < M_T(I, MET) < 100 \text{ GeV}$

$p_{z^{v}}$ Reconstruction (1)

- Can't measure $p_{z^{v}}$ in a hadron collider!!
- We solve this equation:

 $m(e,v) = m_W$ (=80.419 GeV).

• Pick up the solution with smaller absolute value $|p_{z^{\nu}}|$.

$p_{z^{\nu}}$ Reconstruction (2)

• Some results of the reconstruction method:

input m_H	imaginary solution	correct fraction	mass resolution(GeV)
150	16%	62%	14.9
170	30%	49%	14.4
200	31%	48%	21.9

Correct : the picked solution is closer than another to MC truth p_z value.

• Fit of Reconstructed Higgs Mass to Gaussian:

Higgs Spin Properties (1)

- Higgs spin=0 results in strong angular correlation between the lepton and up/down-type jet.
- This kinematic properties provide a strong tool to reject background.

Higgs Spin Properties (2)

- We tag the jet closer to lepton in $\Delta \phi$ as down-type jet.
 - Such a jet-parton assignment reconstructs the event correctly 88.4% of the time.

Likelihood Composition

- We compose a likelihood discriminant using six kinematic variables, in order to improve the S/B separation.
- We used *W+2 jet* MC events to model the background template.

Background Estimation (1)

- At CDF, we usually normalize QCD multijet and W+jets backgrounds by fitting the MET distribution to data.
 - QCD multijet shape is modeled with data.
 - W+jets shape is modeled by ALPGEN.

Problem of W+jets bkgd description

• We were having a problem describing the W+2jets events before b-tagging.

Phys.Rev.Lett.106:171801,2011 "Invariant Mass Distribution of Jet Pairs Produced in Association with a W boson in $p\overline{p}$ Collisions at $\sqrt{s} = 1.96$ TeV"

Background Estimation (2)

- MET fit to obtain crude W+jets/QCD normalization.
- Fit the final likelihood discriminant to data with signal and each background fluctuated within stat. and syst. uncertainties.
 - Break down W+jets into W+qq/W+qg/W+gg, and each subprocess is floated independently.
 - # signal events is also fluctuated.
 - The fit returned zero-consistent signal contribution this time.
 - Systematic uncertainties are taken into account in the fit, including JES and Q² of W+jet subprocess.

Input Variables to Likelihood Discriminant

- Data-MC agreement with this background estimation is good for these kinematic variables!
 - Some other unused variables (jet Et, jet η, Mt(I,MET)) still suffer discrepancy, though improved by this procedure.

Likelihood Discriminant

Open red histogram shows 100xsignal for m_{H} =180 GeV/c².

 $H \rightarrow WW^{(*)} \rightarrow l\nu jj$ analysis

Systematics Table

CDF RUNII Preliminary (4.6 f	(b^{-1})							
Systematic Uncertainty (%)	signal	Electroweak	W+qq	W+qg/gq	W+gg	W+0/1p	Z+LF	non-W
Luminosity (CDF)	4.4	4.4					4.4	
Luminosity (Tevatron)	3.8	3.8					3.8	
Trig. Eff., Lepton ID	2	2					2	
Ewk Cross Section		6						
Signal cross section								
Scale inclusive	13.4							
Scale1+Jet	-23							
Scale2+Jet	0							
PDF	7.6							
ISR/FSR	2.7							
Jet Energy Scale	$3 \sim 8$	2						
W+qq Normalization			20					
W+qg/gq Normalization				20	100			
W+gg Normalization				100	20	11.52		
W+0/1 parton Normalization						20		
W+jets JES quark $+1\sigma$			+0.6s	-2.8s	-5.5s	+19.4s		
W+jets JES quark -1σ			-2.0s	+2.1s	+5.8s	-12.6s		
W+jets JES gluon $+1\sigma$			-8.5s	-0.5s	+7.0s	+15.3s		
W+jets JES gluon -1σ			+9.1s	-0.7s	-9.0s	-9.0s		
W+jets Q^2 shape $Q^2 = 2.0$			+0.2s	-6.1s	+0.8s	+22.9s		
W+jets Q^2 shape $Q^2 = 0.5$			+0.7s	+9.7s	-4.1s	-34.3s		
Z+jets Normalization							39.5	
non-W Normalization								40

Higgs Cross Section Limit with $H \rightarrow WW^{(*)} \rightarrow l\nu j j$ Channel ^{4.6 fb⁻¹}

• Excludes $\sigma(gg \rightarrow H) > 9.0 \times \sigma_{SM}$ at 95% C.L for m_H=160 GeV/c².

- Excludes $\sigma(gg \rightarrow H) > 19.9 \times \sigma_{SM}$ at 95% C.L for m_H=200 GeV/c².
- Our student obtained his ph.D with these results.

Summary

- We searched for H → WW → Ivjj in 4.6 fb⁻¹ data obtained in CDF Run II.
 - Our analysis composed a likelihood discriminant from six kinematic variables, in order to improve the sensitivity.
 - We set an upper limit on the production cross section of the Higgs boson:
 - $\sigma(gg \rightarrow H)$ <9.0 × $\sigma_{\rm SM}$ for m_H=160 GeV/c² (95% C.L).
 - $\sigma(gg \rightarrow H)$ <19.9 × $\sigma_{\rm SM}$ for m_H=200 GeV/c² (95% C.L).

backup

 $H \rightarrow WW^{(*)} \rightarrow l\nu j j$ analysis

Likelihood Discriminant

- *H* → *WW*^(*) → *lvjj* analysis composes a likelihood discriminant from 6 kinematic variables in order to improve Signal/Background separation.
 - Signal template is modeled by PYTHIA Higgs sample, and background is modeled by ALPGEN W+2jet sample.
- For an event with a value for *i*th variable as shown in right plot, the likelihood for this single variable is defined as: $L_i = \frac{S_i}{B_i}$
- The likelihood discriminant is defined as: $\log L = \sum_{i} \log L_{i} = \sum_{i} \log \left(\frac{S_{i}}{B_{i}}\right)$ (*i* runs through all the variables considered

in the likelihood composition)

Dijet Mass Spectrum in Ivjj Final State

- Spring 2011 analysis using 4.3 fb⁻¹.
 - e/ μ with Pt>20 GeV , $|\eta|$ <1.
 - MET>25 GeV.
 - 2 jets with Et>30GeV , $|\eta|$ <2.4.
 - Mt(e,MET)>30 GeV.
 - Δφ(MET,j1)>0.4.
 - Pt(jj)>40 GeV.
- An excess is seen.
- 3.2σ deviation from estimated background, after considering the systematic uncertainties on background modeling.

 $H \rightarrow WW^{(*)} \rightarrow l\nu jj$ analysis

Likelihood Templates for CEM

- Signal and background templates for central electron ($|\eta| < 1$).
- For m_H=180 GeV/c².

In the presentation is the CEM one.

 $H \rightarrow WW^{(*)} \rightarrow l\nu jj$ analysis

Likelihood Templates for CMUP

- Signal and background templates for central muon ($|\eta| < 0.6$).
- For $m_H = 180 \text{ GeV/c}^2$.

 $H \to WW^{(*)} \to l\nu j j$ analysis

Likelihood Templates for CMX

• Signal and background templates for intermediate muon $(0.6 < |\eta| < 1.1)$.

Background Summary

Estimated number of background:

CDF RUN II Prelimin	ary (4.6 fb^{-1})				
process	# events				
Ewk	1884 ± 166				
non- W QCD	325 ± 122				
Z + jets	880 ± 345				
W + qq	12912 ± 1453				
W + qg/gq	7712 ± 1045				
W + gg	7788 ± 452				
W + 0/1p	6180 ± 918				
Total Background	37685 ± 2101				
Observed	37670				

Expected signal yield:

CDF RUNII Preliminary (4.6 fb⁻¹)

Higgs Mass (GeV/c ²)	150	160	170	180	190	200
Expected number of events	22.0 ± 6.5	38.6 ± 11.1	36.1 ± 10.3	28.0 ± 8.0	18.9 ± 5.4	14.9 ± 4.3

 $H \rightarrow WW^{(*)} \rightarrow l\nu j j$ analysis

CDF RUNII Preliminary (4.6 fb⁻¹)

Higgs Mass (GeV/c ²)	150	160	170	180	190	200
-2σ	8.17	2.62	3.08	4.08	6.15	7.11
-1σ	17.7	4.93	5.44	7.61	11.2	11.9
median U.L./ σ_{SM}	35.9	8.97	9.36	13.6	19.5	19.9
$+1\sigma$	63.8	15.6	15.9	23.1	32.7	32.5
$+2\sigma$	93.2	27.2	26.6	38.9	53.6	52.9
Obs. U.L./ σ_{SM}	52.5	5.88	5.69	13.0	24.5	23.8