J-PARC K^oTO実験 KLビームラインのコア中性子の測定

特定領域「フレーバー物理の新展開」研究会 2012 2012/07/08 山形大学 佐々木 未来

J-PARC K^oTO実験

- ・ K^oTO実験(<u>KL⁰</u> at <u>TO</u>KAI)
 - ・ CP保存則を破る稀崩壊過程 $K_L \rightarrow \pi^0 \nu \bar{\nu}$ の探索実験
 - 標準理論からの予想分岐比: 3.0×10-11
 - J-PARCの大強度ビームを用いて初観測を目指す
 - ・ 現在得られている分岐比の上限値
 - 2.6×10⁻⁸ (from KEK E391a実験)
 - ・ K^oTO実験目標
 - step1:初観測(2012年から)
 - step2:100イベントの観測(2015年から)

KOTO実験測定原理

 ⁰はすぐに2γに崩壊

- ・崩壊領域で2rのみを検出したとき信号事象とする
- ・2 γ の検出した位置とエネルギーからK_L→ $\pi^0 \nu \overline{\nu}$ イベントを同定

バックグラウンド

(1) K_L崩壊から

- K_L→π⁰νν以外の崩壊モードによるバックグラウンド。
 崩壊した粒子をすべて検出できなかったときに起きる
 - $K^{0}_{L} \rightarrow \pi^{0}\pi^{0}$ (YYYY)
 - $K^{0}_{L} \rightarrow \pi^{0}\pi^{0}\pi^{0}$ ($\gamma\gamma\gamma\gamma\gamma\gamma$)
 - $K^0_L \rightarrow \pi^+ \pi^- \pi^0 (\gamma \gamma \pi^+ \pi^-)$

(2) ハロー中性子から

• ハロー中性子が検出器にあたって、二次粒子が発生する。

KLビームライン

GEANT3シミュレーションによる運動量分布

 $K_L/n \rightarrow ~10^{-2}$ $K_L/\gamma \rightarrow ~10^{-4}$

K^oTO実験スケジュール

- 2009
 - ビームライン建設
 - ビームサーベイ実験
- 2010
 - Cslカロリーメーター建設
 - エンジニアリングラン
 - ビームサーベイ実験
- 2011年,2012年
 - veto検出器建設

- <u>中性子の生成量,運動量分布</u>←本研究

- KLの生成量,運動量分布
- γ線の生成量,運動量分布

- γ線と中性子を識別する必要がある
- ・ 6台のサンドイッチカロリーメータ(各段25層)

Feb 2010

target		Ni		Pt		
γ abs	0cm	7cm	9cm	0cm	7cm	9cm
1kW	\checkmark	\checkmark	-	\checkmark	\checkmark	\checkmark

Oct. 2010

target	Pt					
γ abs	0cm	7cm	9cm			
100W	\checkmark	\checkmark	\checkmark			
1kW	\checkmark	\checkmark	\checkmark			
ЗkW	-	\checkmark	-			

*100W, 1kW, 3kW→-次陽子ビームの強度

アクシデンタルイベントの除去

11 測定条件:γ absorber 7cm, target Pt

アクシデンタルイベントの除去

on time

アクシデンタル → 2つ以上の中性子が同時に入射

中性子のエネルギー損失

一次ビーム強度依存性

3kWは低エネルギー側が補正しきれていない

シミュレーションとの比較

GEANT4による検出器の応答

シミュレーションは測定結果をよく再現している

- ・ J-PARC KLビームラインでビーム中性子の測定を行った
- 測定には6台のサンドウィッチカロリーメータを使用した
- 測定した中性子強度は一次ビーム強度依存性による減少が
 見られたが計数率の補正、アクシデンタルイベントの補正
 を行う事で減少を回復することができた
- シミュレーションは測定結果をよく再現していたが、
 低エネルギー側などさらに理解を深める必要がある