

A02班 Belle実験での Bとtau物理 居波(名古屋大)

ロ小林益川理論の検証

- □ b/c/τ粒子の稀崩壊反応による新物理探索
 - **□ B中間子稀崩壊(B→X_sγ、K^(*)11、τνなど)**
 - □ D中間子混合

□ タウLFV崩壊探索
 □ 新しいハドロン共鳴

A02班 第3世代のb, タウを通した新物理探索

■ スーパー B ファクトリー、Belle-II実験 ■ 測定器開発

KEKB/Belle

□ KEKB加速器

- 電子(8GeV)陽電子(3.5GeV)
 σ(bb)~1.1nb,σ(ττ)~0.9nb
- Peak luminosity:
 - 2.1x10³⁴/cm²/s 世界最高記録

□ Belle測定器

- Good vertex
- Good PID
 - □ Kaon ID
 - □ Lepton ID
 - Eff.:90%
 - □ Fake rate: 0.1~1%

Luminosity history

1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1

B physics analysis

B→τν 2006, 2008, 2012 B→η'K_s 2006 B→K_s $\pi^{0}\pi^{0}$ 2007 B→πIν, ρIν 2007 B→D*τν 2009

 ■ 新物理モデル(>2 Higgs doublets)では、tree-level の荷電ヒッグス交換で新しいフレーバ変換が起こり得る
 ■ H⁺ couplingはフェルミオン質量に比例
 → B中間子がタウへ崩壊する反応を調査

 $\mathcal{H}^{\mathsf{eff}} = 2\sqrt{2} \, G_F \, V_{qb} \big\{ (\overline{b}_L \, \gamma^\mu \, q_L) \, (\overline{\nu}_L \, \gamma_\mu \, \tau_L) - \frac{m_b m_\tau}{m_B^2} g_S \, (\overline{b}_R \, q_L) \, (\overline{\nu}_L \, \tau_R) \big\};$

□ $B \rightarrow \tau v$ transition (MSSM)

Within SM

$$\mathcal{B}(B^{-} \to \ell^{-}\bar{\nu}) = \frac{G_{F}^{2}m_{B}m_{\ell}^{2}}{8\pi} \left(1 - \frac{m_{\ell}^{2}}{m_{B}^{2}}\right)^{2} f_{B}^{2} |V_{ub}|^{2} \tau_{B}$$

$$\square \text{ From } f_{B}, |V_{ub}|$$

$$f_{B} = 190 \pm 13 \text{ MeV} \quad \overset{\text{HPQCD,}}{_{0902.1815v2}}$$

$$|V_{ub}| = (4.32 \pm 0.16 \pm 0.29) \times 10^{-3} \quad \overset{\text{HFAG}}{_{\text{ICHEP08}}} \implies Br_{SM}(\tau\nu) = (1.20 \pm 0.25) \times 10^{-4}$$

□ With charged Higgs

$$Br = Br_{SM} \times r_H, \quad r_H = |1 - g_s|^2$$

Effective scalar coupling; $g_S = \frac{M_H^2 \tan^2 \beta}{M_H^2} \frac{1}{(1 + \varepsilon_0 \tan \beta)(1 - \varepsilon_\tau \tan \beta)}$

Analysis procedure

□ 657M BB

$$\mathcal{B} = [1.54^{+0.38}_{-0.37}(\text{stat})^{+0.29}_{-0.31}(\text{syst})] \times 10^{-4}$$

3.6σ evidence PRD82, 071101(R), (2010)

Decay mode	Signal yield	ε , 10^{-4}	$\mathcal{B}, 10^{-4}$
$\tau^- \to e^- \bar{\nu}_e \nu_\tau$	73^{+23}_{-22}	5.9	$1.90^{+0.59+0.33}_{-0.57-0.35}$
$\tau^- \rightarrow \mu^- \bar{\nu}_\mu \nu_\tau$	12^{+18}_{-17}	3.7	$0.50^{+0.76+0.18}_{-0.72-0.21}$
$\tau^- \rightarrow \pi^- \nu_{\tau}$	55^{+21}_{-20}	4.7	$1.80^{+0.69+0.36}_{-0.66-0.37}$
Combined	143^{+36}_{-35}	14.3	$1.54\substack{+0.38+0.29\\-0.37-0.31}$

$B \rightarrow \tau v$ with hadronic tag

Result of $B(B \rightarrow \tau v)$

$B \rightarrow D(*)_{\tau \nu}$

- 🗖 657M BB
- Hadronic tag
- Signal extraction from simultaneous fit with 2D (E_{ECL}-M²_{miss}) parameters

D*TV $B(D^{*0}\tau^{-}\bar{\nu}_{\tau}) = B(D^{*0}\tau^{-}\bar{\nu}_{\tau}) = B(D^{*0}\tau^{-}\bar{\nu}_{\tau}) = B(D^{*0}\tau^{-}\bar{\nu}_{\tau}) = B(D^{*0}\tau^{-}\bar{\nu}_{\tau}) = B(D^{*0}\tau^{-}\bar{\nu}_{\tau}) = B(D^{*0}\tau^{-}\bar{\nu}_{\tau}) = B(D^{0}\tau^{-}\bar{\nu}_{\tau}) = B(D^{0}\tau^{-}\bar{\nu}) = B(D^{0}\tau^{-}\bar{\nu}) =$

2

 $B^{\pm} \rightarrow D^{(*)} \tau v$

$$\begin{split} &\mathcal{B}(D^{*0}\tau^{-}\bar{\nu}_{\tau}) = [2.12^{+0.28}_{-0.27}(\text{stat}) \pm 0.29(\text{syst})]\% \\ &\mathcal{B}(D^{*0}\tau^{-}\bar{\nu}_{\tau}) = [3.04^{+0.69}_{-0.66}(\text{stat})^{+0.40}_{-0.47}(\text{syst}) \pm 0.22(\text{norm})]\% \\ &\mathcal{B}(D^{*+}\tau^{-}\bar{\nu}_{\tau}) = [2.02^{+0.40}_{-0.37}(\text{stat}) \pm 0.37(\text{syst})]\% \\ &\mathcal{B}(D^{*+}\tau^{-}\bar{\nu}_{\tau}) = [2.56^{+0.75}_{-0.66}(\text{stat})^{+0.31}_{-0.22}(\text{syst}) \pm 0.10(\text{norm})]\% \\ &\mathcal{B}(D^{0}\tau^{-}\bar{\nu}_{\tau}) = [0.77 \pm 0.22(\text{stat}) \pm 0.12(\text{syst})]\% \\ &\mathcal{B}(D^{0}\tau^{-}\bar{\nu}_{\tau}) = [1.51^{+0.41}_{-0.39}(\text{stat})^{+0.24}_{-0.19}(\text{syst}) \pm 0.15(\text{norm})]\% \\ &\mathcal{B}(D^{+}\tau^{-}\bar{\nu}_{\tau}) = [1.01^{+0.46}_{-0.41}(\text{stat})^{+0.13}_{-0.11}(\text{syst}) \pm 0.10(\text{norm})]\% \\ &\mathcal{B}(D^{+}\tau^{-}\bar{\nu}_{\tau}) = [1.01^{+0.46}_{-0.41}(\text{stat})^{+0.13}_{-0.11}(\text{syst}) \pm 0.10(\text{norm})]\% \end{split}$$

Time dependent CPV

\square B^omixing $\rightarrow \phi_1$

$$A_{CP} = \frac{\mathcal{P}(\overline{B}^{0}(t) \to f_{CP}) - \mathcal{P}(B^{0}(t) \to f_{CP})}{\mathcal{P}(\overline{B}^{0}(t) \to f_{CP}) + \mathcal{P}(B^{0}(t) \to f_{CP})}$$

= $S \sin \Delta m_{d} t + A \cos \Delta m_{d} t$

Diagram for B⁰-B⁰ mixing including

CKM complex phase.

Measurement of tCPV

B⁰→K_Sπ⁰π⁰ tCPV 結果

Tau physics analysis

Tau LFV search $\tau \rightarrow \ell \ell \ell$ $\tau \rightarrow \ell K_s$ $\tau \rightarrow \ell V^0 (\rightarrow hh')$ $\tau \rightarrow \ell P^0 (\rightarrow \gamma \gamma)$ $\tau \rightarrow \ell hh'$ $\tau \rightarrow \ell \gamma$

•
$$e^+e^- \rightarrow \tau^+\tau^-$$
 Br~85%
 $\downarrow \rightarrow 1 \text{ prong + missing}$
(tag side)
 $\downarrow \mu\mu\mu$ (signal side)
Fully reconstructed

Signal extraction:
$$m_{\mu\mu\mu} - \Delta E$$
 plane
 $m_{\mu\mu\mu} = \sqrt{(E_{\mu\mu\mu}^2 - p_{\mu\mu\mu}^2)}$
 $\Delta E = E_{\mu\mu\mu}^{CM} - E_{harm}^{CM}$

Estimate number of BG in the signal region using sideband data and MC

Tune selection criteria mode by mode

$\tau \rightarrow 3$ leptons (µµµ, eµµ,...)

- Data: 782fb⁻¹
- No event is found in the signal region.
- Almost BG free Because of good lepton ID
- □ Br<(1.5-2.7)x10⁻⁸ at 90% CL.

Phys.Lett.B 687,139 (2010)

Search for *l* hh'

Missing momentum can help to reject this kind of BGs since signal has v only on tag side.

Result for *l* hh'

In the signal region

1event : in $\mu^+\pi^-\pi^-$ and $\mu^-\pi^+K^$ no events: in other modes \Rightarrow no significant excess

•	Mode	ε (%)	$N_{\rm BG}$	$\sigma_{\rm syst}$ (%)	$N_{\rm obs}$	s_{90}	$\mathcal{B}~(10^{-8})$
1.8	$ au^- ightarrow \mu^- \pi^+ \pi^-$	5.83	0.63 ± 0.23	5.3	0	1.87	2.1
n _{µm} (Gevic)	$ au^- ightarrow \mu^+ \pi^- \pi^-$	6.55	0.33 ± 0.16	5.3	1	4.02	3.9
µ ⁻ π ⁺ K ⁻	$\tau^- \to e^- \pi^+ \pi^-$	5.45	0.55 ± 0.23	5.4	0	1.94	2.3
	$\tau^- \to e^+ \pi^- \pi^-$	6.56	0.37 ± 0.18	5.4	0	2.10	2.0
2	$\tau^- \to \mu^- K^+ K^-$	2.85	0.51 ± 0.18	5.9	0	1.97	4.4
	$\tau^- \to \mu^+ K^- K^-$	2.98	0.25 ± 0.13	5.9	0	2.21	4.7
: •	$\tau^- \to e^- K^+ K^-$	4.29	0.17 ± 0.10	6.0	0	2.28	3.4
1.8	$\tau^- \to e^+ K^- K^-$	4.64	0.06 ± 0.06	6.0	0	2.38	3.3
l _{µπK} (GeV/c²)	$\tau^- \to \mu^- \pi^+ K^-$	2.72	0.72 ± 0.27	5.6	1	3.65	8.6
	$\tau^- \to e^- \pi^+ K^-$	3.97	0.18 ± 0.13	5.7	0	2.27	3.7
<u>^ı.</u>	$\tau^- \to \mu^- K^+ \pi^-$	2.62	0.64 ± 0.23	5.6	0	1.86	4.5
-L.	$\tau^- \to e^- K^+ \pi^-$	4.07	0.55 ± 0.31	5.7	0	1.97	3.1
L O -8	$\tau^- \to \mu^+ K^- \pi^-$	2.55	0.56 ± 0.21	5.6	0	1.93	4.8
PLB)	$\tau^- \to e^+ K^- \pi^-$	4.00	0.46 ± 0.21	5.7	0	2.02	3.2

Set upper limits at 90%CL: Br(τ→ℓhh')< (2.0-8.6)x10⁻⁸ arXiv:1206.5595 (to PLB)

□ データ; 535fb⁻¹

- バックグラウンド; e⁺e⁻ → τ⁺τ⁻γ
- 事象選別の最適化 → 高いS/N
- Likelihood fitによる信号抽出

Search results

Under studying with full data sample

新物理モデルのパラメータ空間を制限しつつある tanβが大きくSUSY/Higgs質量が小さい部分は探索した

	reference	τ→μγ	τ→μμμ	
SM+ v mixing	PRD45(1980)1908, EPJ C8(1999)513	Undetectable		
SM + heavy Maj v _R	PRD 66(2002)034008	10 ⁻⁹	10 ⁻¹⁰	
Non-universal Z'	PLB 547(2002)252	10 ⁻⁹	10 ⁻⁸	
SUSY SO(10)	PRD 68(2003)033012	10 ⁻⁸	10 ⁻¹⁰	
mSUGRA+seesaw	PRD 66(2002)115013	10 ⁻⁷	10 ⁻⁹	
SUSY Higgs	PLB 566(2003)217	10 ⁻¹⁰	10 ⁻⁷	

Future prospects at Belle-II

測定器開発

粒子識別装置の開発

- Ring Imaging Cherenkov detectors
 - 2~5 times less fake rate for K/p separation

TOPカウンター開発

□ MCP-PMT開発

- 光電面劣化の原因を突き止め、内部構造変更により寿命を向上
- □ 試作機開発
 - 焦点鏡による分解能の向上
 をビームテストで確認

□ 第3世代のb, タウフレーバを通じた新物理探索

Bファクトリーによる世界最多のデータ

□約20億個のb, タウ崩壊現象

■ B中間子崩壊

- □ B→τv、D*τvの崩壊分岐比測定
 - □世界に先駆けてB→τv崩壊事象を確認
 - □ 荷電ヒッグスのパラメータ領域に制限
- □ b→sクォーク遷移でのCP非保存測定など

□ タウ粒子崩壊

- □ LFV崩壊探索を46モードで探索。世界最高感度0(10⁻⁸)を達成
- □ 次世代測定器開発
 - □ 光検出器の改良:10倍以上の寿命向上
 - □ 試作機による性能評価: 焦点鏡による性能向上を確認

スーパーBファクトリー、Belle-II実験へ

- 世界最高輝度の増強+測定器精度の向上
 - → 検出感度のフロンティアを切り開く

Charged Higgs effect in $B \rightarrow \tau v$

- Charged Higgs exchange interferes with the helicity suppressed W-exchange.
 - ➔ Br becomes larger or smaller

Signal and Background

Search for $\ell V^0(=\rho^0, K^{*0}, \omega, \phi)$

- Search with 854fb⁻¹ data sample
 - Select one lepton and two hadrons
 - <u>Require invariant mass to be a vector meson mass</u>
 - \rightarrow The requirement reduces background rather easily.
- Possible background
 - For $\ell = \mu$, hadronic tau decay and qq with miss μ -ID
 - For ℓ=e, 2photon process could be large BG.
 - It turns out that not only 2photon process but also ee+X process become large background. → Reduced using missing-momentum direction

eK*, eK*, ep modes

Other BG for eK*, eK* and ep \Rightarrow Event with γ conversion

For example, eK*mode $\tau^{-} \rightarrow \pi^{-} \pi^{0} \nu$ with γ conversion from π^{0}

Finally, higher or similar efficiency is kept (around 1.2x in average), while similar background level is achieved.

Result for $\ell V^0(=\rho^0, K^{*0}, \omega, \phi)$

After event selection

- 1 event $\mu\phi$, μK^{*0} , $\mu \overline{K}^{*0}$
- 0 events others

No signal compared to expected BG

Expected number of background (0.1-1.5) events

Br(τ→ℓV⁰) <	(1.2-8.4))x10 ⁻⁸
----------	-----	-----------	--------------------

τ-→	Eff.	N _{BG} exp	N _{obs.}	UL x10 ⁻ 8	τ-→	Eff.	N _{BG} exp	N _{obs.}	UL x10 ⁻⁸
$e^- \rho^0$	7.6%	0.29 ± 0.15	0	1.8	e^-K^{*0}	4.4%	0.39 ± 0.14	0	3.2
$\mu^- ho^0$	7.1%	1.48 ± 0.35	0	1.2	μ⁻Ҟ [*] 0	3.4%	0.53 ± 0.20	1	7.2
e⁻¢	4.2%	0.47 ± 0.19	0	3.1	$e^{-}\overline{K}^{*0}$	4.4%	0.08 ± 0.08	0	3.4
μ-φ	3.2%	0.06 ± 0.06	1	8.4	$\mu^- K^{*0}$	3.6%	0.45 ± 0.17	1	7.0
e ⁻ ω	2.9%	0.30 ± 0.14	0	4.8	μ-ω	2phys.	Let7.B = 599,1251	I (2 0 11)	4.7