T2K前置検出器での測定

池田一得 2012年7月7日

特定領域「フレーバー物理の新展開」研究会 2012

もくじ

- 実験概要
- 前置検出器の紹介
- 振動解析へのインプット
 フラックスの不定性 ← 鈴木君の話
 ニュートリノ断面積の不定性
- ・その他の測定の現状
 - ービームve
 - ΝCπ0
 - 断面積測定

前置検出器

- ND280(多国籍軍)
 5つの検出器
 磁場の中にある
 - Off axis (SK方向) を向いている。
- ・ INGRID (主に京大) - 検出器の中心は On axis
 - ビーム方向の測定

INGRID(鉄とシンチのサンドイッチ)

- 全期間にわたって以下を測定
 ニュートリノイベントレート(日毎)
 ニュートリノビーム中心(月毎)
- イベントレートは1%以内
 ビーム中心は1mrad以内で安定

振動解析方法(鈴木スライドより)

振動解析方法(鈴木スライドより)

Charged Current Quasi Elastic (CCQE) Charged Current 1 π production (CC1π) Neutral Current 1 π^0 production (NC1 π^0)

Charged Current Quasi Elastic (CCQE) Charged Current 1 π production (CC1π) Neutral Current 1 π^0 production (NC1 π^0)

Charged Current Quasi Elastic (CCQE)

Charged Current 1π production (CC1π)

Neutral Current $1 \pi^0$ production $(NC1\pi^{0})$

Charged Current Quasi Elastic (CCQE) Charged Current 1 π production (CC1π) Neutral Current 1 π^0 production (NC1 π^0)

 $M_A^{QE} 1.2 \text{GeV}$ $M_A^{RES} 1.2 \text{GeV}$ $p_F 200 \text{MeV/c}$

Nuclear Potential:
 Fermi Gas Model or
 Spectral function

π

Charged Current Quasi Elastic (CCQE)

Charged Current 1π production (CC1π)

Neutral Current $1 \pi^0$ production $(NC1\pi^0)$

Charged Current Quasi Elastic (CCQE)

Charged Current 1π production (CC1π)

Neutral Current $1 \pi^0$ production $(NC1\pi^0)$

ニュートリノ断面積起源の不定性

振動解析方法(鈴木スライドより)

• 不定性は数%(大きいところでも~10%)

ND280データによる制限

その他の測定

- •ビームve
- NCπ⁰

•ニュートリノ断面積測定

PODでのNCπ⁰測定

SKでのve事象の主なBGであるNCπ⁰の測定

MC予想と矛盾のない結果

CC Inclusive 断面積測定

 $\langle \sigma_{\rm CC} \rangle_{\phi} = (6.93 \pm 0.13(stat) \pm 0.85(syst)) \times 10^{-39} \frac{\rm cm^2}{\rm nucleons}$

まとめ

・ND280のνμ測定情報を用いることで、SKにお けるニュートリノスペクトル、角度分布の不定性 を小さくできることができた。

•v_µ以外の測定結果もそろい始めている。

- まだv_µの測定情報しか考慮していないので
 他の測定情報も振動解析に入れる。
- いろいろな反応の断面積測定精度よく行う。

Fitted Neutrino Interaction Model Parameters						
Parameter	Prior Value	Fitted Value				
M _A ^{QE} (GeV)	1.21 ± 0.45	1.19 ± 0.19				
M _A ^{RES} (GeV)	1.162 ± 0.110	1.137 ± 0.095				
CCQE Norm. < 1.5 GeV	1.0 ± 0.11	0.941 ± 0.087				
CCQE Norm. 1.5-3.5 GeV	1.0 ± 0.30	0.92 ± 0.23				
CCQE Norm. > 3.5 GeV	1.0 ± 0.30	1.18 ± 0.25				
CC1 π Norm. < 2.5 GeV	1.63 ± 0.43	1.67 ± 0.28				
$CC1\pi$ Norm. > 2.5 GeV	1.0 ± 0.40	1.10 ± 0.30				
NC1 π^0 Norm.	1.19 ± 0.43	1.22 ± 0.40				
Spectral Function	0 (off) ± 1 (on)	0.04 ± 0.21				
p _F (MeV/c)	217 ± 30	224 ± 24				
CC Other Shape (GeV)	0.0 ± 0.4	-0.05 ± 0.35				

model parameters	Before FIT	After FIT
CCQE M _A [GeV]	1.21 ± 0.45	1.19±0.19
CC1π(resonance) M _A [GeV]	1.16 ± 0.11	1.14 ± 0.10
Fermi momentum surface P _F [MeV]	217 ± 30	224.6 ± 23.5
Spectral Function	0[off] - 1[on]	0.04 ± 0.21
CC-other cross section shape	0.0 ± 0.4	-0.05 ± 0.35
CCQE E-dependence	$1.0 \pm 0.11, 1.0 \pm 0.11, 1.0 \pm 0.11$	0.94±0.09 , 0.92±0.23, 1.18±0.25
CC1π(resonance) E-dep.	$1.63 \pm 0.43, 1.0 \pm 0.4$	1.67±0.28 , 1.10±0.30
NC- π^0 cross sections	1.19 ± 0.43	1.22 ± 0.40
CC-coherent π cross section	1-1	from other experiments
NC-coherent π cross section	1.0 ± 0.3	from other experiments
NC other cross section	1.0 ± 0.3	from other experiments
W shape in resonance model [MeV]	87.7±45.3	from other experiments
π-less Δ decay	0.0±0.2	from other experiments
CC-1 π ,rNC-1 π^0 energy shape	0.0±0.5	from other experiments 29

Parameter	E_{ν} Range	Nominal	Error	CCQE	CCnQE	Total	Class/Cat.
M_A^{QE}	all	$1.21 \text{ GeV}/c^2$	0.45	15.5%	5.2%	10.5%	B/1
CCQE E1	$0 < E_{\nu} < 1.5$	1.0	0.11	6.7%	1.5%	4.2%	A/1
CCQE E2	$1.5 < E_{\nu} < 3.5$	1.0	0.30	6.7%	1.5%	4.2%	A/3
CCQE E3	$E_{\nu} > 3.5$	1.0	0.30	6.7%	1.5%	4.2%	A/3
p_F ¹² C	all	$217~{\rm MeV}/c$	30	1.6%	0.2%	0.8%	$\mathrm{B}/2$
SF ^{12}C	all	0 (off)	1 (on)	0.9%	0.8%	0.6%	$\mathrm{B}/2$
M_A^{RES}	all	$1.16 \text{ GeV}/c^2$	0.11	3.7%	6.0%	4.8%	B/1
$CC1\pi$ E1	$0 < E_{\nu} < 2.5$	1.63	0.43	3.7%	6.0%	4.8%	A/1
$NC1\pi^0$	all	1.19	0.43	3.7%	6.0%	4.8%	A/1
$CC1\pi$ E2	$E_{\nu} > 2.5$	1.0	0.40	1.9%	4.8%	3.2%	A/3
CC Coherent	all	1.0	1.0	1.7%	3.9%	2.7%	C/3
CC Oth shp	all	0.0	0.40	0.7%	3.5%	2.0%	B/3
NC Other	all	1.0	0.30	0.5%	1.6%	1.0%	C/3
W Shape	all	$87.7 \text{ MeV}/c^2$	45.3	0.6%	2.2%	0.9%	C/3
FSI	all	Section 7	7.2	0.5%	0.7%	0.2%	C/3
Total				17.0%	10.1%	12.8%	

FSI@ND280

ND280 Detector covariance

大きいところでも~10% (磁場の不定性によるTPC運動量の不定性、外からのBG)

Correlation Matrix

ND280フィット

POD ve

Systematic Uncertainty	Signal (%)	Background (%)
EM Scale	7	16
Fiducial Volume	2	2
Muon Rejection	0	4
MC Statistics	3	4
Mass Uncertainty	1	1
Proton Reconstruction	3	6
Final State Interactions	1	12
Flux & Cross-section Param	eters 9	5
Total	12	22

POD NCπ0

Source	Error	Contribution to Ratio (%)
Mass Uncertainty	0.8%	0.8%
Detector Alignment	$2.5 \mathrm{mm}$	< 0.1%
Fiducial Volume	7%	7%
Relative Flux Uncertainty	15%	15(6.5)%
Reconstruction Uncertainties	4.7%	4.7%
Energy Resolution	10%	0.5%
Shape Uncertainty	13.7%	13.7%
Total	8=1	22(17)%

FluxをCCinclusive でnormalize

断面積不定性

Table 17: Summary of the systematic errors. The error on the number of target (0.67 %) have been added in quadrature to the total systematic error. ϕ , det., FSI label the systematic uncertainty of the beam flux, detector response and FSI changed systematically following the covariance matrix showed in Fig. 9,11,10,12, x-s design the influence of the change of all the cross-section modeling parameter and channel rate.

$P_{\mu} (\text{GeV/c})$	$\cos \theta_{\mu}$	algo. (%)	ϕ (%)	x-s (%)	det. (%)	FSI (%)	syst (%)	stat (%)	tot (%)
[0.0, 0.4]	[-1, 0]	0.03	11.92	15.45	2.97	0.96	19.78	2.86	19.98
Link and	[0, 0.84]	0.10	12.82	5.44	3.70	1.23	14.49	5.03	15.34
nignest	[0.84, 0.9]	0.06	13.17	10.25	2.67	1.35	16.98	9.37	19.39
contribution	[0.9, 0.94]	0.06	13.95	10.02	4.73	3.32	18.14	11.82	21.65
	[0.94, 1]	0.24	14.00	11.09	4.49	2.57	18.61	13.78	23.16
[0.4, 0.5]	[-1, 0]	0.98	12.05	48.06	2.79	0.47	49.64	3.52	49.77
	[0, 0.84]	0.13	11.39	5.68	1.31	0.34	12.83	4.27	13.52
	[0.84, 0.9]	0.18	11.41	4.96	0.94	0.38	12.51	8.55	15.15
	[0.9, 0.94]	0.90	11.71	4.90	1.19	0.44	12.82	9.97	16.24
	[0.94, 1]	0.34	13.12	6.25	2.06	0.83	14.73	11.42	18.64
[0.5, 0.7]	[-1, 0]	7.15	11.22	47.37	1.97	0.63	49.25	30.30	57.83
	[0, 0.84]	0.10	11.12	3.76	1.10	0.37	11.83	3.86	12.44
	[0.84, 0.9]	0.10	10.87	3.25	0.79	0.29	11.41	6.18	12.98
	[0.9, 0.94]	0.55	11.06	5.62	0.76	0.32	12.48	7.18	14.39
	[0.94, 1]	0.22	11.71	9.15	0.98	0.24	14.92	7.67	16.77
[0.7, 0.9]	[-1, 0]	3.18	13.48	101.82	1.59	0.48	102.77	28.89	106.75
	[0, 0.84]	0.19	11.35	2.93	1.14	0.41	11.81	5.23	12.92
	[0.84, 0.9]	0.23	10.93	5.84	0.83	0.19	12.45	6.85	14.21
	[0.9, 0.94]	0.04	10.75	10.59	0.95	0.40	15.15	7.57	16.94
	[0.94, 1]	0.03	11.01	15.59	0.79	0.30	19.13	6.90	20.34
[0.9, 30.0]	[-1, 0]	-	-	-	-	-	-	-	-
	[0, 0.84]	0.20	11.83	4.97	1.46	0.69	12.97	5.88	14.24
	[0.84, 0.9]	0.07	11.30	2.31	0.89	0.26	11.60	6.05	13.09
	[0.9, 0.94]	0.05	11.09	2.08	0.72	0.36	11.34	5.33	12.53
	[0.94, 1]	0.09	10.90	2.25	0.75	0.26	11.19	2.97	11.58

highest contribution

Tracker ve

Syst. source	$\Delta(f(u_e))$
Detector systematic errors	0.061
Flux and cross-section	0.088
Total	0.107

・ Det.のメインはTPCのPID

The predicted number of events and systematic uncertainties

arbitrary unit

÷

The predicted # of events w/ 3.01 x 10²⁰ p.o.t.

Event category	$\sin^2 2\theta_{13} = 0.0$	$\sin^2 2\theta_{13} = 0.1$
Total	$3.22{\pm}0.43$	$10.71{\pm}1.10$
ν_e signal	0.18	7.79
ν_e background	1.67	1.56
$ u_{\mu} \text{ background}$ (mainly N	ICπ ⁰) 1.21	1.21
$\overline{\nu}_{\mu} + \overline{\nu}_{e}$ background	0.16	0.16

Systematic uncertainties

Error source	$\sin^2 2\theta_{13} = 0$	$\sin^2 2\theta_{13} = 0.1$
Beam flux+ ν int.	87%	57%
in T2K fit	0.1 70	0.1 /0 5
ν int. (from other exp.)	$5.9 \ \%$	$7.5 \ \%$
Final state interaction	3.1~%	2.4~%
Far detector	7.1~%	$3.1 \ \%$
Total	13.4~%	10.3~%
(T2K 2011 results:	~23%	~18%)
1		

the predicted # of event distribution 4000 w/o ND280 fit w/ ND280 fit 3000 $\sin^2 2\theta_{13} = 0$ 2000 $\sin^2 28... = 1.0$ = 2.4×10⁻⁹ eV² ormal hierarchy) 1000 3.010 × 10²⁰ p.o.t. 2000F $\sin^2 2\theta_{13} = 0.1$ w/o ND280 fit w/ ND280 fit sin²28., = 1.0 . 1500 $\Delta m_{32}^2 = 2.4 \times 10^3 \text{ eV}^2$ emal hierarchy) ā__ = 0 1000 3.010 × 10³⁰ p.o.t. 500-10 5 15 20 Expected # of signal+background events

Uncertainties are reduced after the flux & v int. xsec fit

big improvement from 2011 results

PID in TPC and Ecal

