ヒッグスボソンみたいな 粒子の発見

理学研究科 山中卓研究室 花垣和則

Motivation of Higgs

Physics

素粒子の質量の起源

◆もしクォークや電子の質量がなかったら…

▶ 急速な $p \rightarrow n e^+ \nu$:陽子が不安定

質量は、宇宙が現在の姿に なるために不可欠

Lagrangian in the GWS Model

 $\mathcal{L} = \bar{\nu}(i \not\partial - m_{\nu})\nu + \bar{l}(i \not\partial - m_{l})l + \frac{1}{2}(\partial_{\mu}\chi\partial^{\mu}\chi - \mu^{2}\chi^{2})$

 $- \frac{1}{4}F^{i}_{\mu\nu}F^{i\mu\nu} + m^{2}_{W}W^{*}_{+\mu}W^{\mu}_{+} - \frac{1}{4}G_{\mu\nu}G^{\mu\nu} + \frac{m^{2}_{Z}}{2}Z_{\mu}Z^{\mu}$

+ $eA_{\mu}(\bar{l}\gamma^{\mu}l) - \frac{g}{\sqrt{2}}[W^{\mu}_{+}(\bar{\nu}\gamma^{\mu}P_{L}l) + c.c.]$

 $\bar{g}Z_{\mu}[\bar{\nu}\gamma^{\mu}(s_{\nu L}P_L + s_{\nu R}P_R)\nu + \bar{l}\gamma^{\mu}(s_{l_L}P_L + s_{l_R}P_R)l]$

+ $\frac{2v\chi + \chi^2}{\Lambda} (g^2 W^*_{+\mu} W^{\mu}_{+} + \frac{\bar{g}^2}{2} Z_{\mu} Z^{\mu})$ $-\frac{m_l}{m}\chi(\bar{l}l) - \frac{m_\nu}{m}\chi(\bar{\nu}\nu)$

Lagrangian in the GWS Model

 $\mathcal{L} = \bar{\nu}(i \not\partial - m_{\nu})\nu + \bar{l}(i \not\partial - m_{l})l + \frac{1}{2}(\partial_{\mu}\chi\partial^{\mu}\chi - \mu^{2}\chi^{2})$

 $- \frac{1}{4}F^{i}_{\mu\nu}F^{i\mu\nu} + m^{2}_{W}W^{*}_{+\mu}W^{\mu}_{+} - \frac{1}{4}G_{\mu\nu}G^{\mu\nu} + \frac{m^{2}_{Z}}{2}Z_{\mu}Z^{\mu}$ わかった気になるのは早い

 $- \bar{g}Z_{\mu}[\bar{\nu}\gamma^{\mu}(s_{\nu L}P_L + s_{\nu R}P_R)\nu + \bar{l}\gamma^{\mu}(s_{l_L}P_L + s_{l_R}P_R)l]$

+ $\frac{2v\chi + \chi^2}{\Lambda} (g^2 W^*_{+\mu} W^{\mu}_{+} + \frac{\bar{g}^2}{2} Z_{\mu} Z^{\mu})$ $- \frac{m_l}{m}\chi(\bar{l}l) - \frac{m_\nu}{m}\chi(\bar{\nu}\nu)$

ヒッグスの不思議さ

◆ ゲージ対称性より ▶ ゲージボソンは質量ゼロ ▶ フェルミオンは質量ゼロでなくてもよい ⇒ なぜ同じメカニズム?

◆ 湯川結合の導入

全てのフェルミオンに固有の値

⇒ ヒッグスはなぜ相手がわかるのか?

◆ スカラー粒子?

◆ボソン???

宇宙のエネルギー密度

宇宙のエネルギー密度

 $\mathcal{L} = \bar{\nu}(i \not\partial - m_{\nu})\nu + \bar{l}(i \not\partial - m_{l})l + \frac{1}{2}(\partial_{\mu}\chi\partial^{\mu}\chi - \mu^{2}\chi^{2})$ $- \frac{1}{4}F^{i}_{\mu\nu}F^{i\mu\nu} + m^{2}_{W}W^{*}_{+\mu}W^{\mu}_{+} - \frac{1}{4}G_{\mu\nu}G^{\mu\nu} + \frac{m^{2}_{Z}}{2}Z_{\mu}Z^{\mu}$ + $eA_{\mu}(\bar{l}\gamma^{\mu}l) - \frac{g}{\sqrt{2}}[W^{\mu}_{+}(\bar{\nu}\gamma^{\mu}P_{L}l) + c.c.]$ $\bar{g}Z_{\mu}[\bar{\nu}\gamma^{\mu}(s_{\nu L}P_L + s_{\nu R}P_R)\nu + \bar{l}\gamma^{\mu}(s_{l_L}P_L + s_{l_R}P_R)l]$ + $\frac{2v\chi + \chi^2}{\Lambda} (g^2 W^*_{+\mu} W^{\mu}_{+} + \frac{\bar{g}^2}{2} Z_{\mu} Z^{\mu})$ $- \frac{m_l}{v}\chi(\bar{l}l) - \frac{m_{\nu}}{v}\chi(\bar{\nu}\nu)$

名前をつけるとわかった気になってしまう?

LHC / ATLAS 実験

加速器

加速器

加速器

ATLAS 検出器

What Happens in Hadron Collisions

- Underlying Event
 - Initial/Final state radiation
 - Beam remnant
- Multiple Interactions
 - #events/unit time = σ × L
 #events/bunch = σ × L x bunch space
 = ~30 @6E33 50ns bunch space

Run Number: 189280, Event Number: 1705325 Date: 2011-09-14 02:47:14 CEST

M

**

What Happens in Hadron Collisions

- Underlying Ev
 - Initial/Final
 - Beam remn
- Multiple Inter

Low S/N

▶ #events/un [€] #events/bu

 W^+W^-

M(μμ) [GeV] 1500

探索の歴史

ヒッグスの崩壊

LHCでのヒッグスの生成

LHCでのヒッグスの生成

信号の手がかり

◆ 背景事象の多くはクォーク/グルーオン

- (=ジェット)生成
- ⇒ ジェット以外の何かが必要
 - 孤立レプトン or 運動学的な特徴

Multiplied by a factor "whether it's easy to reject BG" (=acceptance)

探索に使えるモード

非常に軽いとき(<125GeV)は H $\rightarrow \tau \tau$ と W/Z + H(\rightarrow bb)も寄与する

結合定数

Full Result

Dataset and Channels

* ATLAS

▶ アアとZZは2011年+2012年 (~10.7fb⁻¹)

- ▶ それ以外は2011だけ (4.9fb⁻¹)
- CMS

▶ すべてのチャンネルで2011(5fb⁻¹強) + 2012年(5fb⁻¹強)

◆ とある質量領域以外は背景事象だけを仮定した 場合とよく一致

ATLAS global significance for 110-600 or 110-150 GeV

• ATLAS $\mu = 1.2 \pm 0.3$ for 126.5 GeV

• CMS $\mu = 0.8 \pm 0.2$ for 125 GeV

Channel by Channel

ATLAS

CMS

ATLAS Combination

☆ アアとZZでイベント数多め(ラッキー?)

Combina

◆ ATLASに比べるとアンラッキーか

ATLAS

ATLAS : E_T > 40, 30 GeV
 Isolation : NN (2011), cut based (2012)
 CMS : E_T > 1/3 M_{γγ}, 1/4 M_{γγ}

Isolation : Multi-Variate-Analysis

カテゴリー分け

Unconverted central, low p_{Tt} (8 TeV) Converted central, low p_{Tt} (7 TeV)

Converted rest, high p_{Tt} (7 TeV)

◆ ATLAS: cut based で10分割
◆ CMS: MVA based で6分割

Mass Resolution

Search for the SM Higgs Boson at CMS

aclas

ATLAS Mass Resolution

σ ~ 1.6 GeV for inclusive sample

Category	σ_{CB}	FWHM	Observed	S	В
	[GeV]	[GeV]	$[N_{\rm evt}]$	$[N_{\rm evt}]$	$[N_{\rm evt}]$
Inclusive	1.63	3.87	3693	100.4	3635
Unconverted central, low p_{Tt}	1.45	3.42	235	13.0	215
Unconverted central, high p_{Tt}	1.37	3.23	15	2.3	14
Unconverted rest, low p_{Tt}	1.57	3.72	1131	28.3	1133
Unconverted rest, high p_{Tt}	1.51	3.55	75	4.8	68
Converted central, low p_{Tt}	1.67	3.94	208	8.2	193
Converted central, high p_{Tt}	1.50	3.54	13	1.5	10
Converted rest, low p_{Tt}	1.93	4.54	1350	24.6	1346
Converted rest, high p_{Tt}	1.68	3.96	69	4.1	72
Converted transition	2.65	6.24	880	11.7	845
2-jets	1.57	3.70	18	2.6	12

Energy Calibration

CMS

$\neg \gamma \gamma$ p-value

CMS

for 126.5 or 125 GeV	ATLAS	CMS
expected from SM	2.4σ	
observed local p-value	4.5σ	4.1 σ
global p-value (110-150GeV)	3.6 <i>σ</i>	3.2σ

Event Selection for $H \rightarrow ZZ$

□ Tiny rate, Bl

nstructed \rightarrow events should cluster in a (narrow) peak

42

-- pure: S/B

-- mass can

□ 4 leptons: $p_T^{1,2,3,4}$ > 20,15,10,7-6 (e-µ) GeV; 50 < m_{12} < 106 GeV; m_{34} > 17.5-50 GeV (vs m_H)

- □ Main backgrounds:
 - -- ZZ^(*) : irreducible
 - -- low-mass region $m_H < 2m_Z$: Zbb, Z+jets, tt with two leptons from b-jets or q-jets $\rightarrow 1$
- \rightarrow Suppressed with isolation and impact parameter cuts on two softest leptons

BG Studies by ATLAS

Peak at m(41) ~ 90 GeV from single-resonant $Z \rightarrow 41$ production

Irreducible background ZZ $\rightarrow 4$

- Estimated using simulation
- Phenomenological shape models
- Corrected for data/simulation scale ^{0.2}

Extrapolation from control samples enriched with misidentified leptons

CMS Preliminary 2012

200

0.6

0.4

Total uncertainty ~50%

Background models

 \rightarrow ZZ \rightarrow 2e2

400

qq

300

a.u.

10

identified leptons

 $\sqrt{s} = 7 \text{ TeV}$

600

m_{4l} [GeV]

44

Simulation (GG2ZZ)

Shape Model, 2e2µ

 $gg \rightarrow ZZ \rightarrow 2e2\mu$

gg

Mass resolution

Typical search for narrow peak on top of smooth background

 \rightarrow Resolution crucial for sensitivity!

 \rightarrow Final states separated in 4µ, 2µ2e, 2e2µ, 4e

ATLAS detector provides excellent resolution!

 \rightarrow Relative resolution of 1.6 - 2.1% for m_H=130 GeV

Further improved by using m_z constrained fit

 \rightarrow Relative resolution of 1.3 - 1.9% for m_H=130 GeV

K. Nikolopoulos

Search for the SM $H \rightarrow ZZ^{(*)} \rightarrow 4I$ with ATLAS

July 7th, 2012

UNIVERSITYOF

BIRMINGHAM

ATLAS $H \rightarrow ZZ$

In the region 125 ± 5 GeV								
Dataset		2011		012	2011+2012			
Expected B only Expected S m _H =125 GeV Observed in the data	2± 2±	2±0.3 2±0.3 4		3±0.4 3±0.5 9	5.1±0.8 5.3±0.8 13			
2011+ 2012		4		2e2µ	4e			
Data Expected S/B Reducible/total backgroun	d	6 1.6 5%) / 0	5 1 45%	2 0.5 55%			

GAAGA Anagustar Analysis

 Decay kinematic fully described by 5 angles and 2 masses discriminates spin 0 particle from background MELA = $\left| 1 + \frac{\mathcal{P}_{\text{bkg}}(m_1, m_2, \theta_1, \theta_2, \Phi, \theta^*, \Phi_1 | m_{4\ell})}{\mathcal{P}_{\text{sig}}(m_1, m_2, \theta_1, \theta_2, \Phi, \theta^*, \Phi_1 | m_{4\ell})} \right|$ • analogous of $\Delta \phi$ in H \rightarrow WW analysis MELA: matrix element likelihood analysis CMS Preliminary 2012 s=7 TeV, L=5.05 fb1; s=8 TeV, L=5.26 fb1 normalized to unity 0.12 0.08 0.06 SM H(125 GeV) μ^+ PRD81, 075022(2010) *z' qqZZ Ζ **∮** p 0.06 0.04 0.02 Φ CMS Preliminary 2012 √s=8 TeV. L=5.26 fb⁻¹ √s=7 TeV, L=5.05 fb 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.1 0 MELA **- –** 2e2mu **★** 4e 🗕 4mu 0.8 0.6 ✤ これがCMSのほうが 0.4 感度の良い原因か? 0.2 130 180 110 120 140 150 160 170

m₄ [GeV]

MELA

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

CMS H→WW

Observation very similar to signal injection

ATLAS H→WW

- ✤ Two isolated leptons with $p_T > 25$, 15 GeV
- ✤ Jet p_T > 25 GeV
- No 2 jet bin

	Signal	WW	$WZ/ZZ/W\gamma$	tī	tW/tb/tqb	Z/γ^* + jets	W + jets	Total Bkg.	Obs.
਼ੁੱ $m_H = 125 \text{ GeV}$	25 ± 7	110 ± 12	12 ± 3	7 ± 2	5 ± 2	13 ± 8	27 ± 16	173 ± 22	174
$ \dot{\circ} m_H = 240 \text{ GeV} $	60 ± 17	432 ± 49	24 ± 3	68 ± 15	39 ± 9	8 ± 2	36 ± 24	607 ± 63	629
਼ੁੱ $m_H = 125 \text{ GeV}$	6 ± 2	18 ± 3	6 ± 3	7 ± 2	4 ± 2	6 ± 1	5 ± 3	45 ± 7	56
$-m_H = 240 \text{ GeV}$	23 ± 9	99 ± 22	8 ± 1	73 ± 27	35 ± 19	6 ± 2	7 ± 7	229 ± 55	232
਼ੁੱ $m_H = 125 \text{ GeV}$	0.4 ± 0.2	0.3 ± 0.2	negl.	0.2 ± 0.1	negl.	0.0 ± 0.1	negl.	0.5 ± 0.2	0
$\sim m_H = 240 \text{ GeV}$	2.5 ± 0.6	1.1 ± 0.7	0.1 ± 0.1	2.6 ± 1.3	0.3 ± 0.3	negl.	0.1 ± 0.1	4.2 ± 1.7	2

◆ 2012年のデータ解析結果は未公表

Overview H→bb

- ・ V (W→I ν /Z→ ν ν /Z→II) H と ttH
 - ▶ VHはVのp⊤によるカテゴリー分け
 - "boosted" topologyが感度高い
 - ttH : many combinatoric BG
 - 今回の結果公表はCMSだけ
- b-tag
 - ε_b ~ 70%, ε_c ~ 20%,
 ε_l ~ 0.6% (ATLAS)
- Di-b-jet mass resolution
 - ▶ CMSはMVAで改善

Overview $H \rightarrow \tau \tau$

ATLAS

- 5.0 σ excess at M_X ~ 126.5 GeV
 - Expected significance from SM : 4.6σ

- CMS
 - 4.9σ excess
 - Expected significance from SM : 5.9σ
 - ► M_X = 125.3 ± 0.6 GeV

p-value

◆ 検定量は色々ある

▶ 観測事象数, likelihood ratio, etc..

◆ (今回の) Significanceはp-valueから算出

2011年 ATLAS Local p-value

Local significance of excess : 3.6σ $H \rightarrow \gamma \gamma$: 2.8σ $H \rightarrow IIII : 2.1\sigma$ $H \rightarrow |\nu|\nu$: 1.4σ

Confidence Level

 ◆ CL_{s+b} < 5% なら95%CLで棄却
◆ CL_{s+b}(µ) = P(N < N_{obs} | µs+b) = 5% となるµを95%CLで棄却した, と言う

Look Elsewhere Effect

- ◆ サイコロを振り1が出る確率: 1/6
 - ・でもn回振ると
 - 少なくとも1回1が出る確率:1-(5/6)ⁿ
- ✤ 背景事象数の期待値が10-6
 - ▶ 実験をn回やれば… nが非常に大きければ背景 事象を観測することもある
- ◆ 何回独立な実験をやったかが大切
 - ・ 質量がどれくらい離れると独立なのか??
 - ▶ global p-value ← 実験回数を考慮に入れる

2011年 ATLAS Global Significance

Local significance of excess : 3.6σ $H \rightarrow \gamma \gamma$: 2.8σ $H \rightarrow IIII$: 2.1σ $H \rightarrow |\nu|\nu$: 1.4σ

Global significance of excess 2.5σ (110-146GeV) 2.3σ (110-600GeV)

70