

トップ対生成におけるスピン相関と 前後方非対称性

武内勇司 (筑波大) for CDF collaboration

特定領域「フレーバー物理の新展開」研究2012 奈良県吉野郡吉野町 芳雲館 Jul. 7th, 2012

Tevatron Run II

Tevatron

- **Proton-antiproton collisions at** \sqrt{s} = 1.96 TeV
- Shutdown on Sep. 30, 2011
- Final dataset: ~10 fb⁻¹ for physics

The CDF II Detector

- 🛛 1.4T solenoid
- Good particle identification (K, π)
- Central/Wall/Plug calorimeters
- Scintillator+drift chamber muon detectors

TEVATRONにおけるtī 生成と崩壊

Categorize $t\bar{t}$ events into 3 decay types according to W decay mode

トップクォークの崩壊

- W helicity 測定により、実験的にも既 に確立している
- トップクォークの静止系において荷電 レプトンの飛んでいく方向がトップの偏 極方向

 トップクォークのスピンは、測ることが 可能!

tī 生成におけるSpin Correlation

- Top and anti-top spins are correlated at production
 - in different ways at Tevatron and LHC
 - Top quark spin at the production can be measured
 - decays before losing polarization
 - decays via V-A interaction (charged lepton has 100% information on top spin)
 - Spin correlation can be measured as angular correlations of decay products: $d\sigma \propto 1 C\cos\theta_+\cos\theta_-$

 $J_z = 0$ がないのは helicity conservation

- Experimental verification of top decaying before losing polarization
- Sensitive to anomalous coupling at $t\bar{t}$ production

Spin-spin 相関係数ĸ

Expected $(\cos\theta_+, \cos\theta_-), (\cos\theta_b, \cos\theta_{\overline{b}}),$ distributions

$$t\bar{t}$$
 MC ($\kappa = 1.0$)

$$t\bar{t}$$
 MC ($\kappa = -1.0$)

κ measurement result (5.1fb⁻¹)

SMの予想は, κ~0.78

SMとはconsistent(しかし $\kappa = 0$ とも矛盾しない)

 $-0.520 < \kappa < 0.605$ (68%CL)

他の実験でのspin correlation 測定

$t\bar{t}$ Forward Backward Asymmetry

 $A_{\rm fb} = \frac{F - B}{F + B}$ F: $\cos\theta_t > 0 \approx \Delta y_t \equiv y_t - y_{\bar{t}} > 0$ B: $\cos\theta_t < 0 \approx \Delta y_t < 0$ Δy_t : Invariant for a boost along beam dir.

NLO prediction: $A_{\rm fb} = 0.06 \pm 0.01$ $|\mathcal{M}|^2 \propto \left| \begin{array}{c} q & g & t \\ \overline{q} & 000000 & \overline{t} & + \begin{array}{c} \overline{q} & g & t \\ \overline{q} & g & \overline{t} & + \end{array} \right|^2$ $\left| \begin{array}{c} q & 000000 & \overline{t} & + \begin{array}{c} \overline{q} & g & \overline{t} & - \end{array} \right|^2$

LO and NLO: positive asym.

ISR and FSR: negative asym.

Also presence of new physics could make asymmetry

ℓ+jets results (8.7fb⁻¹)

 $\Delta y_t = y_t - y_{\bar{t}}$

A^{raw}(data)= 0.066±0.020

 $\Rightarrow A^{raw}(t\bar{t} MC + bkg) = 0.026$

 $\Leftrightarrow A^{raw}(t\bar{t} MC + bkg) = 0.016$

 $\Rightarrow A^{raw}(t\bar{t} MC + bkg) = 0.044$

ℓ+jets results (8.7fb⁻¹)

- Reconstructed Δy_t distributions for reconstructed $M_{t\bar{t}}^{rec} < or > 450 \text{ GeV}$
- $A^{raw}(M_{t\bar{t}}^{rec} < 450 \text{GeV}) = 0.021 \pm 0.025$
- $A^{raw}(M_{t\bar{t}}^{rec} > 450 \text{GeV}) = 0.160 \pm 0.034$

Parton-level asymmetry as functions of Δy_t and $M_{t\bar{t}}$

dilepton results (5.1fb⁻¹)

■
$$\Delta y_t = y_t - y_{\bar{t}} \& \Delta \eta_{\ell} = \eta_{\ell^+} - \eta_{\ell^-}$$

■ ℓ^+ はトップクォーク、 ℓ^- は反トップクォークから
→ $\Delta \eta_{\ell} \succeq \Delta y_t$ に相関

$$A^{raw}(\Delta \eta_{\ell}) = 0.14 \pm 0.05$$

$$\Rightarrow A^{raw}(t\bar{t} \text{ MC+bkg}) = -0.02 \pm 0.02$$

$$A^{raw}(\Delta y_{t}) = 0.14 \pm 0.05_{\text{stat}}$$

$$\Rightarrow A^{raw}(t\bar{t} \text{ MC+bkg}) = -0.02 \pm 0.02$$

dilepton results (5.1fb⁻¹)

tt̄ Pythia MC with event-by-event weight of (1+αΔyt^{rue}) to implement non-zero asymmetry into MC

A_{fb} at DØ

• Unfolded asymmetry from Δy_t distribution

 $A_{\rm fb} = 0.196 \pm 0.060^{+0.018}_{-0.026}$

• Unfolded asymmetry from $\Delta \eta_{\ell}$ distribution

 $A_{\rm fb} = 0.053 \pm 0.079 \pm 0.029$

• Unfolded asymmetry from $\mathbf{Q} \cdot \boldsymbol{\eta}_{\ell}$ distribution

Summary

- Top quark対生成の機構は,Tevatron とLHCで異なる
 - *t*t forward-backward asymmetry, *t*t spin correlation などは, 対生成の機構に依存
 - → Tevatronで固有な解析, LHCでの実験と相補的
- CDF full data を用いた *tī* spin correlation の解析 (dilepton), *tī* forward-backward asymmetry (dilepton)の解析は, 現在進行中
 - top polarizationまで含めたforward-backward asymmetryの原因解明が最終目標
- $t\bar{t}$ forward-backward asymmetry
 - CDF ℓ +jet: SMより 2 σ level で大きな値, 大きな $M_{t\bar{t}}$ dependence
 - D0 ℓ+jet: SM より2σ level で大きな値, M_{tī} dependenceは, むしろCDF ℓ+jet と逆
 - CDF dilepton: SMより 2σ level で大きな値, 顕著なM_{tt} dependenceは見られない
 - D0 dilepton: SM と consistent (A_{fb}=0とも consistent)
 - LHC: SM と consistent (A_{fb}=0とも consistent), M_{tt} dependenceは見られ ない

Backup

Dilepton candidates (5.1fb⁻¹)

Selection

- **2** lepton $(e/\mu) E_{\rm T}(p_{\rm T}) > 20 \, {\rm GeV}$
- 2 or more jets
- pre-tag
- Missing $E_{\rm T} > 25 \, {\rm GeV}$
- Z veto, $H_{\rm T}$, Opposite charge
- 334 candidates w/ 87±17 bkg.

6+1 unknonwns

- $\vec{p}_{\nu}, \, \vec{p}_{\overline{\nu}}$: 6 components
- b, b ambiguity

6 constraints \rightarrow quartic equation

- $M(\ell^+ + \nu) \rightarrow M_W$ and c.c.
- $M(\ell^+ + \nu + b) \rightarrow M_t$ and c.c.

•
$$(\vec{p}_{\overline{\nu}})_{x,y} = E_{x,y}^{\text{miss}}$$

 $\vec{p}_{\nu}, \vec{p}_{\overline{\nu}}$ is solvable, but 8 solutions in maximum

Likelihood function w/ jet and MET resolutions

$P(p_z^{t\bar{t}}), P(p_T^{t\bar{t}})$, and $P(M_{t\bar{t}})$ are obtained from the signal candidates in $t\bar{t}$ Pythia MC

We choose the best solution of $(\vec{p}_{\nu}, \vec{p}_{\overline{\nu}}, E_b, E_{\overline{b}})$ which gives maximum likelihood in an event

$$\begin{split} \mathcal{L}(\vec{p}_{\nu}, \vec{p}_{\overline{\nu}}, E_b, E_{\overline{b}}) &= P\left(p_z^{t\overline{t}}\right) P\left(p_T^{t\overline{t}}\right) P(M_{t\overline{t}}) \\ \times \frac{1}{\sigma_{jet1}} \exp\left[-\frac{1}{2} \left\{\frac{E_{jet1} - E_b}{\sigma_{jet1}}\right\}^2\right] \times \frac{1}{\sigma_{jet2}} \exp\left[-\frac{1}{2} \left\{\frac{E_{jet2} - E_{\overline{b}}}{\sigma_{jet2}}\right\}^2\right] \\ \times \frac{1}{\sigma_x^{MET}} \exp\left[-\frac{1}{2} \left\{\frac{E_x^{miss} - (\vec{p}_{\nu} + \vec{p}_{\overline{\nu}})_x}{\sigma_x^{MET}}\right\}^2\right] \times \frac{1}{\sigma_y^{MET}} \exp\left[-\frac{1}{2} \left\{\frac{E_y^{miss} - (\vec{p}_{\nu} + \vec{p}_{\overline{\nu}})_y}{\sigma_y^{MET}}\right\}^2\right] \end{split}$$

$\Delta \eta_{\ell}$ in control region

CDF Run II Preliminary (5.1 fb⁻¹)

Δy_t in Z+2jets candidates

 Δy_t in Z+2jets candidates

- Same flavor, $OS(e^+e^-, \mu^+\mu^-)$
- 📕 2 or more jets

- No MET ($E_{\rm T}^{\rm miss}$ <25 GeV)
- *M_{ℓℓ}* in Z mass window
 76 < *M_{ℓℓ}* < 106 GeV

 Δy_t reconstruction doesn't introduce a fake asymmetry.

Dilepton results (5.1fb⁻¹)

 $Mt\bar{t} \text{ dependence} \\ \equiv M_{t\bar{t}}^{\text{rec}} < \text{or} > 450 \text{GeV}$

 $A^{\text{raw}}(M_{t\bar{t}}^{\text{rec}} < 450 \text{GeV}) = 0.10 \pm 0.07_{\text{stat}}$ \Leftrightarrow pred: -0.003 ± 0.031 $A^{\text{raw}}(M_{t\bar{t}}^{\text{rec}} > 450 \text{GeV}) = 0.21 \pm 0.10_{\text{stat}}$ \Leftrightarrow pred: -0.040 ± 0.055

Caveat

- Based on "Reconstructed $M_{t\bar{t}}$ " cut
 - Poor resolution, bias toward lower $M_{t\bar{t}}$
- Not parton level asymmetries

24