July 2021

MASTER THESIS

DEVELOPMENT OF INTEGRATION TOOLS TO TEST
THE NEW ATLAS PIXEL MODULE PROTOTYPES

Graduate School of Science, Osaka University

Yamanaka Taku Laboratory, Department of Physics

Mario Gonzalez

Contents

1.1 The Large Hadron Collider and the ATLAS experiment|
1.2 The High Luminosity LHC|
[1.3 The basics of the ATLAS Pixel Detector for the High luminosity LHC|
[1.3.1 Pixels, sensors and pixel modules|
[1.3.2 The pixel module assembly| 0.
[1.3.3 The pixel module tunctioning|

L4 _The RDBE3AASICl o oot e

[L.5 Issues and requirements on the module production|
(1.5.1 Module handling| o
[1.5.2 Reproducibility among modules and institutes|
[1.5.3 Speed and simplicity]
[1.5.4 Interlock system| o

[1.6 Situation before my intervention| L.

[1.7 Purpose of this research|o oo
[L8 Structure of thisthesisl

|2 Development of Integration Tools for the module testing]

2.1 Overview: Hardware and Software setup|
[2.2 Sottware tools for the module testing|
[2.2.1 Contributions to the environmental monitor system|
[2.2.2 Development of tools to check the Module’s built quality]
[2.2.3 Development ot a tool to automate the module testing|

[2.2.4 Development of data-analysis tools|

13 Results: Significance of my contributions in the Module testing flow|
3.1 First steps after assembly| o
3.2 Module tuning|
3.3 The X-ray scan|

[3.4 Summary of the main improvements due to my contributions|

T orl
[5__Conclusionl

© © © 00 00 Ut = W W W ==

11
11
13
14
16
21
26

32
32
33
35
36

38

39

42

Abstract

A major upgrade of the Large Hadron Collider (LHC) at CERN is scheduled to take place
before 2027. After the upgrade, the rate of proton-proton collisions at the core of the ATLAS
detector (one of the four detectors built at the LHC) will increase by a factor of 5.

The ATLAS Pixel Detector, which is located closest to the collision point, will be completely
replaced during the upgrade. Currently, a prototype of the new pixel modules is in a testing
stage. Before 2027, 2000 of the total of 10000 modules are planned to be built in Japan. We
are currently preparing for this module mass production, which has to be done as efficiently as

possible.

The module production consists of two stages, assembling and testing. In the assembling
stage the modules are built from their components. In the testing stage they are powered up,
configured and read-out while being exposed to x-ray radiation. The goal of the testing stage is

to ensure that all the pixels in the pixel module are working and can be used in the detector.

This thesis presents the work that has been done towards the automation of the testing stage.
With this work, the testing stage has become more consistent, precise, faster, and safer. In addi-
tion, this automation prevents any biases in the results that could be originated from operating
the modules by hand. Moreover, this automation allows us to estimate the module production

time more precisely, helping to organize the whole production chain to avoid bottlenecks.

This thesis also describes a monitoring system which has been developed to monitor environ-
mental variables such as temperature, humidity, and power supply data. The data are uploaded
to a database by the monitor system. With this work, other programs such as the controller of

the cooling unit can use the monitor data as feedback to keep the modules in optimal conditions.

Chapter 1

Introduction

1.1 The Large Hadron Collider and the ATLAS experiment

The Large Hadron Collider (LHC), located at CERN (Switzerland), is the most energetic particle
accelerator ever built. It consists of a 27-km tube forming a ring, inside which two pipes
surrounded by superconducting magnets are built to circulate two proton beams in opposite

directions.

The two beams are crossed in four points of the ring. The ATLAS detector, which is located

in one of them, is the detector in which this research focuses on.

One of the ATLAS experiment’s main achievements so far has been the experimental dis-
covery of the Higgs bosson. The current purpose of the ATLAS experiment is to explore new
physics beyond the Standard Model, as well to continue improving the current Standard Model

experimental results.

The ATLAS detector

The ATLAS detector, shown in Fig. is composed of different subdetectors, each of them
specialized in measuring a certain type of particle. A detailed description of the ATLAS detector
can be found in Ref. [I]. This chapter provides a quick overview of the main components of the

detector.

Muon detectors
B U N AL
T

Hadronic
calorimeter

" Inner detector

-

\ Electromagnetic /

calorimeter

7

25 m

Figure 1.1: Schematic view of the ATLAS detector. The ATLAS subdetectoras have cylindrical
symmetry around the beam line. Proton-proton collisions take place at the center of the inner detector.

From the innermost layer, the ATLAS detector consists of the following subdetectors:

e The Inner Detector, which is shown in Fig. [I.2] is placed into a magnetic field and
consists of a high resolution pixel detector in the innermost layer, and other charged
particle detectors in the outer side. The main purpose of the inner detector is to track the

trajectory of charged particles, allowing for precise measurements of their momentum.

62m

‘A\ Barrel semiconductor tracker

End-cap semiconductor tracker

_____ Barrel Layer 2
"""""""" / Barrel Layer 1
Barrel Layer 0 (b-layer)

End-cap disk layers

Figure 1.2: (a) Schematic view of the ATLAS’s Inner Detector. (b) Schematic view of the ATLAS’s
Pixel Detector. (c) Picture of the pixel modules of the innermost layer of the Pixel Detector. The
three figures show the current status of the detector.

e The Electromagnetic Calorimeter, whose main purpose is to measure the energy of

electrons, positrons or photons.

e The Hadronic Calorimeter, that does the same with charged and neutral hadrons.

e The Muon Detectors, which detect muons, that penetrate through the electromagnetic

and the hadronic calorimeters.

1.2 The High Luminosity LHC

The LHC is planned to be upgraded to the High-Luminosity LHC (HL-LHC). Starting from
2027, the HL-LHC will run at a center-of-mass energy of 14 TeV, and it will collide protons at
a rate five times larger than the LHC[2)].

Protons are currently colliding at 13 TeV at their center of mass. The energy of the protons
is therefore 6.5 TeV, but that energy is actually spread across all the components of the proton,
following certain probability distribution functions. The 13 TeV proton-proton collisions at the

LHC are actually quark-quark or gluon-gluon collisions that take place at a much lower energy.

High energy particles (up to the order of TeV) are produced with a very low probability, and
therefore all the studies around them are heavily restricted by the limited data. This particularly
affects searches for Super Symmetry particles, that are predicted to have masses on the order

of TeV. Making this kind of searches possible is the main motivation of the HL-LHC upgrade.

In preparation for the HL-LHC upgrade, the ATLAS detector also has to be upgraded. In
particular, the pixel detector is planned to be fully renovated by a new one that is currently

under production.

1.3 The basics of the ATLAS Pixel Detector for the High lumi-
nosity LHC

This section starts by introducing the building blocks of the pixel detector, and giving an
overview of their assembly process. The process of signal readout is then explained, particularly
focusing in the threshold selection, that is set to distinguish real particle hits from background

noise.

1.3.1 Pixels, sensors and pixel modules

The pixel modules are the main building blocks of the pixel detector. A pixel module is composed
of a silicon semiconductor sensor, and readout electronics that process the sensor’s signal and

send out the processed data to computers.

The sensors of the module are composed of pizels and powered by high voltage. The silicon
pixels output a current when a charged particle passes through them. The size of the pixels in
the sensor is 50x50 prrﬂ

195 pm x 100 pm pixels are also present in particular regions of the sensor.

The output signal of the sensor is processed by custom ASICs (Application Specific Integrated
Circuits), that are composed of readout pizels. A single readout pixel in the ASICs processes the
data coming from a single silicon pixel in the sensor. Hereafter, for simplicity, the term pixel

will refer to the readout pixels of the ASIC unless explicitly specified.

A PCB (Printed Circuit Board), is also included in the module as an interface between the
ASICs and the readout computers, and also between the power supplies and the ASICs and
sensor. Sensor, ASICs, and PCB are the three building units of the pixel modules.

Different variations of the pixel modules have been built to be installed on different parts
of the pixel detector. The ones this thesis focuses on have four ASICs, and they are usually
referred to as quad modules. A real quad module placed in a metallic carrier is shown in
Fig. together with the dimensions of one of its ASICs.

400 x 192 pixels

1 px: 50x50 pm

Figure 1.3: (a) Picture of a Quad Module, highlighting the position of the ASICs, located under the
PCB. (b) Dimensions of one of the four ASICs of the quad module.

1.3.2 The pixel module assembly

The PCB, the sensor, and the ASICs are separately produced by different companies. The sensor
is also connected to the ASICs before being shipped to the testing institutes.

The ATLAS collaborators in the testing sites receive the PCB and the sensor separately.
The module assembly process consists of gluing the sensor to the PCB, and wire-bonding the
PCB and the ASICs, as shown in Fig.

Sensor

four ASICs

The sensor is The PCB is
1 to the 2 wire-bonded

PCB to the ASICs

Figure 1.4: Scheme of the assembly process. The sensor is connected to the ASICs in an earlier stage
of the production.

The quality of the modules has to be carefully controlled during the assembly process. The
module contains many delicate parts, such as the wire bonds connecting the PCB and the sensor.
Any anomaly found on them at any stage of its production has to be identified and fixed before

continuing to the next stage.

1.3.3 The pixel module functioning

Once assembled, the modules are ready for usage. The module functioning is shown in Fig. [[.5]
A charged particle exciting a pixel in the sensor would produce an analog pulse, that would
be digitized and identified as a hit by the ASICs. The ASICs’ output would then be sent to a
computer through the PCB.

Sensor ¥

AN EEENZ“EEENEEEEEEEEEEEEEEEEEEE N

four ASICs

A charged particle
1 is detected in the
sensor

The ASICs' output
travels to the PCB

3 through small wires

Figure 1.5: Scheme showing the data readout process in the pixel modules.

is digitized and processed

2 The whole sensor's output
in the ASICs

The hit decision in the ASICs is based on two properties of the signal from the sensor: Its
charge and its Time over Threshold (ToT). The charge measures the strength of the signal, and
a threshold is set to define the minimum charge that an analog pulse has to carry to be a
hit candidate. The ToT is the time that a pulse spends over that threshold, as represented in
Fig. A minimum requirement on the ToT is also set for a pulse to be considered a hit.

the ToT is discretely measured
with a 40 MHz clock

Pulse heigh (Voltage)

TTuning the
Threshold

ToT Time [40 MHz clock cycles]

Figure 1.6: A sample pule corresponding to a hit in the sensor is represented. The threshold is
measured in charge (electrons) and the ToT is measured in 40 MHz clock cycles.

The threshold tuning

The process to set the threshold for all the pixels in an ASIC to match the target threshold is
called tuning. The threshold is set pixel by pixel by modifying a register that exists for every

pixel, but the actual threshold, in units of voltage, is unknown until it is measured.

The tuning consists of the following steps:

1. 100 analog pulses whose charge matches the target threshold are sent to each pixel. If the
threshold was tuned to its target threshold, and there was no noise at all, a pixel would
identify those 100 pulses as hits. However, due to the effect of noise, the readout charge of
a hit can be slightly below or above the threshold. If a pixel is tuned properly, it should

record half of the input pulses, 50 in this case, as hits.

2. If the pixel reads less than 50 hits, its threshold is lowered by modifying a voltage register
in the ASIC. If it reads more, its threshold is increased.

3. This process is repeated until the pixel records 50 of the 100 received pulses as hits.

The threshold measurement

The threshold tuning may not work for all the pixels in the matrix. Pixels could be very noisy,
and record a different number of hits each time they are tested. Others could be damaged and

output a constant number of hits regardless the number of analog input pulses.

Therefore, checking the quality of the tuning by measuring each pixel’s threshold is needed.

The following steps are taken to measure the threshold.

1. A pack of 50 pulses of an initial charge is generated and sent to each pixel. The number

of detected hits is recorded.

2. The process is repeated by increasing the charge. The number of hits recorded per pack,

is then plotted as a function of the charge of the pack, to make an S-curve as shown in

Fig.

50 sample S curve .

= :

= /

840 |

— .

=) :

41 :

o 30 :

S o

e : l :

920 ; :

— ' .

5} : :

< / :

£10 L

= :

< A

% 500 1000; 1500 2000

<> Pulse charge [e]
noise

Figure 1.7: Sample S-curve for a pixel tuned at 1000 electrons.

The histogram is fit to an analytical function and the threshold and the noise are extracted
from the fit to evaluate the quality of the tuning. This process is repeated for all the pixels

in the matrix.

1.4 The RD53A ASIC

A prototype ASIC called RD53A[3] was initially designed for testing, and it is currently being
used in preparation for the future production. A final version, RD53BEL has been more recently
designed and produced based on the experiences from its predecessor, and it has already been

successfully tested in some institutes, including the Osaka University.

The RD53A ASIC, shown in Fig. contains a pixel matrix of 400 columns and 192 rows in
20.0 mm by 11.8 mm, making a total of 76800 pixels. For testing purposes, the pixel matrix is
divided into three sections. Each section implements a different front-end (FE) design, namely
the synchronous, linear and differential according to how they process the signal coming
from the sensor. A detailed explanation on the design of these three front-ends can be found in
the RD53A manual, in Ref. [3]. Based on past tests on RD53A, the differential front-end was
chosen for RD53B.

2ATLAS refers to RD53B as ItkPix, since RD53B was developed by the RD53 collaboration and it is not
specific to the ATLAS experiment. In this thesis, however, we refer to both RD53B and ItkPix just as RD53B.

Figure 1.8: Picture of the RD53A ASIC, mounted on a card that permits its readout. Picture taken
at the University of Bergen (Norway).

In RD53A, pixels are grouped in small 8x8 matrices called cores. Pixels within the same
core share the same digital readout circuit and memory buffers. The output of each core is sent
to the edge of the ASIC and then through the wire bonds to the PCB.

The RD53A ASIC has already been exhaustively tested. By the time this thesis is written,
pixel modules equipped with RD53A ASICs (hereafter RD53A modules) are being assembled
and tested in preparation for the real RD53B production that will take place in the future.

1.5 Issues and requirements on the module production

This section starts by describing the main safety conditions under which the modules have to
be produced. It will later describe other requirements to make the production consistent among
institutes and as fast as possible. It will finish by introducing the measures that should be

applied in case of exception, in order to preserve the integrity of the modules.

1.5.1 Module handling

The ATLAS pixel modules have to be operated under strict conditions.

The module temperature has to be kept under 40°C during testing. Otherwise, the ASICs
as well as the glue layer between the PCB and the sensor shown in Fig. might suffer damage.
The working current of the ASICS of the ATLAS pixel modules is 4.4 A, which quickly increases

the temperature of the modules if they are not actively cooled down.

Also, we always have to ensure that the dew point is low enough to make the power-off
operation safe. When switching off the power while actively cooling the module, the module
temperature quickly drops by around 10 degrees. If it reaches the dew point at the module
surface. water will start condensing on the surface, possibly causing shorts that could lead to

serious damage

Finally, the whole module assembly and testing also have to be carried on inside a clean room
under strict dust concentration requirements. The distance between the wires connecting the
PCB to the ASICs is shorter than the average size of a dust particle (on the order of microns),
so any dust falling onto the module surface might connect two wires leading to module damage

or readout failures.

We need a common tool that monitors the supply voltages, currents, dust concentration,
temperature, and dew point of the module. The tool must be also capable of acting in case of

a problem occurs.

1.5.2 Reproducibility among modules and institutes

Around 10,000 modules have to be eventually produced and installed in the detector. Any
module with defective PCB, ASICs, and sensor should be identified. Also, the module production
will be split between institutes all around the world. Even though all the institutes will follow
the same testing procedure, different testing tools used by different people could also introduce

variations in the testing results.

The testing software should therefore be common. It should also be configurable enough to
adapt itself to different testing environments, such as different power supplies, monitor systems,

and monitored quantities.

1.5.3 Speed and simplicity

Many stages during assembly, such as sensor attachment to the PCB, cannot be automated and
they are performed manually. However, most of the testing phase can be fully automated. This
automation is necessary not only to make them faster, but also to have a precise estimation on
how much time the testing chain would take. The module production chain has to be done in
parallel for many modules. This allows us to organize the production to avoid any bottleneck,

maximizing the efficiency of the operator’s work.

The module testing software should be easy to use. It should also be autonomous enough to

require human intervention only in case of exception.

1.5.4 Interlock system

Finally, we shall not overlook any failure in the module or in the software, that could lead to
a readout exception, or environmental variables going outside their safety range. A hardware-
based interlock is implemented in each site to stop the testing sequence if considered necessary,

but a software interlock should be also integrated in the testing tool.

The testing software should then be capable of identifying any issue and acting in conse-

quence. If the issue is solvable without human intervention, the software should do it by itself.

If the issue needs external operation, the software should safely interrupt the testing chain and

wait until it is restarted manually.

1.6 Situation before my intervention

The following items were already part of the testing framework when I started working on it,

and have served as a baseline for most of my contributions.

e Three databases. The first one has been explicitly built to store module information and
testing results in each local institute, and it is called localDB[4]. The second one is
InfluxDB[5], a widely used database to store time-ordered data (monitored quantities
such as temperatures, voltages, etc). The third one is called production database and
has been built explicitly for the module production. It is common to all the institutes and

accessible by all the collaborators.

e A dedicated software used to communicate with the modules and read their output, called
YARR (Yet Another Rapid Readout)[6], that also uploads the testing results to localDB.

e Many different scripts to retrieve data from InfluxDB, upload data to localDB and register

modules into localDB.

e An independent framework to control power supplies, called labRemote][7].

All of these tools have their independent documentation, their independent configuration
files, and their independent usage method. Setting them up and making them work together is
complex, takes a long time and can lead to numerous sources of errors. Therefore, a common

integration tool to simplify the process becomes a must for all the institutes.

1.7 Purpose of this research

The main goal of this research has been to build an integration tool that addresses all the issues
presented in Section making a module testing framework consistent, safe, fast, and simple

to use.

1.8 Structure of this thesis

Chapter 2 describes the tools that have been developed to fulfill the requirements of the module
testing. In Chapter 3 the module testing procedure is detailed, highlighting the significance of
the tools we made for this purpose. The results of this development are summarized in the
latter part of Chapter 3. Chapters 4 and 5 are devoted to a short discussion and conclusion,

respectively.

10

Chapter 2

Development of Integration Tools for

the module testing

This chapter starts by giving an overview of the testing setup, followed by a description of the
tools that have been developed to fulfill the requirements of the module testing. All the tools

described in this chapter can be found in the same GitLab repository, accessible from Ref. [§].

2.1 Overview: Hardware and Software setup

Most of the testing in Japan is currently being carried on at KEK. The subject for testing is
usually a quad module. During testing, the module is placed in a cooling box where temperature
and humidity are monitored and controlled by an external cooling system. We are using a
commercial chiller for cooling. The cooling box, and its monitor system have been designed and
produced at the Tokyo Institute of Technology. Figure shows the cooling box, as well as

part of its monitor system.

11

Monitoring system
for the cooling box

Room temperature,
humidity and dust
concentration
monitoring system

Module NTC readout

Figure 2.1: Module testing setup at KEK. Not shown in this picture are the chiller and the power
supplies.

A schematic view of the module testing setup is shown in Fig. The module gets Low
Voltage and High Voltage power from two independent power supplies. The two power supplies
are controlled and constantly monitored by the PC through the tool we have prepared. A
monitoring board prepared in Italy, highlighted in green in Fig. reads the output of an NTCﬂ
placed on the module’s surface to measure its temperature. It also measures the temperature,
humidity, and dust concentration of the room, and sends the data to a computer through a USB

cable.

| Database

I
PC

® §

Figure 2.2: Schematic view of the setup when testing modules at KEK.

The readout data coming from the module is read though a thin flat cable, shown in Fig.
that goes to an adapter board where the data for each ASIC is sent to the PC through four
independent Display Port cables. On the PC side, the data is received and processed in a
FPGA with dedicated firmware, and finally analyzed by software. Ultimately, the results of

INTCs are resistors whose resistance decreases as their temperature increases, normally used as small temper-
ature sensors.

12

each analysis are uploaded to localDB.

The relevant power supply and environmental data are also synchronized with the analysis
results in localDB. Power supply or environmental data will be referred hereafter to as DCS

(Detector Control System) data.

Quad Module

-
= DisplayPort
O

DAQ PC

Figure 2.3: Schematic view of the setup when testing modules at KEK.

2.2 Software tools for the module testing

This section describes the software tools that have been built to facilitate the module testing.
First, it describes the ones that monitor the environment and the power supply, that are con-
stantly running during the module testing. Secondly, it describes the ones we use to look for any
electrical failures in the modules before reading them out. It later describes the main tool we
have worked on, which automates the module readout and handles all the organization of the
readout results into the databases. Finally, the features of a tool to analyze the readout data
and share the testing results are also described. The contents of each of the following subsections
are shown in Fig.

13

Dust concentration InfluxDB

Temperature

Humidity
Environmental

monitor LocalDB

Monitor

p—— software /
° Data
Testh/ analysis

Y

T tools
= software

N

ASIC, sensor and power-supply

PCE readout signal monitor and

quality tests ’ controller
Asics ‘\&\;\)HV)
\)\ij

Section 2.2.1 Section 2.2.2 Section 2.2.3 Section 2.2.4

Figure 2.4: Overview of the contents of this section, in the context of the module testing.

None of the tools we have developed has a graphical interface, and all of them are used directly
from the command line of the Data Acquisition computer, that runs on Linux. InfluxDB and

localDB are hosted in remote computers.

2.2.1 Contributions to the environmental monitor system

Some of the most relevant contributions presented in this thesis are on the DCS monitoring.

Temperature, Humidity and dust concentration monitoring

On the PC side, I have written a software that takes the serial output of the board reading
the module NTC, room temperature, humidity, and dust concentration. The software interprets
the data and uploads it to InfluxDB, located in a remote server. Grafana (an Open Source
real-time db-monitoring software)[9] is used to display on a screen all these monitored values,

together with the output of more sensors located in the cooling box.

The monitoring software has been designed to constantly run in the background, without
representing a significant CPU load for the host computer. The monitor data comes from the
readout board every 5 seconds, and the software reads the USB output with the same frequency,

sleeping the rest of the time.

14

Power supply monitor and remote controller

The power supplies (PSs) also have to be carefully monitored. For safety, their operation

has to be done remotely as much as possible, instead of on the PS’s buttons.

I have written a power supply monitor tool that can also be used as a PS controller. When
used as a monitor tool, it runs in the background, and different instances of it can be launched
in parallel to monitor multiple power-supplies at the same time. It also uploads the output
of the power supply to InfluxDB. When used as a controller, it can turn on/off, and set/read
current or voltage for any channel of the power supply. The control actions are given by the
user in the command line. The actual communication with the power supply is done following
the SCPI command language set, that is common for most test and measurement instruments.

An introduction to the SCPI command set can be found in Appendix [A]

Minimizing the complexity of the framework has been one of the priorities of the development,
and even other software tools can use this tool autonomously to get the current [I, V] status or

modify any of these two quantities. This large flexibility is the main merit of this tool.

Software Interlock and exception handling

Monitoring the DCS is not enough to keep the module safe. A software interlock should take

immediate action when an event that is potentially dangerous for the module occurs.

Particularly dangerous is the situation where the operator turns off the power of the power
supply even though the temperature of the module is not high enough above its dew point. To
avoid this situation, we decided that the power supply should be fully controlled remotely, and
that it should be done by the tool I wrote for that. When attempting a power off, the tool will
retrieve the last pair of temperature and humidity from the database, calculate the dew point
and check if the temperature is at least 15 degrees above it before proceeding. If that is not the
case, a message like the one shown in Fig. is printed to the terminal.

[info 1[ps] T = -13.50; dp = -24.87

[warn 1[ps] (T - DP) = 11.37, which is smaller than 15.
Cannot power off the LV in these conditions

Figure 2.5: Sample error message shown when trying to power off the Low Voltage in a dangerous
situation.

There might be cases where we have to power off the module even though the software thinks
we should not. The most common example is an accidental disconnection of the NTC measuring
the module temperature. Such disconnection would be interpreted as if the resistance of the NTC
was very high, which corresponds to a much lower temperature than the actual one, and would
make the software think that we should not power off the module. These particular scenarios
are relatively easy to identify, since the readout temperature on the “NTC disconnected state”
stays always constant around -90°C, much lower than the minimum reachable by the cooling

system. The issue is addressed by offering an option to forcibly turn off the power.

15

An even more important issue derived from a bad NTC readout comes from the fact that the
cooling system actively heats up or cools down the module to bring it to its setting temperature,
based on its current temperature which is retrieved from the database. Once in the past, an
accidental NTC disconnection made the cooling system recognize that the module was actually
at -90°C, so it tried to heat it up to its setting value, actually bringing it to more than 80°C.
To avoid such an incident in the future, a trigger is fired when the readout module temperature
is lower than -50°C, which is unreachable by the cooling system. The trigger raises a flag in
the database. The cooling system reads the flag and turns off the feedback mode and keeps the

cooling power constant until the issue is manually solved.

Finally, the temperature and dew point are also read out at the beginning of every stage of
the testing, and the testing software does not proceed unless the two are within safety ranges.
Pausing the testing in this scenario does not have any benefit for the module, but allows for a

smoother restart in case the power is externally cut for safety.

2.2.2 Development of tools to check the Module’s built quality

Whenever we receive or produce a new module, there are some preliminary tests we have to run

on it to check its quality, before proceeding to the actual module testing.

The IV and VI curves

Making IV and VI curves, being V voltage and I current, is a quick way to check for electrical
failures of any electronic component. A “VI” curve is taken by varying the current from 0 to the
component’s working point, while measuring the voltage. The “IV” curve is taken by ramping

voltage while measuring the current instead. An illustration of these definitions is represented

in Fig.
1 V

IV curve VI curve
How I varies How V varies
with V7?7 with I7

V 1

Figure 2.6: Graphical explanation of VI and IV curves

During the module testing, the VI curve is taken for the ASICs, varying the current from 0
A to the working point of 4.4 A, usually corresponding to around 1.5 V. For the sensor, the IV
curve is taken by ramping its high voltage to its working point, usually -100 V. Once taken, the
IV and the VI curves are uploaded to localDB.

The tool to build VI curves does not necessary take measurements of V right after changing

I, and the equivalent is true also when building IV curves. Instead, the tool waits for a certain

16

amount of time for the system to stabilize, and then it takes some consecutive measurements
to compute the average and the standard deviation. By taking repetitive measurements, we
minimize the effects of small noise fluctuations. How much the software should sleep, and how
many measurements we need to take to palliate the effect of noise, depends on the amount of
noise coming from what is being tested and from the environment. Therefore, each institute
should decide on their own configuration after studying the stability of their readout setup. An

example of the configuration to take an IV curve is shown in Fig.

{
"name": "HV",
"initial_voltage":
"final_voltage":
"step_size": ,

’

’

"measurements_per_step": 5,
"sleeping_time_per_step_s": 3,
"current_protection":

}

Figure 2.7: Configuration options to build an IV curve. “HV” is a label for the high voltage power

supply, defined in another configuration file. The plots shown in figures and have been taken
with this configuration.

Figure [2.8|shows an example of the IV curve taken from the sensor, and the actual monitored
current read from it. Time is represented in the x axis, and each step corresponds to a different

voltage. Significant current drifts can be observed in most of the steps.

-0.30

—— PS monitor tool (LV ON)
e IV tool (LV ON)

—0.321

Measured Current (uA)
s & 4
W w w
o] [e)] H

|
©
i
o

|
©
N
N

—-0.44 T T T .
0 50 100 150 200 250
time (s)

Figure 2.8: Results from an IV scan, where the horizontal axis is set to time so the results can be

compared to the monitored values. The red dots represent the current measurements by the IV tool.

The black curve represents the monitored current over time, taken independently with our PS monitor
tool.

For the first three seconds of every step, our tool waits for the data to stabilize, and after

17

that it takes 5 repeated measurements, separated by 0.2 s plus the PS’s latency, and computes

their average, shown with red dots in Fig. and their standard deviation.

When powering the module at its working point (4.4 A), its temperature easily rises by 10
to 20 degrees. The electrons in the sensor’s material then gain energy, which makes easier for
them to jump to the conduction band and produce current, as they would do when excited by a
charged particle. The IV curve changes accordingly, as shown in Fig. 2.9, These variations are
safe unless they make the sensor’s break down Voltageﬂ move below its working voltage. Figure
shows that the break down voltage of the sensor is larger than -150 V, far away enough
from its working point of -100 V. A failure in the cooling system causing the temperature of the

sensor to rise too much while being powered could damage the sensor, and has to be avoided.

—e— IV tool (LV OFF)
—0.15 —e— IV tool (LV ON)

—0.20

—0.251

Measured Current (uA)
S S
w w
w o

|
e
>
o

—0.454

0 -20 —40 —60 —80 ~100 ~120 ~140
Set Voltage (V)

Figure 2.9: IV curves, taken while powering up the ASICs at 4.4A (red) and while keeping it powered
off (green).

Other than showing the results tabulated in the terminal, this tool also writes the them to

a file that can be uploaded to the module database, and optionally to InfluxDB.

Module parameter optimization

The signal propagating from the module to the FPGA can be attenuated or get some noise
due to nearby electronics, or due to a bad shielding of the data cables, which could lead to
corrupted data. Two parameters are usually set to the ASICs to compensate this effect. One
parameter emphasizes the signal’s amplitude and the other emphasizes the high frequency com-

ponent of the signal, as shown in Fig. The optimal value of these two parameters highly

Increasing too much the sensor’s voltage will eventually lead to a drastic increase of its current. At that
point, we say we have reached the break out voltage. This phenomenon takes place at the edge of the sensor, due
to manufacturing imperfections that lead to very high electric fields. Different sensor units might have different
breakout voltages.

18

depends on each testing site’s setup, and has to be determined before testing the modules.

Increasing the
amplitude

D .

High Amplitude —

frequency

component \

Increasing the
high frequency
component

Figure 2.10: Schematic illustration of the meaning of increasing the amplitude or the high frequency
component of a digital pulse.

Finding the best settings manually would require a long time, and it would not be as precise
as doing it automatically. Under this motivation, we have written a tool that automates the

whole process and requires no intervention from the operator.

Assume that we want to find the best working point for the parameters that emphasize the
high frequency component ppyf.e, and the amplitude of the pulse pump in the space ppfreq €
[0,400] and pamp € [200,800]. The quality of the point under test is measured by a function
that returns the number of unresponsive pixelsﬂ from the total of 76800 the ASIC consists of. If
the software fails to even communicate with the module, the output would be “-17. A sample
result of this script would look like the one shown in Fig. The zone filled with zeros will be
more or less wide depending on the amount of noise of the testing setup. If the region is wide

enough, the testing parameters are chosen to be the one closest to the defaults.

3Unresponsive pixels are not necessary broken. The readout failure usually comes instead from high noise or
signal attenuation between the ASIC and the readout computer.

19

0 0 0 -1 -1 1 1
0 0 0 —- -1 1 1
0 0 0 0 0 -1 -1 1
0 0 0 0 0 26 -1 -1
0 0 0 0 0 0 -1
0 0 0 0 0 0 —-
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
750 80 0 0 0 0 0 0 0 0
800 4 0 0 0 0 0 0 0 0
0 5'0 1(')0 lil')O 2(IJO 250 360 3.":0 460

High Frequency Component emphasis

Figure 2.11: Sample result of the script described in section m The number of unresponsive
pixels is shown for all the parameter combinations.

To build the matrix in Fig.[2.1T] our tool will start by preparing an empty matrix of parameter
combinations, which is shown in the terminal. Among all the possible pairs, it will then choose
three random points and compute the result at them. In the example shown in Fig. the
three of them gave a perfect result. The result of these three points is used as a reference to

guess where the best working zone could be.
haxis: pl; vaxis: p@

© 50 100 150 200 250 300 350 400
200

250

300

350

400 0.0
450

500

550

600

650 0.0

700

750

800 0.0

Figure 2.12: Output to the terminal after the three first results, got by randomly choosing ppfreq
(pl in the figure) and pamp (PO in the figure).

From that stage, the script will take the last three measurements and find the one which
gave the best result. If all of them gave a communication failure (“-1”), a new random point
is found. In other case, the next testing point is chosen randomly around the minimum of the
three previous results, within a radius of 1 position. If all the points 1 position away form the
best one have already been tested, the radius is incremented by one unit and a new search is

performed.

20

haxis: pl; vaxis: po@

#
200
250
300
350
400
450
500
550
600
650
700
750
800

Thus this algorithm will first find the best working region in the matrix and then expand
from there, showing a new matrix in the terminal after every step. Therefore, if a good working

point is already clear in an intermediate state there is no need to wait until the whole matrix

0

75637.0
63240.0
25988.0
6300.0
1719.0

[SE SRS
(SRS SRR

0.0

(SSRGS

(SESESESHESRS)

200

0.0

[SESES)

0
.0
0

76800.0

250

-1.0

76800.0

0.0
0.0
0.0

0.0

300

-1.0
-1.0
-1.0
26.0

350

-1.0

Figure 2.13: The matrix is getting filled around the valley of 0’s.

gets filled and the scan can be manually terminated to save time.

Finally, to diminish random contributions from noise, each pair of values can be tested
multiple times and the number of unresponsive pixels can be computed as an average. The

real-time results of this script are shown in Fig. If needed, they can be passed to a plotter

to present them in a cleaner way, as shown in Fig. 2.11]

haxis: pl; vaxis: p@

#
200
250
300
350
400
450
500
550
600
650
700
750
800

Figure 2.14:
finishes.

0
75637.
63240.
25988.

6300.
1719.
1032.
269.0
171.0
7.0
218.0
87.0
80.0
4.0

Results after all the pairs have been tested, shown in the terminal once the script

(SIS I SIS

(SIS IS I GG RIS B S I G I G I G B S I I
(SIS IS ISR C RIS B S I G I G G IS IS I

50

100

(SIS ST TR RIS RS I S TGS IS IS I S I S
(SIS ST ST S RIS RS I ST S IS IS I S I S

150

(SIS IS TGN G RIS B G I G TN G IS S I G I

0
0
0
0
0
0
.0
0
0
0
0
0
0

(SIS G S G I S B G I G I O I G I)

.0

250
-1.0
76800.0

0.

(SIS I SIS S IS IS I S IS IS
(SIS IS I ST S IS IS I S IS IS

0

300

-1.0
-1.0
-1.0
26.0

(SIS IS I C TINCS I S I S I

0
0
0
0
.0
0
0
0
0

350 400
-1.0 -1.0
-1.0 -1.0
-1.0 -1.0
-1.0 -1.0
5933.0 -1.0
0.0 34876.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0

2.2.3 Development of a tool to automate the module testing

The scan-operator acts as a wrapper around YARR, labRemote, the monitor software and the

databases. It automates all the testing workflow, organizes the configurations and handles the

21

400

data storage into the databases.

Testing workflow automation

The module testing has many stages (module registration into localDB, module readout, DCS
and module data synchronization in localDB, etc.), and requires in principle the usage of different
tools that are independent to each other, as described in Section The scan-operator

automates most of the work, according to the procedure explained in this Section.

After assembling the modules, and even before starting the testing, they have to be registered
in the production DB which is accessible worldwide. The module information should then be
retrieved from the production database to localDB. This process has to be done by hand. The

flow of information through databases is shown in Fig. [2.15

Production
Module configuration database

Testing data

InfluxDB

Quad

Module operator

Figure 2.15: Data flow through databases. The module configuration is first retrieved from pro-
duction database. Once all the results are merged and ready in localDB, they are uploaded to the
production database.

During the testing, the configuration for the module under test is retrieved from the local
database, which is done automatically by the scan-operator. The module is then configured
according to it. Fach ASIC has more than 150 configurable parameters, and each module
contains four ASICs. Most of them are always left in the defaults, but sometimes a parameter
has to be modified. The scan-operator provides an interface to do it in a much simpler
way than opening and editing manually the large ASIC configuration files. The design of this

configuration goes as follows:

1. The configuration for a module is specified in a single file, following the structure presented

in Fig. 2.16]

22

"'modules":
{
""QUAD_SERIAL_NUMBER": {
"chipType": "RD53A",

"chips": [

{
""chipl_parameter_1": 123,
""chipl_parameter_2": 34,
"chipl_parameter_n": 583

}I

{
""chip2_parameter_1": 42355,

}I

{Chlp?)}l

{chip4}

b

Figure 2.16: Scheme of the module configuration file.

2. In the chip (chip meaning ASIC) configuration section, the user specifies only the param-

eters that need to be modified from the defaults.

3. The scan-operator will look for those parameters in the actual ASIC config files, which

are hidden to the user.

4. If the parameters are found, they are modified according to the scan-operator’s configu-

ration. Otherwise a warning is printed and the parameter is ignored.

Just by looking at a single file, the user perfectly knows how the module is configured, without
having to open four big files and remembering which parameters were changed and which were
not. Sharing the configurations also becomes much easier when they are summarized into a

single file. This is one of the main appealing points of the scan-operator.

Once the configuration is ready, and before start operating the module, the scan-operator
starts monitoring the power supply. There are two ways of doing it. The first one is by having
the script I wrote for that constantly doing the job in the background (described in Section
, as it was the case in Figs. and The second one, in case we only want to store PS
data while the tests are ongoing, the scan-operator can autonomously run the same monitoring

script just before starting the tests, and kill it once the module readout is finished.

Once the DCS monitoring is working, we are ready to start the tuning procedure, con-
sisting on a sequence of steps written in one of the scan-operator’s configuration files. The
scan-operator is the responsible of calling Yarr, that actually communicates with the ASICs.

Once finished, the relevant results are uploaded to the local database.

In the case of the actual production, once the tuning sequence is finished, the tuning results
are stored in localDB. Once the operator checks that all of them are correct, they are uploaded

to the production database together with the module configuration, making them public for

23

everyone.

Structure and organization

The scan-operator is meant to simplify the module testing process, so it needs to be simple

to use, and the documentation has to be clear and concise.

The whole framework is stored in the same GitLab repository[§], and all the documentation
is written in a single README.md file. However, numerous error scenarios like the one shown in
Fig. have been implemented in all the scripts, so referring to the documentation becomes
useful only for completeness. The intended user experience behind the design of this software is

summarized by the following three points.

1. The user first sees what the software can do by looking at its command line options, as

shown in Fig.

./ScanOperator.sh

Help:
-m [str] : Serial number of the module
-W : upload Yarr's results to localDB (scanConsole's -W)
-0 : turn on / off the output of the PS before and after all the scans
-e : Check if T and H are within a setting range before running each scan
-d : Monitor the PS and upload the DCS data to influxDB.
-t : Move DCS data from InfluxDB to LocalDB after each scan.
-C : Create / override Yarr's config files for your chip.
-s : Don't look for updates in the config (saves time)
-j : Just update the configs, and exit before running any scan
-q : "quiet" mode (cleaner output).

Figure 2.17: List of options available in the scan-operator.

2. After looking at the available options, the user can use the options he/she considers con-
venient, without having to know what configuration is required or where it has to be

specified.

3. If any option, configuration, or command is incorrect or missing, the tool itself will tell
the user what is wrong and how to fix it. The example shown in Fig. 2.18is one among

many of the same kind that have been implemented in the software.

$./ScanOperator.sh -m "QUAD@8"

[error 1[so]l No module ID "QUAD®@8" found under the entry "modules" in /daq/so/configs/so_modules.json.
[info 1[so] Only the following module IDs are currently defined in the config file:

- example_scc

- example_quad

[info 1[so] Please add yours (or rename one of the above) and try again.

Figure 2.18: The user wants to operate a module “QUADO8”, but does not know where to write its

configuration. The user then just runs the scan-operator, which points him to the configuration file
that has to be modified.

Efforts have been also put into well commenting the code, so understanding it becomes easier

for future developers of the tool.

24

Also following this simplistic philosophy, the scan-operator uses many small configuration

files, a single one for every purpose. The scan-operator has many options, and very rarely a

user would want to use them all. This reduces the amount of code the user has to look at before

using a particular option of the software, making the user’s experience more pleasant.

Organization of the results

YARR produces one folder per readout attempt, but these are not organized into any par-

ticular way into YARR’s output directory. The scan-operator, however, takes all the readout

attempts corresponding to the same testing sequence and puts them into a common folder,

named according to the date it was created. Inside that folder, a file indicating the time con-

sumed by every stage of the module tuning/readout procedure is also created. This is useful

to have a quick overview of how much time the sequence took to finish, that would have been

difficult to compute in other case.

mario@fpga0l: /mnt/HDD1/DAQ/scan-operator/data$

210513_001
210513_002
210513_003
210513_004
210513_005
210513_006
210513_007
210513_008
210513_009
210513_010
210513_011
210513_012
210513_013
210513_014

513 015

210514_066
210514_067
210514_068
210514_069
210514_070
210514_071
210514_072
210514_073
210514_074
210514_075
210514_076
210514_077
210514_078
210514_079

210515_017
210515_018
210515_019
210515_020
210515_021
210515_022
210515_023
210515_024
210515_025
210515_026
210515_027
210515_028
210515_029
210515_030

219515 031

210518_016
210518_017
210518_018
210519_001
210519_002
210519_003
210519_004
210519_005
210519_006
210519_007
210519_008
210519_009
210519_010
210519_011

210519 012

ls

210521_075
210521_076
210521_077
210521_078
210521_079
210522_001
210522_002
210523_001
210523_002
210523_003
210524 _001
210524 _002
210524 _003
210524_004

YYMMDD_ RunNumber
210519 006

041241_std_digitalscan
041242_std_analogscan

041243 _diff_tune_globalthreshold
041244 _diff_tune_pixelthreshold
041247 _lin_tune_globalthreshold
041248 _lin_tune_pixelthreshold
041251_syn_tune_globalthreshold
041252 _syn_tune_globalthreshold
041255_std_thresholdscan

time.dat

what Elapsed (s)

std_digitalscan 10.530145974
std_analogscan 10.873790310
diff_tune_globalthreshold 49.905878811
diff_tune_pixelthreshold 24.826927571
lin_tune_globalthreshold 24.666430331
lin_tune_pixelthreshold 38.972998956
syn_tune_globalthreshold 56.140130155
syn_tune_globalthreshold 53.541813245
std_thresholdscan 205.814470983
total_so 487.298100816

Figure 2.19: The testing results (041241 _std_digitalscan, etc.) are stored inside one folder per
scan sequence (210519_006, etc.). The elapsed time per scan is also calculated.

Integrated interlock system

There are a few features included in the scan-operator that simplify and make the module

testing more secure. These are triggered by different events.

e Sometimes, a few very noisy pixels might overflow memory buffers and cause data corrup-

tion in the ASIC side. In this case YARR will either crash from a segmentation fault or

report the error and exit. We can have a rough estimation on the frequency with which

these corrupted data-related errors occur, which depends mainly on the amount of noise

coming from the readout setup. However, we cannot predict when they are going to stop

the sequence.

The status of the module is saved after every stage of the testing sequence, so if a sudden
software crash happens in the middle of one stage, just restarting the process at the point
it was interrupted is enough to get over the issue. Doing this by hand takes some time,
to what we have to add the time from the point the software crashes until we actually
notice it. The scan-operator re-runs the scans for us in this situation, up to a maximum

number of attempts before interrupting the testing permanently, for safety.

e In the scenario of a critical error or a interruption signal from the user, the software will
exit safely, restoring the terminal to its original state and closing all the child processes to

leave the environment exactly as it was before the run.

2.2.4 Development of data-analysis tools

YARR generates some plots automatically as a quick overview of the test results, but the data

are also generated to be used for a more extensive offline analysis.

Currently, localDB automatically produces a predefined set of plots from the readout data of
every tested module in the database. These plots are produced dynamically when the user access
the database from an internet browser. This approach saves memory, but increases considerably
the amount of time the web page takes to load. LocalDB is also usually local, and the localDB

in one institution is usually not accessible from outside.

LocalDB is not intended to be used as an analysis tool or to share plots between institutes.
In order to facilitate these actions, I have built a small analysis framework that produces plots
that can be uploaded to any server, where anyone can not only view them but also interact with

them.

Offline data analysis framework

This analysis tool takes the results coming from YARR as input. It then builds a class where
all the pixels in the matrix are registered together with their coordinates, measured threshold,
measured noise, etc. Once all the information has been read, the histograms requested by the

user are created. These histograms can be classified into three main categories:

e 2D histograms, of either the entire ASIC or all its cores stacked onto each other. The Z
axis corresponds to one of the attributes of the pixels. All the pixel cores are clones of
each other, so the behavior of a pixel usually depends more on its relative position inside

its core, rather than on its location in the whole matrix.

26

©180
160
140

120 -

100

Threshold (e)

@
=]
o
©
B
o

o 1 2 3 4 5 6 7 8
column column

280 300 320 340 360 380 400

Figure 2.20: Threshold map in the whole differential FE (left). Threshold map of all the differential
FE’s cores stacked. The target threshold in both cases is 950 electrons.

The plots in Fig. show the threshold distribution of the pixels in the differential FE,
after tuning. When stacking all the pixel cores and plotting the average threshold, it is
clear that some pixels in the right side of the cores have lower threshold than expected.
The discrepancy between their threshold and the target one is visibly larger than the
threshold dispersion shown by the rest of the pixels in the matrix. This kind of plots were
useful to identify the cause of the issue in RD53A, which has already been corrected in
the design of RD53B.

1D histograms: This allows us to build a histogram on a selected property of the pixels
(noise in Fig. , separating in the tuned and untuned pixels in the distribution. A pixel
is categorized as tuned if its measured threshold agrees with the target threshold within

three sigmaﬂ An example of such a threshold distribution is shown in Fig. 3.2

4Sigma refers to the standard deviation of a Gaussian. The value of sigma is taken from fitting to a Gaussian
the threshold distribution in the tuned state.

27

Counts

[Tuned: &5%

10° D Untuned: | 15%

10%

T

T

10

1Rk
1 1 1 1 1 1 1 1 1 1 1 1 1 IHI 1 1 1 1 1

g 0.87 - e ———
o C - -
qc) 0.6 N o _
204 e
0.2f .t
N L]
0 50 100 150 200 250

noise

Figure 2.21: Sample noise distribution in a tuned state. Noise 0 is by convention associated to the
pixels whose threshold measurement failed.

Pixels with higher noise are intuitively more difficult to tune, and therefore more likely to
be untuned. However, the actual relation between the tuned state and the noise of a pixel
is not clear until we build plots like the one in Fig. [2:21] More specifically, the lower part
of it represents the ratio “tuned/total” as a function of the noise. This allows, for example,
to set a quality requirement on the pixels based on their noise. We could define “normal”
pixels the ones with the noise below 100, and define “noisy” pixels the ones above that
level, that are more than 50% likely to be untuned. Many other quantities can be plotted

instead of noise, to get similar conclusions.

Correlation plots:

Finally, we are able to select any two characteristics of the pixels and plot them against
each other in a 2D histogram, as shown in Fig. 2.22]

28

350

noise

300

2
250 10

Number of Pixels

200

150 10

100

50

o_lIII|I!II|IIII|IIII|IIII|IIII|IIII

| 1 1 | 1
500 1000

Figure 2.22: Noise and threshold plotted against each other.

The main point of this tool is that it allows us to easily build many types of histograms from

any object than can be created inside a Python class.

The results on the Web

All of these plots are produced offline and organized in folders. A simple bash script is used
to upload all of them to a web server, and all the index.html files are automatically generated

accordingly, being linked to each other and reflecting all the contents of each folder as shown in

Fig.

29

isNoise0_fullFE isNoise0_perCore noise_fullFE

360 380 400 O
column

280 300 G20 340 360 380 400 ° 280 300 820 340
column

7 8
column

Also as [.pdf], [.root], Also as [.pdf], [.root], Also as [.pdf], .root],
noise_perCore thr_fullFE thr_perCore
3 9 z = 8 . .
H 8180 - & ad
i 160 1600 k: 40
§ 140 oo Sr
oas
5| 120 200 5
. - - Ju I e
E= o il 3 " oes
2F] s) " 2E—
- = - c] N
1 " 200 = 200 18
o1
Ju AR e iy |)

0o 1 2 3 4 5 6 260 300 820 340 360 380 400 0o 1 2 3 4 5 6

7 8 7 8
column column column

Also as [.pdf], [.root], Also as [.pdf], [.root], Also as [.pdf], [.root],

Figure 2.23: This web page has been automatically generated from a folder in my local computer.

The plots in Fig. [2.23| are shown in the browser in .png format, and the time this page takes
to load is negligible as it requires almost no computing. The analysis tool producing the plots
also allows us to export them in .pdf, .root and .txt (raw data). If the same plot is located
in the same folder in multiple formats, those will be shown under the figures as it can be seen
in Fig. Clicking .pdf will show the pdf version of the above .png. Clicking .root will
show an interactive version of the plot based on JSroot (JavaScript Root)[L0], allowing to zoom
it, view the contents of each bin, modify any visualization option, and re-export it in multiple
other formatsl

This tool also makes the results easy to share with anyone, and the interactive visualizations

do not have any special software requirement on the user’s machine.

Timing plots

Automating and accelerating the module testing loses its meaning if other production stages
take longer and become a bottleneck in the module production chain. This is a situation we
really want to avoid. For that, we need a time estimation on how much it takes to complete the

testing stage.

The timing information that the scan-operator outputs can be used as the input of another
script that uploads it to the web. A modified version of a tool which is currently used for a
similar purpose at the CMS experiment, is used to produce interactive plots like the ones show
in Fig. 2.24]

®An example interactive histogram based on JSRoot can be accessed from https://root.cern/js/latest/
?nobrowser&file=../files/hsimple.root&item=hpxpy; 1&opt=COLZ

30

 https://root.cern/js/latest/?nobrowser&file=../files/hsimple.root&item=hpxpy;1&opt=COLZ
 https://root.cern/js/latest/?nobrowser&file=../files/hsimple.root&item=hpxpy;1&opt=COLZ

Dataset | digital_quad_defaultCfg_noDiffFinePxTun
or upload a file | Browse... | No file selected
Metric | timing v | Groups | tning_sequence v | Colour style | default v |

-]

Show |10 v |entries Search: :
Element * Time Fraction
Differential FE 616s 24.2%
Linear FE 129.3s 50.7 %
Synchronous FE 64.2s 252%
total 255.2s 100.0 %
Showing 1 to 3 of 3 entries Previous Next

&=,
G

Circles

Figure 2.24: Time taken to completely tune the three front-ends of one ASIC.

The plot in Fig. shows the time consumed by every stage in the tuning sequence,
broken down into the three front ends the ASIC consists of. It is an interactive plot, where we
can expand every section or hover over it to get the time it particularly took. These plots allow
us to have a quick visual comparison of all the tuning stages, to quickly know which one we
should work on if we want to accelerate the tuning sequence. In the above plot, the algorithm
called “lin fnPxThrTuning” was slowing down the entire tuning process. After comparing the
tuning results with and without it, we decided not to include it in the tuning sequence, saving

more than 50 seconds per module.

31

Chapter 3

Results: Significance of my
contributions in the Module testing

How

This section summarizes the module testing, highlighting the importance of my contributions in

the process.

3.1 First steps after assembly

IV and VI curves

The first thing we do once the module is ready to be tested is taking its VI curve. We do
it using the tool I wrote for that, and then we compare the results to what we expect from the
experience with other modules. We also take the sensor IV, ramping this time the voltage from

0 to -150 V. We should expect the current to stay low all the time.

Any result out of the ordinary when preforming an IV or VI scan would be a sign of a
powering issue. The issue could be originated by damage in the sensor or in the ASICs, which
is not reparable, but it could also come from broken wire-bonds or damaged components in the

PCB, which are replaceable.

32

1.3 1 — before configuration
—— after configuration /
N //
1.1 //
E //
(] 1.0 1
o)
]
°
> 0.9
0.8
//
0.7 1 /
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

current (A)

Figure 3.1: Before reading out modules, they are configured by YARR. This is done by modifying
some registers in the ASICs. Here two VI curves are shown for a damaged module, before and after
configuring it. An ASIC is taking more current than what it should, lowering the voltages to a level
that makes the readout fail.

The module from where Fig.|3.1| was taken presents an abnormally high current consumption
over one single ASIC. The problematic ASIC was identified using a thermal camera, since the
increased current made its temperature rise above the other three ASICs. In a normal scenario,
each ASIC would consume 1.1 A from the total of 4.4 that are supplied to the module, and no

significant temperature difference would be observed among them.

The solution for this module was to completely disconnect the problematic ASIC, so the

three other ASICs could be normally used at 3.3 A.

Output signal enhancement

We use the tool described in section to find the most adequate shape of the output
signal from the module. This configuration should work for all the modules tested in the same
testing site, but this procedure has to be repeated in all the sites. After this stage, the module

is ready for tuning.

3.2 Module tuning

The tuning is done by the scan-operator.

The target threshold is decided such that it is larger than the mean noise level, but not larger
than most of the real hits. The quickest and most simple way to decide on a good threshold

is to tune a module to various threshold candidates and perform multiple readout tests under

33

x-ray irradiation. A threshold too low would give a noisy result, whilst a threshold too high
would give a low number of recorded hits. An example of the results after a good choice for the
threshold is shown in Fig. 3.4

The tuning starts by scanning the ASICs to find any damaged pixels, that would behave as
being constantly hit. The large fake hit rate coming from them might overload memory buffers
in the ASIC and cause memory corruptions. Identifying these pixels is not complicated, since
their hit rate is typically four orders of magnitude larger than the one of a normal pixel. Once

identified, these problematic pixels are tagged at this stage and ignored hereafter.

We then proceed to the actual tuning. We are particularly interested in tuning the differential
front-end, because that is the only front-end used in the final RD53B. However, in order to
properly test the sensor, we are tuning also the linear and the synchronous, enabling as many
pixels as possible. The distribution from the threshold readout before and after tuning can be
seen in Fig. n The value of each pixel’s measured threshold is shown in Fig.[3.3] The threshold
of the pixels in which the algorithm measuring the threshold fails to fit the S-curve is set to 0
by default.

Counts

|:| ithin 3o: : 96%
10*
D dutside 30 4.3%

D Within 30: 14%
D Outside 3o: 86%

Counts
T T TTTIT

10°

10?

S
T

0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000
Threshold (e) Threshold (e)

Figure 3.2: Threshold distribution before (left) and after (right) tuning, for the whole RD53A. The
total number of entries is the total number of pixels in the pixel matrix.

34

row

180 =
160 =
140 |
120 |
100 =
80
60
40F

4000

3500

Threshold (e)

3000

2500

2000

1500

1000

20FE 500

row

180 =
= 3000
160 =

Threshold (e)

140 2500

120
2000
100
1500

1000

500

350 400
column

300

250

() 50 100 150 200

Figure 3.3: Threshold map before (up) and after (down) tuning. The three front-ends of RD53A
(synchronous, linear and differential) can be well distinguished from their initial default states in the
upper picture. The target threshold is 2000 electrons.

After each stage, the readout results are uploaded to localDB. The scan-operator then takes
from influxDB the environmental data (typically Voltage, Current and Temperature) that was

read out during the scan, and uploads it again to localDB, associated to the module information.

The scan-operator can tune a module and leave all the results ready in localDB to be
uploaded to the production database. In a production stage, the only required external inter-
vention would be changing from one module to another. Other than that, the operator could
work on anything else while a module is being tested, minimizing the number of people required

to be in the clean room, and contributing to the organization of an efficient testing chain.

3.3 The X-ray scan

Once the module has been tuned, we proceed to the x-ray test. This is the final stage of the
module testing, that checks at the same time the correct behavior of all the pixels in the ASIC
and in the sensor. The X-ray scan is run from the scan-operator as any other stage of the
module testing, but the scan-operator does not play any special role here. This scan has been

included in this Section of the thesis mainly for completeness.

35

800

row

700

occupancy

600

500

400

300

200

100

LR R R
350 400
column

o

Figure 3.4: Results of an x-ray scan. The z axis represents the number of hits recorded in every
pixel.

Figure [3.4 shows the output of an X-ray scan taken at KEK. Most of the X-says get trapped
into the thick PCB components (capacitors, etc) before reaching the sensor, which is located

right under the PCB. This is why we can see the PCB layout as the result of the scan.

3.4 Summary of the main improvements due to my contribu-

tions

There are three categories where my contributions have improved the module testing.

Safety improvements

The module testing has become safer for the module. Controlling the power supplies, and
performing delicate procedures such as ramping up and down the high voltage from remote, and
not directly operating the PS, makes the whole module operation safer. Monitoring temperature
and dew point at the module surface, and using the data to trigger safety actions in case of need

has also meant an improvement.

Precision improvements

This applies mainly to the IV and VI curves. Using a common tool makes the way the curves
are taken identical for every institute. This allows for reliable comparison between modules,
ensuring that any discrepancy would come from the modules themselves rather than from the

way their data were taken.

Time consumption reduction

Time has been gained in many different stages by automating most of the module testing.

Part of it comes also from the IV and VI scans. As an example, in the case of the IV scans,

36

ramping from 0 to -150 V in steps of 5 V, and taking 5 measurements per step, requires to take
150 measurements and to change the PS’s voltage 30 times. Doing this automatically is clearly
much faster than doing it manually, but more importantly this approach requires no manual

intervention at all while the data is being taken.

Also, manual intervention is not needed during the parameter optimization and the tuning
sequence. Apart from making the testing faster in overall, this considerably reduces the workload

of the operator, making his/her time more valuable.

37

Chapter 4

Discussion

The scan-operator, as well as the power supply monitor tool, the script to take IV and VI
data, and the one to find the best configuration of a module have been already used extensively
both in Osaka and in KEK, by different people and in different situations, motivated by all the
advantages that have been already described. However, its usage still has to be tested in the
new RD53B’s, and in other forms of RD53A modules, such as 3-ASICs’ modules and 2-ASICs’

ones).

The module production is still in an early stage. Once the RD53A production finishes, new
RD53B modules have to go through a similar process, and finally around 10000 of them have
to be produced and installed in the detector during the HL-LHC upgrade. Modules are now
carefully assembled and tested to identify any potential issue and solve it before the actual
production, but once the production starts the modules have to be made quickly in order to
get all of them ready on time. It is at that stage where tools like the ones presented here will

become essential.

However, work is still to be done on these tools. The software that these tools are using
is constantly evolving, so their future maintainer has to ensure that compatibility is preserved
within all of them. The hardware is also changing. Recently, a new LV power supply was decided
to be used for the module testing in Japan. The power supply controller and monitoring tool
has to be confirmed to work with this new device. If this was not the case, more development
in the labRemote repository would also need to be carried out by someone with access to the

power supply.

Finally, more features could be added to these tools if they are eventually needed, or some

existing ones might be deprecated if they are not needed anymore.

38

Chapter 5

Conclusion

This thesis has presented the work done in optimizing the ATLAS pixel modules testing from
the software side. The contributions to the testing presented in this document have made the
procedure become faster, safer and less biased by human intervention. These tools will be
specially relevant in the module mass-production stage, when speed, safety and consistency are

three essential factors that need to be maximized.

39

Acknowledgments

On top of everything, I would like to deeply thank all the staff members of the Yamanaka
Laboratory. Special thanks to Taku Yamanaka and Hajime Nanjo for all their advises and great

patience while revising this thesis, helping me to improve as an academic writer.

Many thanks also to the students of the laboratory, specially to Taylor Nunes, Lakmin

Wickremasinghe and Ryota Shiraishi for becoming good friends inside and outside the lab.

Finally, I am also deeply grateful to the members of the music club “Ginshokai” in the
university, and to Gaizan Aeba and Kaoru Iwasa among others for so many good moments and

experiences also outside the university.

40

References

The ATLAS collaboration. The ATLAS Experiment at the CERN Large Hadron Collider.
JINST, 3:508003. 437 p, 2008. Also published by CERN Geneva in 2010.

CERN. High-luminosity lhc. https://home.cern/science/accelerators/
high-luminosity-1lhc. Accessed: 2021-08-16.

Maurice Garcia-Sciveres. The RD53A Integrated Circuit. Technical report, CERN, Geneva,
Oct 2017.

The Atlas Collaboration. LocalDB. https://localdb-docs.readthedocs.io/en/top/.
InfluxData Inc. InfluxDB. https://www.influxdata.com/.

The Atlas Collaboration. YARR (Yet Another Rapid Readout). https://gitlab.cern.
ch/YARR/YARR!.

The Berkeley laboratory. labRemote. https://gitlab.cern.ch/berkeleylab/
labRemote/.

The Atlas Collaboration. the Scan Operator. https://gitlab.cern.ch/YARR/utilities/
scan-operator.

Grafana Labs. Grafana. htps://grafana.com/docs/.
CERN. JavaScript Root. https://root.cern/js/.

keysight. Introduction to the SCPI Language . https://rfmw.em.keysight.com/
spdhelpfiles/33500/webhelp/us/content/__I_SCPI/00%20scpi_introduction.htm.
Accessed: 2021-08-16.

41

https://home.cern/science/accelerators/high-luminosity-lhc
https://home.cern/science/accelerators/high-luminosity-lhc
https://localdb-docs.readthedocs.io/en/top/
https://www.influxdata.com/
https://gitlab.cern.ch/YARR/YARR
https://gitlab.cern.ch/YARR/YARR
https://gitlab.cern.ch/berkeleylab/labRemote/
https://gitlab.cern.ch/berkeleylab/labRemote/
https://gitlab.cern.ch/YARR/utilities/scan-operator
https://gitlab.cern.ch/YARR/utilities/scan-operator
htps://grafana.com/docs/
https://root.cern/js/
https://rfmw.em.keysight.com/spdhelpfiles/33500/webhelp/us/content/__I_SCPI/00%20scpi_introduction.htm
https://rfmw.em.keysight.com/spdhelpfiles/33500/webhelp/us/content/__I_SCPI/00%20scpi_introduction.htm

Appendix A

The SCPI command set

The code we use to monitor and control power supplies can be used to communicate to many
devices from different manufactures. Some of the commands, such as power-on or power-off,

would work also for other lab equipment such as an oscilloscope.

The reason behind this fact is the SCPI (Standard Commands for Programmable Instru-
ments) command set[I1]. It is an ASCII-based set of commands that are both human readable
and can be interpreted by a device. The following is an example showing the sequence of com-
mands that are needed to turn on the output of a specific power supply channel, after setting

the voltage and current to some values.
1. INST:NSEL 3, selects the channel 3 of the power supply.

2. CURR 4.4, fixes the current to 4.4 A.

3. VOLT:PROT 1.8 sets the maximum voltage, also known as Over Voltage Protection to 1.8
V.

4. OUTP ON turns on the output of the power supply. The power supply will increase the

output voltage until either the target current is reached or the voltage protection is reached.

Some commands are also available to measure the output current or voltage. MEAS:CURR?

will return the output current, whilst CURR? will return its setting value.

These commands are serialized and sent to the device via a USB cable. Since the communi-
cation process can be complex to implement, common tools like LabRemote[7] are used instead

to act as an interface between the user and the actual serial communication.

42

	Introduction
	The Large Hadron Collider and the ATLAS experiment
	The High Luminosity LHC
	The basics of the ATLAS Pixel Detector for the High luminosity LHC
	Pixels, sensors and pixel modules
	The pixel module assembly
	The pixel module functioning

	The RD53A ASIC
	Issues and requirements on the module production
	Module handling
	Reproducibility among modules and institutes
	Speed and simplicity
	Interlock system

	Situation before my intervention
	Purpose of this research
	Structure of this thesis

	Development of Integration Tools for the module testing
	Overview: Hardware and Software setup
	Software tools for the module testing
	Contributions to the environmental monitor system
	Development of tools to check the Module's built quality
	Development of a tool to automate the module testing
	Development of data-analysis tools

	Results: Significance of my contributions in the Module testing flow
	First steps after assembly
	Module tuning
	The X-ray scan
	Summary of the main improvements due to my contributions

	Discussion
	Conclusion
	The SCPI command set

