
KOTO実験のためのDAQバックエンド
システムの開発とその評価

大阪大学大学院 理学研究科 物理学専攻
山中卓研究室 博士前期課程 2年

中谷 洋一

February 10, 2011

概 要

茨城県東海村にある大強度陽子加速器施設（J-PARC）で 2012年から開始され
る予定の J-PARC E14 KOTO実験では、長寿命中性 K中間子の稀崩壊イベント
KL → π0νν の観測、分岐比の精密測定を目指す。
実験で用いる検出器のすべての信号は Flash ADC (FADC) で波形を記録し、16

台の Level2 Trigger Board から Ethernet で PC farm へ転送したのちに処理さ
れる。
この論文では、PC farm上で処理を行う Data acquisition (DAQ) backend system

の開発成果について、動作及び性能評価の結果を述べる。

目 次

第 1章 序論 6

1.1 KL → π0νν の物理 . 6

1.2 KOTO実験 . 6

1.2.1 検出器 . 6

1.3 DAQ . 7

1.3.1 DAQシステム . 7

1.3.2 DAQフロントエンドでのデータ伝送 9

1.3.3 トリガーレートの見積もり 9

1.3.4 最低要件？ . 10

1.4 本研究の意義 . 10

第 2章 DAQバックエンドの処理 11

2.1 全体のフロー図 . 11

2.2 受信部 . 11

2.2.1 ソケット関数 . 11

2.2.2 受信イベントバッファ . 15

2.2.3 イベント選択処理待ちキュー 16

2.3 イベント選択部 . 17

2.3.1 イベント情報の整合性チェック 17

2.3.2 波形情報の整列 . 17

2.3.3 保存処理待ちキュー . 19

2.4 保存部 . 19

2.4.1 書き出しファイル形式 . 19

2.4.2 書き出しデータの圧縮 . 20

2.5 その他の追記 . 22

2.5.1 boostライブラリ . 22

2.5.2 ソフトウェアで利用している技術（？） 22

第 3章 試験、評価 26

3.1 処理ごとの処理能力の評価 . 26

3.2 総合しての性能評価 . 26

3.2.1 2010年 10月 Enginerring Run のデータを用いた評価 26

1

第 4章 まとめ 27

付 録A dummy appendix 28

2

図 目 次

1.1 KOTO実験の検出器。左から入射したKLが中央の領域で崩壊する
事象を領域の全立体角を覆う検出器で観測する。 7

1.2 Flash ADCボード . 7

1.3 Level 2トリガーボードから PCへ送られてくるイベント情報の構造 9

1.4 各検出器からの信号の伝送の様子。Flash ADCで digitizeされた信
号は Level 2トリガーボードへ、さらに PCへと転送される。 . . . 9

2.1 バックエンドソフトウェアの全体像
情報が左（受信部）から右（保存部）へ渡されていく様子を表す。 12

2.2 ソケット関数を利用して受信する場合のOS内部の挙動 14

2.3 受信イベントバッファの概略図。N個のエントリーを持つブロック
を連結した構造。 . 15

2.4 もう少し詳細なデータ保持の方法。
断片のデータ自体はnodeの上に受信順に前から記録していき、block

の entryにはその所在地を記録する。 16

2.5 整列によってチャンネルデータにアクセスしやすくなる。 18

2.6 書き出し形式の概要図 . 20

2.7 サンプリングされた波形情報の例 21

3

表 目 次

1.1 検出器ごとの信号の数、及び使用する FADCの条件 8

1.2 KLの主要な崩壊モード . 9

4

リスト一覧

2.1 socket()関数を利用した受信の例 12

2.2 ソフトウェアからパイプを利用する 21

2.3 スレッドの利用例 . 23

2.4 ミューテックスの使用例。行 10と 14に挟まれたコードは排他的に
実行される。 . 23

2.5 条件変数の使用例。timer ep()で counterを 1にセットしたことを
通知する。 . 24

5

第1章 序論

茨城県東海村にある大強度陽子加速器施設（J-PARC）で行われるKOTO実験
では、長寿命中性K中間子の稀崩壊モード KL → π0νν の分岐比を測定する。
本論文では、この KOTO実験で必要となる Data acquisition (DAQ) backend-

systemの開発成果について説明し、その性能を評価する。

1.1 KL → π0νν の物理
弱い相互作用の固有状態は |K0〉と |K0〉であり、質量固有状態 |KL〉と |KS〉は、

|K0〉と |K0〉を用いて、 {
|KL〉 = 1 + 1 = 2!

|KS〉 = 1 − 1 = 0!
(1.1)

まだ

1.2 KOTO実験
KOTO実験は、長寿命中性K中間子 KL の稀崩壊モード KL → π0νν の崩壊分
岐比（BR: Branching Ratio）を測定することで、弱い相互作用によるCPの破れ
の大きさに関するパラメータ η を直接測定し、標準理論の検証を行うことを目的
とする。

KL → π0νν の崩壊分岐比は、標準理論によると 2.8× 10−11 [1]と予言されてい
る。よって、崩壊事象の観測にはO(1011)の統計数を期待できる大強度のKLビー
ムが必要であり、そのため、茨城県東海村の大強度陽子加速器施設（J-PARC）で
実験を行う。また、パイルアップ事象の影響が無視できないので [?]、検出器の全
ての信号は Flash ADC（FADC）を用いて波形読み出しをする。

1.2.1 検出器

図 1.1は検出器の全体配置である。KL → π0νν 崩壊モードで生成される π0は
すぐに 2本の γへ崩壊する。また、νは検出できない。KOTO実験では、2本の γ

6

図 1.1: KOTO実験の検出器。左から入射したKLが中央の領域で崩壊
する事象を領域の全立体角を覆う検出器で観測する。

図 1.2: Flash ADCボード

を CsI電磁カロリメーターで検出し、他の崩壊領域を囲む検出器にはなにも検出
されないということを確認することでKL → π0νν を同定する。

γを検出するためのCsI電磁カロリメーターは約 2700本のCsI結晶で構成され、
結晶 1本づつに PMTを取り付けて信号を読み出す。KOTO実験の検出器ごとの
信号の数を表 1.1に示す。他の検出器からのものも合わせると、扱う信号の数は約
3000チャンネルにもなる。

1.3 DAQ

KOTO実験では、検出器からの約 3000チャンネルの信号はすべて、フィルター
を通した後にFlash ADCを用いて波形を記録する。記録した波形を用いてハード
ウェアによるLevel 1トリガー、Level 2トリガー決定が行われる。Level 2トリガー
されたイベントはPCファームへイーサネット経由で転送されて、ソフトウェアに
よる Level 3トリガー処理がなされる。

1.3.1 DAQシステム

Flash ADCボード

検出器の信号はフィルターを通した後、シカゴ大学が開発を行った 16ch 125MHz

14bit Flash ADC（図 1.2）を使用してその波形を記録する。

7

表 1.1: 検出器ごとの信号の数、及び使用する FADCの条件

Detector Channel No. Readout, # of ADC boards

NCC 48 125-MHz ADC × 3

FB 32 125-MHz ADC × 2

BCV 64 125-MHz ADC × 4

MB 128 125-MHz ADC × 8

MB extra 64 125-MHz ADC × 4

CV 64 500-MHz ADC × 16

LCV not many 125-MHz ADC × 1 or 2

CC03 32 125-MHz ADC × 2

CC04 48 to 80 125-MHz ADC × 5

CsI 2716 125-MHz ADC × 140

CC05 48 to 80 125-MHz ADC × 5

CC06 48 to 80 125-MHz ADC × 5

BHCV 16 500-MHz ADC × 4

BHPV 25 or 55 500-MHz ADC × 14

Level 1トリガーボード

Level 1トリガー決定を行うボード。登場場面は今後ないが、Level 1トリガーが
ETと Veto検出器の信号を組み合わせたトリガー決定を行う（未定）ことを明記
する？

Level 1トリガーを発行したことを Level 2トリガーボードへ伝える。

Level 2トリガーボード

Level 2トリガー決定を行うボードであり、PCファームへ波形情報を送るボー
ド。FADCでサンプリングされた波形情報は、オプティカルファイバーを通して
FADCからLevel 2トリガーボードへ送られる。波形情報をもとにLevel 2トリガー
を発行されたイベントは、Level 2トリガーボード上に搭載されたメモリーに格納
される。

1スピルの間にメモリーに格納されたイベント情報は、次のスピルが始まると、
PCへ送信され始める。メモリーは 2つ搭載されていて、スピルごとに切り替えて
使用するようになっているので、イベント収集と PCへの転送が並行して行える
仕様となっている。

Level 2トリガーボードからPCへのイベント情報の転送は、Ethernetを通して
UDPプロトコル形式で送られる。図 1.3は Level 2トリガーボードが送るデータ

8

図 1.3: Level 2トリガーボードから PCへ送られてくるイベント情報の
構造

図 1.4: 各検出器からの信号の伝送の様子。Flash ADCで digitizeされた
信号は Level 2トリガーボードへ、さらに PCへと転送される。

の構造である。送られるデータは 1つのイベントの情報の断片であり、断片には、
それを識別するための情報である、. . .が記されている。

PCファーム

複数のLevel 2トリガーボードから送られるイベント情報の断片からイベント情
報を再構築（イベントビルド）し、Level 3トリガー決定を行い、トリガーを発行
されたイベント情報をストレージへ保存する。

1.3.2 DAQフロントエンドでのデータ伝送

検出器からの信号を入力する Flash ADCボードは検出器ごとに 1つのVMEク
レートに挿入される。1つのVMEクレートには

1.3.3 トリガーレートの見積もり

このようなセットアップで実験を行うとき、1スピル当たりのトリガー数がどれ
くらいになるかについて述べる。

トリガーと成り得るKLの崩壊事象

KLの崩壊モードを表 1.2に示す。

表 1.2: KLの主要な崩壊モード

崩壊モード 分岐比
KL → π±e∓νe (40.55 ± 0.12) %

KL → π±ν∓νν (27.04 ± 0.07) %

.

9

シミュレーションによる見積もり

Geant 41 を用いたシミュレーションの結果 [?]によると、ET による Level 1ト
リガーのみでは、スピルあたりに期待されるイベント数は. . .。

Zero Suppressionの適用、Level 2トリガーボートに搭載されるメモリーの容
量による制限

前の小々節で述べたスピルあたりのイベント数は、さらに、DAQシステムのハー
ドウェアの仕様により制約される。

1つのトリガーにより作られた 1イベントを構成する約 3000チャンネルの信号
のうち、実際にアクティビティのあるチャンネルはそれほど多くない。Flash ADC

には、アクティビティの無かったチャンネルの波形情報を除くことで情報の大き
さを小さくする、ゼロサプレッション機能が実装されていて、これにより、どう
いうサプレッション条件の下では、大きさを何パーセントにすることができる。

このゼロサプレスされた情報は、Level 2トリガー条件を満たすと、Level 2トリ
ガーボードに搭載されたメモリーへ格納される。

1.3.4 最低要件？

チャンネル数＝大。複数のクレートを使用。push型 → DAQハードウェアの簡
略化、Ethernetをフルに使用。L2 16台からばらばらになったイベントデータが送
信されてくる。
また、現在のところ、Level2 trigger board × 16台が 16Gbps でデータを送っ
てくるのに対して、KEKへ送る回線の帯域が現状では 2Gbps であり、イベント
データの削減が必須である。

1.4 本研究の意義
そうゆうわけで、そうゆうソフトウェアの開発を行う必要がありましたとさ。

1Geant4: http://geant4.cern.ch/ 粒子と物質の相互作用をシミュレートするソフト

10

第2章 DAQバックエンドの処理

KOTO実験では、前の章で述べた要請を満たすDAQバックエンドソフトウェア
の開発が必要であった。今回開発を行ったバックエンドソフトウェアは、PCファー
ム上で、Level 2トリガーボードから転送されるイベント情報の受信と同時並行で
のイベントビルド、イベント選択、保存という、3段階の処理を行う。
この章では、これらの処理を順に説明していく。

2.1 全体のフロー図
開発したバックエンドソフトウェア上で行われる処理を、イベント情報の受け渡
しに沿って図示したのが 図 2.1 である。図に示したとおり、Level 2トリガーボー
ドから送られた情報は、受信部、イベント選択部、保存部の順に処理される。

2.2 受信部
受信部では、Level 2トリガーボードからイーサネットを通して送信されるイベ
ント情報の断片を受信して統合し、そのあとの処理へと情報を受け渡す。
イーサネットを経由した受信操作はOSの提供する機能であり、第 2.2.1小節で
簡単に説明する。
また、前の章で述べたような、16台の Level 2トリガーボードから転送されて
くるイベント情報の断片を 1つに統合するイベントビルド処理もこの受信部で行
うが、その具体的な手順を第 2.2.2小節で説明する。

2.2.1 ソケット関数

ソケット関数とは、OS（Operating System: オペレーティングシステム）が提
供するネットワーク通信のための機能の 1つであり、Linux, Windows, Mac OSと
いった一般的なOSに標準で提供されている。
本開発では、この関数を利用して受信を行うこととした。その動機としては、

• 標準的に利用される機能であり、ドキュメンテーションや解説が充実している

11

受信のバッファ

Lv2T

queue

event build/

Lv3 trig.処理

queue
保存処理

破棄?
!"#$

イベント数を減らす

KEKへ

共有メモリ
(他のソフトから見える)

図 2.1: バックエンドソフトウェアの全体像
情報が左（受信部）から右（保存部）へ渡されていく様子を表す。

• OSでバッファリングが行われるので、高頻度で到着するデータを受け取り
損ねることがない

が挙げられる。
ソケット関数は、実際にはいくつかの関数の集合である。例として、受信を行
う手順は、

1. socket()関数を呼び出し、ファイルディスクリプタ fdを取得。

2. bind(fd, ...)関数を呼び出し、どのポート番号宛に来たデータを受信するの
かを設定。

3. recv(fd, ...)/recvfrom(fd, ...)関数などを呼び出し、データを受け取る。

となる（例: リスト 2.1）。

リスト 2.1: socket()関数を利用した受信の例

1 #include <sys/socket.h>
2

3 // create socket.
4 int fd;
5 fd = ::socket(PF_INET, SOCK_DGRAM, 0);
6 // bind address to the socket.

12

7 sockaddr_in addr;
8 ::memset(&addr, 0, sizeof(addr));
9 addr.sin_family = AF_INET;

10 inet_aton("192.168.1.1", &addr.sin_addr);
11 addr.sin_port = htons(12345);
12 ::bind(fd, (sockaddr_in*) &addr, sizeof(addr));
13 // receive data.
14 while (1) {
15 char buf[65536];
16 ssize_t recvlen = ::recv(fd, buf, sizeof(buf), 0);
17 }

さて、socket()関数を使用した場合のOS内の動作から、実験前に必要なOSの
設定について述べる。
受信手順にしたがい、まず、socket()を呼び出してネットワーク通信に利用する

「ソケット」を１つ作成する（図 2.2(a)）。ソフトウェアはこのソケットを介して
通信機能にアクセスすることになる。ソケットは「ソケットバッファ」というバッ
ファを持ち、OSがEthernetからPCへ送られてきたデータをバッファに次々と詰
めていくので（図 2.2(b)）、ソフトウェアは recv()関数を繰り返し呼び出してこの
データを受け取る（図 2.2(c)）。しかし、recv()と次の recv()の間に多量のデータ
がやってくると、ソケットバッファが溢れてしまい、その溢れたデータを失うこ
とになる（図 2.2(d)）ので、バッファのサイズは十分大きくある必要がある。
バッファサイズはプログラムから

1 int fd; // file descriptor for open socket.
2 int val, len = sizeof(val);
3 val = 16777216; //set the size to 16MB.
4 ::setsockopt(fd, SOL_SOCKET, SO_RCVBUF, &val, &len);

というように設定できるのだが、Linuxではサイズの最大値に制限が設けられてい
て、その値より大きな値を設定できないようになっている。KOTO実験でのデー
タ転送では、予め設定されている最大値では不十分なことが起こりうるので、制限
値をより大きな値に変更する。16MBまで拡張可能にしたければ、端末から、スー
パーユーザーになってから¶ ³

echo 16777216 > /proc/sys/net/core/rmem_maxµ ´
というコマンドを実行する（注: 仕様により実際には倍の 32MBまで拡張可能と
なる）。確認は以下のとおり。¶ ³

cat /proc/sys/net/core/rmem_maxµ ´

13

socket() !!

NIC

socket
buffer

Ethernet

PC

ネットワーク通信回路を形成

(a) socketの作成

NIC

socket
buffer

Ethernet

PC

到達したデータを次々に

バッファへ詰めていく

(b) OSが Ethernetからデータを受け取る

NIC

socket
buffer

Ethernet

PC

バッファからデータ

を取り出す

recv() !!

到達したデータを次々に

バッファへ詰めていく

(c) recv()で受信

NIC

socket
buffer

Ethernet

PC

バッファがいっぱい

なので捨てられる。

(d) ソケットバッファ溢れ

図 2.2: ソケット関数を利用して受信する場合のOS内部の挙動

14

2.2.2 受信イベントバッファ

受信イベントバッファは、受信したイベント情報を保持するためのテーブル兼
保持場所である。このバッファに受信したイベント情報の断片を記録していくと
イベントビルドが達成されるのだが、その具体的な仕組みを以下で説明する。
受信イベントバッファの構造は、図 2.3のような、多数の決まった数の「エント
リー」をもつ「ブロック」を複数個保持するものである。

entry 0

entry 1

entry 2

...

entry N-1

entry 0

entry 1

entry 2

...

entry N-1

entry 0--(N-1)

entry 0--(N-1)

block

block

block

block

図 2.3: 受信イベントバッファの概略図。N個のエントリーを持つブロッ
クを連結した構造。

Level 2トリガーボードから送られてくるイベント情報の断片には、イベントの
スピル番号やトリガー番号、タイムスタンプ、どの FADC の情報か、という各種
の識別情報が記録されている。この識別情報のうち、スピル番号とトリガー番号
から絶対エントリー番号を求める。絶対エントリー番号からは、（ブロック番号、
相対エントリー番号）が容易に求まり、これによって、受信した断片の書き込み
位置がどのブロックのどのエントリーになるかが一意に決まる。これを、受信し
た断片に対して順次に行うと、最後には全ての断片が同じところに集まることと
なって、イベントビルドが達成されるのである。
なお、実際の実装においては、受信データそのものをエントリーに書きこむの
ではなく、データ専用の場所へ書き込み、その書き込んだ位置（アドレス）をエ
ントリーに記録するようにした（図 2.4参照）。データとテーブルを分離する実装
をすることで、受信される情報の大半にゼロサプレッションが適用されて情報サ

15

entry 0

entry 1

...

entry N-1

entry 0--(N-1)

entry 0--(N-1)

受信イベントバッファ

block

block

block

entry(0),Lv2(0),Seg(0) data entry(0),Lv2(0),Seg(0) data 0,0,1 data0,0,1 data 0,0,3

0,0,4 data 0,0,20,0,2

node: データの保持領域
...

: イベント情報の断片タグ

図 2.4: もう少し詳細なデータ保持の方法。
断片のデータ自体は nodeの上に受信順に前から記録していき、
blockの entryにはその所在地を記録する。

イズが小さくなるような高レートな状況においても、領域の無駄が生じるのを避
けることが出来る。（分離しない場合、そのような状況下では、テーブルに設けた
データ書き込み用領域が使用されないで無駄になることになる。）

このあとに続くイベント選択処理、保存処理は、このブロックを単位として行う。

以下に該当するブロック、

1. 受信バッファが保持するブロック数が、ある数以上になるとき最も古いブ
ロック

2. 最新のブロックのブロック番号からある数ブロックより古いブロック

がイベント処理部へ送出され、続く処理が始まる。

2.2.3 イベント選択処理待ちキュー

受信部とイベント処理部の間でブロックを受け渡すために存在するのが、この
イベント選択待ちキュー（待ち行列、FIFO）である。送出されるブロックはこの
キューへ入れられる。

16

キューを利用することで、受信部がブロックを次へ渡そうとするときにイベン
ト処理部が前のブロック処理の最中でも、終わるまで待つようなことにならずに
済む。イベント処理部は、取り掛かっていたブロックの処理が終わった後に、こ
のキューから次のブロックを取り出す。

2.3 イベント選択部
受信部より送出されたブロックのエントリーに記されたイベント情報から、情
報の品質や物理に基づいてイベントセレクションを行うのが、このイベント選択
部の仕事である。
ソフトウェアの用意する前段階的な処理として、

• 受信したイベント情報の整合性チェック

• サンプリング波形情報を扱いやすいように整列（第?? 節を参照）

を実装してある。これについて、第 2.3.1小節、第 2.3.2小節で説明する。
こうして処理された情報を用いて、イベントセレクション処理を行うのである
が、具体的な処理内容は本開発の趣旨でないので省く。
ブロックのエントリー１つ１つに対して、イベント選択処理が行われ、その結
果をエントリーに記録していく。全てのエントリーが処理されたら、ブロックは、
次の保存部へ送出される。

2.3.1 イベント情報の整合性チェック

整合性チェックとしては、

• イベント情報を構成する全ての断片を受信できているかを確認

• イベント情報が正しくビルドされているかを、イベントを構成する全ての断
片のスピル番号、トリガー番号、タイムスタンプを比較して確認

• イベント情報の断片のサイズ、構造といった、断片自体の正当性確認

などが挙げられる。これらをチェックし、いずれかの項目に失敗したなら、そのイ
ベント（エントリー）に異常マークを付けて、使用しないようにする。

2.3.2 波形情報の整列

Level 2 トリガーボードから送られる情報に記録された FADCのサンプリング
波形情報は、図 2.5(a)のような構造をもつ。これでは、チャンネル 0 の波形情報
を取得したい場合などに手間なので、図 2.5(b)のように波形情報が連続して記録
された構造へ変換する。

17

channel 0, sample 0

channel 1, sample 0

channel 2, sample 0

...

channel 0, sample 1

channel 1, sample 1

channel 2, sample 1

...

channel 0, sample 2

channel 1, sample 2

channel 2, sample 2

...

(a) 整列前のデータ構造

channel 0, sample 0

channel 1, sample 0

channel 2, sample 0

...

channel 0, sample 1

channel 1, sample 1

channel 2, sample 1

...

channel 0, sample 2

channel 1, sample 2

channel 2, sample 2

...

(b) 整列後

図 2.5: 整列によってチャンネルデータにアクセスしやすくなる。

18

2.3.3 保存処理待ちキュー

第 2.2.3小節のイベント選択処理待ちキューと同様に、イベント選択処理が終わっ
たブロックは保存処理待ちキューを介して保存部へ送出される。

2.4 保存部
イベントセレクション処理がされたイベント情報をファイルへ書き出すのが保
存部の仕事である。
保存部の処理は、保存処理待ちキューからイベントセレクション処理がされた
ブロックを 1つ取り出すことから始まる。手順としては、

1. 保存処理待ちキューから、1つブロックを取り出す

2. ブロックの各エントリーに対して、

(a) イベント選択処理の結果に基づき、イベント情報の一部、あるいは全部
を書きだす、あるいは全く書き出さない。
たとえば、結果が「Accept」ならイベント情報のすべてを書き出す、結
果が「Reject」ならイベント情報を書き出さない、という具合。

というようになる。
DAQシステムが正しく動いているかを確認する段階においては、すべての情報
を書き出すようにすることになるだろう。このあたりの実装は、今後の状況に応
じて変えていくことになるだろう。

2.4.1 書き出しファイル形式

本開発の実装は現在のところ、ランごとにファイルが 1つ作成されるように実装
されている。ファイル構造の概要図を図 2.6に示す。ファイルの先頭にヘッダー、
末尾にフッターを持つ。また、書き出しはブロック単位で行われるので、ブロッ
ク 1つの書き出しのたびに、ブロックヘッダー/フッターが書き込まれる。エント
リーの情報はそれらの間に書かれる。
こうした構造を持つことで、書き出し中に、もしバックエンドソフトウェアが
予期せずに異常終了した場合でも、直前までに書き込んだデータの復旧が可能と
なる。

19

先頭

末尾

!"#$%#&'#(

)"*+,$

)"*+,$%#&'#(

)"*+,$

-
'&.&

-

)"*+,$/**.#(

)"*+,$

)"*+,$%#&'#(

)"*+,$

0
'&.&

0

)"*+,$/**.#(

111

!"#$/**.#(

図 2.6: 書き出し形式の概要図

2.4.2 書き出しデータの圧縮

KEKへの転送量の軽減、ディスク領域の節約、ディスク処理の負荷軽減などを
目的として、書き出されるデータは、情報を失わずにサイズを小さくする圧縮処
理を行ったのちにファイルに書き出される。
圧縮処理を行うプログラムはいくつかあり、zipファイルなどで利用されるdeflate

方式で圧縮する gzipや、deflateに比べて圧縮率は高くないが処理が軽量なLZO方
式で圧縮を行う lzopというソフトウェアが挙げられる。
また、自分で実装を行った圧縮方法が比較的軽量であったので、これを使うこ
ととする。詳細は以下。
実際にどのような方法を採用するかは、KOTO実験のビーム強度やイベント選
択処理の負荷などとの兼ね合いで選択することにする。

独自実装の圧縮方法

図 2.7に示すように、波形情報はサンプリング点の個数の 16bit整数の配列であ
る（14bitの値を 16bitで保持）。
これは、実際には、いつも 16bitの幅を必要とするわけではない。ファイルへ保
存される波形情報の大部分は、サンプリング点の高さは 3–5ビット程度である。こ

20

0

16383 (0x3FFF,14bit)

8(3b) 16(4b) 32(5b) ...

~380

図 2.7: サンプリングされた波形情報の例

の特徴を利用して圧縮を行う。実際に、2010年 10月の Runで取られたデータを
用いたところでは、約 1/3程度のサイズまで圧縮できた。

外部アプリケーションでの圧縮

圧縮コマンドの実行には「パイプ」を利用する。パイプを利用することで、あ
るプログラムの出力を、別のプログラムの入力へつなぐことができる。
まず、端末上でパイプを利用して、テキスト hoge.txtを圧縮コマンド gzipで圧
縮してみる。2つのコマンドを |で繋ぐことで、catコマンドが出力する hoge.txt

の内容を、gzipへ入力して圧縮を行わせることができる。¶ ³
cat hoge.txt | gzipµ ´
これと同等のことをソフトウェアで行うコードがリスト 2.2である。1–11行目
でパイプで繋がった gzipの生成がなされ、19行目 write()でデータを gzipに渡
している。

リスト 2.2: ソフトウェアからパイプを利用する

1 int fd[2];
2 ::pipe(fd);
3

4 pid_t child_pid;
5 if ((child_pid = ::fork()) == 0)
6 {
7 // Here is in child process.
8 ::close(fd[1]);
9 ::dup2(fd[0], 0);

21

10

11 ::execlp("gzip", "gzip", NULL);
12 }
13 else
14 {
15 // Here is in parent process.
16 ::close(fd[0]);
17

18 const char data[] = "test-data desu...";
19 ::write(fd[1], data, strlen(data));
20

21 ::close(fd[1]);
22 }

なお、パイプは、パイプで繋がった先のプログラムへwrite()をしたときにデー
タを「パイプバッファ」へメモリーコピーする点から言えば、比較的重い処理か
もしれない。

deflateなどの圧縮方式を利用する必要が生じた場合は、gzopen()といった zlib

の関数を直接利用するべきかもしれない。

2.5 その他の追記

2.5.1 boostライブラリ

boost1という C++ライブラリを利用して開発を行った。これにより、OSの提
供する関数の面倒さを隠蔽して開発の負担を軽減できる。

2.5.2 ソフトウェアで利用している技術（？）

書いてはみたが、どうも、必要に思えない。削除するかも。

スレッド

スレッドを利用することで、1つのプロセスのなかで複数のコードを同時に走ら
せることが出来る。例えば、リスト 2.3は、5行目からAを表示し続ける main_A()

関数が開始され（スレッドA）、6行目から Bを表示し続ける main_B()関数が開
始され（スレッドB）、スレッドAとBを開始した main()は 8行目でCを表示し
続ける結果、AとBとCが順序なくひたすら表示されるプログラムとなる。

1http://www.boost.org　 2011/01/17現在の最新版である Version 1.45.0を使用

22

http://www.boost.org

リスト 2.3: スレッドの利用例

1 #include <boost/thread.hpp>
2

3 int main()
4 {
5 boost::thread thA(main_A);
6 boost::thread thB(main_B);
7

8 while (1) { printf("C"); }
9 }

10

11 void main_A()
12 {
13 while (1) { printf("A"); }
14 }
15 void main_B()
16 {
17 while (1) { printf("B"); }
18 }

バックエンドソフトウェアでは、スレッド 1つに各処理 1つを割り当てて使用し
ている。

ミューテックス

ミューテックスはプログラムに排他制御を提供するもので、スレッドを複数利
用する（マルチスレッド）プログラムで使用される。リスト 2.4は使用例である。
行 20–21で作成したスレッドと行 22が increment_counter()を呼び出して変数
counterを+1する。あるスレッドTが行 10の実行でミューテックスをロック状
態にすると、このミューテックスに対して他のスレッドはロックすることが出来
なくなり、ロック解除を待つ。スレッド Tはロックの後の行 11–13を実行し、行
14でロック解除をする。こうして、行 11–13は排他的に実行されることになる。

リスト 2.4: ミューテックスの使用例。行 10と 14に挟まれたコードは排
他的に実行される。

1 #include <boost/thread/mutex.hpp>
2

3 void increment_counter_through_10()
4 {
5 static thread::mutex mtx;
6 static int counter = 0;
7

8 while (1)
9 {

23

10 mtx.lock();
11 counter++;
12 if (counter > 10)
13 counter = 0;
14 mtx.unlock();
15 }
16 }
17

18 int main()
19 {
20 boost::thread thA(increment_counter);
21 boost::thread thB(increment_counter);
22 increment_counter();
23 }

条件変数

条件変数はリスト 2.5のように使用し、変数の変更を他のスレッドに通知するの
に使用する。例では、メインスレッドは行 13–14で待機状態（通知が来るまで待
つ）になったあと、別スレッドが行 21で counterの変更を通知し、待機状態を解
除している。処理待ちキューで使用。

リスト 2.5: 条件変数の使用例。timer ep()で counterを 1にセットした
ことを通知する。

1 #include <boost/thtread/mutex.hpp>
2 #include <boost/thtread/condition_variable.hpp>
3

4 boost::condition_variable cond;
5 boost::mutex mutex;
6 int counter = 0;
7

8 int main()
9 {

10 boost::thread thTimer(timer_ep);
11

12 boost::mutex::scoped_lock lock(mutex);
13 while (counter == 0)
14 cond.wait(lock); // wait until cond.signal() is called.
15 printf("signaled!");
16 }
17 void timer_ep()
18 {
19 sleep(10); // sleep 10 seconds
20 counter = 1;
21 cond.signal(); // and signals.

24

22 }

共有メモリ

通常、あるプロセスから別のプロセスの仮想アドレス空間にアクセスすること
はできない。例えば、プロセス 1が

1 const char *str = "kono mojiretsu ni akusesu shitai.";
2 printf("%x", str); // str のアドレスが 0x12345678 と表示された

であるときに、プロセス 2から

3 const char *str = (const char *) 0x12345678;
4 printf(str); // SEGV

というアクセスは出来ない。

そこで、OSにはプロセス間通信機能が用意されている。前の章で利用していた
pipeもその 1種である。
共有メモリは名前通り、プロセス 1のメモリ空間を他のプロセス 2と共有する機
能である。これを利用すると、プロセス 1がメモリに書き込んだ内容をプロセス 2

が閲覧/更新できる。

25

第3章 試験、評価

パケットサイズを変えて。（ゼロサプレッションの程度）小さいパケットをたく
さん、というのがスループット的には一番きつい。
イベントレートを変えて。（トリガーレート→ブロックのエントリー数の調整）

3.1 処理ごとの処理能力の評価

3.2 総合しての性能評価

3.2.1 2010年10月 Enginerring Run のデータを用いた評価

26

第4章 まとめ

「まとめ」だけすんなりここに入れちゃいました。

27

付 録A dummy appendix

appendixはこのようになります。

28

謝辞

謝辞はこのようになります。

29

参考文献

[1] xxx

[2] W.-M. Yao, et al. [Particle Data Group], Journal of Physics G 33, 1 (2006).

30

