J-PARC E14 KOTO実験で期待 されるCsIカロリメータの性能

03/25/2011

Eito IWAI, Osaka university

$K_L \to \pi^0 \nu \bar{\nu}$ 崩壊とは?

- ループを含むダイアグラム: New Physicsに感度がある!
- CPの破れの大きさを決めるCKM行列の複素成分ηを小さな理論 的不定性で決定できる
- →標準理論とそれを超える物理への良いプローブ:Golden Mode
- <u>非常に稀な崩壊</u> + 全てが中性の粒子:<u>意欲的な実験</u>! Br~3×10⁻¹¹

K^oTO detector

- シグナル事象:π⁰からの2つのγ線、それ以外に何も観測 されない事象
- 入射するγ線のエネルギーと位置を測定: CsIカロリメータ

Bessel filter

• Bessel filterを通した出力を125MHzのFADCで記録

Bessel filter

• Bessel filterを通した出力を125MHzのFADCで記録

CsI beam test in April

- LNS, Tohoku university
- beam time: 4/12 4/17
- energy: up to 800MeV positron
 - (0,10,15,20,30,40) [deg] × (100,200,300,460,600,800) [MeV]
- setup
 - 144(12×12) CsI crystals were stacked
 - scintillating fibers position detector
 - additional scintillator counter taken by 500MHz FADC

getting energy and timing

- fitting method
 - use template for each channel, energy (~ # of p.e.)
 - pulse shape differs channel by channel
 - pulse shape slightly has energy dependence
 - to separate overlapped pulse shapes
 - fit region : do not fit tail part

an example of the template

getting energy

- two ways to get energy
 - sumADC : $\Sigma_{i<48}(ADC_i$ -pedestal)
 - fitted height

→ fitted height performs better

getting timing

- two ways to get timing
 - fitted peak
 - "constant fraction" method
 - fit again w/ a few samples just before the fitted peak, and calculate timing of the full maximum
- how to estimate timing resolution
 - select two neighboring crystals, both of them have KOTO's typical light yield and calibration constants.
 - sources of timing resolution (light yield, noiselevel/dynamic-range) are close
 - this should be timing resolution at the KOTO exp.
 - energy difference < 10%
 - distance from the perpendicular bisector < 2[mm]

getting timing

- two ways to get timing
 - fitted peak
 - "constant fraction" method
 - fit again w/ a few samples just before the fitted peak, and calculate timing of the full maximum

→ "const frac" performs better

non-linearity

E_i < E_j ??

- non-linearity was found
- As amount of non-linearity is related to its pulse height, plot the maximum height in each event versus total energy.
 - $E_{\text{maximum}} > 2 \times E_{2\text{nd}}$
 - \bullet E_{maximum} > E_{else}

maximumHeight[cnt]

maximumHeight[cnt]

energy calibration w/ non-linearity

- procedure
 - calibrate constants w/ event in which all crystals have heights < 4000.
 - relax the maximum pulse height constraint step by step, and decide each constant for the additional height region
 - based on the roughly calibrated constants, re-calibrate constants from ones for higher pulse height to ones for smaller pulse height
 - fit the constant for each height w/ some function

height[ch]

consistency check of the correction

after applying correction factor by the dedicated run

consistency check of the correction

correction for the non-linearity part

height[ch]

consistency check of the correction

- correction for the linear part
 - width: getting a bit better
 - peak : shift a bit toward reasonable direction ($594.7 \rightarrow 588.8 \Leftrightarrow 590@0\deg$ by MC)

more about timing

- some applications of timing information
 - from some activities in a cluster, define one cluster timing
 - get shower developing information

- → relative timing between each channel is necessary
- * ... before evaluating relative timing, we should check energy dependence of timing w/ our method (some kind of time skew)

→ use extra scintillator taken by 500MHz FADC to define a reference timing

additional scintillator

- In some runs, additional scintillator was installed as a reference of timing
 - 2 PMTs: each channel was taken by 500MHz FADC

- strategy
 - use $(t_0+t_1)/2$ as a reference timing
 - calculate σ (t0+t1)/2 by σ t0-t1

additional scintillator

• only t₀-t₁ has its incident position dependence (t₀+t₁: canceled)

applying the incident position correction

- "constant fraction" method performs better again...
- \Rightarrow expected timing resolution as a reference $\sigma_{(t0+t1)/2} \sim \sigma_{t0-t1/2} = 100[ps]$

energy dependence of timing

- check the energy dependence of CsI timing for each distance of closest approach from a certain crystal (to get rid of timing spread by shower developing)
 - hit on the crystal
 - distance from the crystal : $< n \times 8[mm]$

energy dependence of timing

- about 2[ns] timing shift at higher energy region
- some dependence also in lower energy region?

timing resolution w/ external reference timing

• evaluate timing resolution again with the external reference timing

non-linearityの要因

- CsI PMT CW/preamp FADC
 - PMTは単独で4GeV相当まで問題ない事が 確認されている by Jwlee
 - FADCにも問題がない事が確認されている by Chicago
- → CW/preamp が原因?
 - CsIの波形をFunctionGeneratorで生成、 CW内のpreampカードを通してFADCで 記録

ビームテストのデータ

追試験の結果

toy-simulation

Summary

- ・読み出した波形データからエネルギーと時間を再構成する 方法を確立
- non-linearityが見つかった
 - エネルギーにおける効果の補正はできそう
 - 時間情報における効果のスタディはまだ始めたばかり
 - non-linearityはCW base内のpreampが原因と思われる