The measurement of ttbar cross section with b-tagging at the ATLAS Experiment

Kansai KouEne Kenkyu-Kai @ Osaka Univ. 25 March, 2011

Minoru Hirose, Kazu Hanagaki Osaka University

Introduction

Large Hadron Collider(LHC)

- The world's largest and most powerful collider.
- ▶ Proton-Proton collisions.
- running with $\sqrt{s} = 7\text{TeV}$!!

The ATLAS experiment

- General purpose detector.
 - → Higgs hunting.
 - →New physics search.
- → ~35pb⁻¹ recorded in 2010.

Physics data taking for 2011 started!!

top quark cross-section measurement

di-lepton final state of the top quark pair production

- · Easy to distinguish from background !!
 - 1) measure the cross section precisely
 - →Validate QCD at higher energy
 - 2) can be a good b-quark source
 - →b-tagging plays important role to search for Higgs/SUSY

Cross-section extraction

· Cross-section will be extracted by this formula.

$$ightharpoonup \sigma_{t\bar{t}} = rac{N_{obs} - N_{BG}}{\mathcal{A} \times \mathcal{L}}$$
 (\mathcal{A} : acceptance, \mathcal{L} : Integrated Luminosity)

- $\cdot N_{obs}$: the number of remaining events after all selection
- \mathcal{A} : determined from ttbar MC sample(MC@NLO)
- \mathcal{L} : ATLAS recoded with Good Detector Condition(35.3pb⁻¹)
- \cdot N_{BG} : Assumed background sources
 - → Drell-Yann + jets
 - Fake leptons (mainly W+jets)

- Estimated by
- Data-Driven method

$$\rightarrow$$
 Z($\rightarrow \tau \tau$) + jets

- → di-boson
- → single top

Event selection

- · Common selection for all(ee, $\mu\mu$, $e\mu$) channels
 - ▶ #leptons == 2 && leptons are oppositely charged.
 - At least two jets
- Channel dependent selection
 - ► Missing Transverse Energy(MEt) > 30GeV
 - |MII(dilepton mass)- Mz| > 5GeV (referred as Z-window cut)
 - ▶ (large Σ|Et|(so called Ht)>110GeV

ee, $\mu\mu$

channel

b-tagging requirement

- two b-quarks in final state
 - Requiring at least one b-tagged jet
 - →not to lose so many signals
 - →reduce systematic uncertainty from b-tagging efficiency
 - $\delta_{\sigma_{t\bar{t}}} \propto 2(1-\varepsilon_b)\delta_{\varepsilon_b}$ (Typical δ_{ε_b} ~ 14%)
 - Larger Efficiency ightarrow Smaller Uncertainty for $\sigma_{tar{t}}$

- Optimization
 - Which b-tagging algorithm is the best?
 - Which operation point is the best?
 - Next page...

b-tagging optimization for di-lepton analysis

- Available b-tagging algorithm in the early experiment
 - SVO (secondary vertex base)
 - JetProb. (charged-track base)
- Calculate statistical significance(S/√S+B) assuming 35pb⁻¹

JetProb. is a preferred b-tagging algorithm! 70% efficiency point works well!

Distributions in the Signal Region(SR)

#btagged jets after applying all selections but b-tagging

BG estimation for Drell-Yann + jets

Define Control Region(CR) and Signal Region(SR)

$$N_{\rm DY}^{\rm background} = (Data({\rm CR}) - MC_{nonDY}({\rm CR})) \times \frac{MC_{\rm DY}(SR)}{MC_{\rm DY}(CR)}$$

BG estimation for Drell-Yann + jets

channel	ee		μ	μ
	MC	Data Driven	MC	Data Driven
Expected Yields	2.24	1.50	3.35	5.21
Uncertainty Source	$\delta N_{\rm DY}/N_{\rm DY} [\%]$	$\delta N_{\rm DY}/N_{\rm DY} [\%]$	$\delta N_{\rm DY}/N_{\rm DY} [\%]$	$\delta N_{\mathrm{DY}}/N_{\mathrm{DY}} [\%]$
Data statistics	-	± 34.2	-	± 16.8
MC statistics	± 19.2	± 47.7	± 15.5	± 41.4
Method	-	± 17.7	-	± 9.3
Jet Energy Scale	+120.6/-34.0	+63.3/- 2.3	+35.0/-18.6	+ 0.0/-13.5
Jet Energy Resolution	± 20.3	± 25.2	± 11.2	± 8.0
Jet ID efficiency	± 8.9	± 4.8	± 5.8	± 4.1
Lepton Energy Scale	+4.4/-2.1	+16.9/- 0.0	+ 0.0/- 3.7	+ 0.0/- 5.0
Lepton Energy Resolusion	+7.7/-11.8	+12.6/-15.4	+ 5.2/- 3.3	+8.9/-6.9
Lepton ID Efficiency	± 9.4	+ 1.4/- 1.2	± 0.7	± 0.0
Lepton Trigger Efficiency	± 1.0	± 0.0	± 0.2	± 0.1
MC Theory cross-section	± 37.5	-	± 35.0	-
b-tag efficiency	± 4.3	± 2.2	± 4.8	+ 1.7/- 1.5
l-tag efficiency	+ 8.4/- 9.5	+ 0.0/- 0.4	± 10.0	+ 0.9/- 1.3
Luminosity	± 3.4	_	± 3.4	_
Total Uncertainty	+130.6/-61.5	+94.2/-68.3	+54.8/-46.2	+47.4/-49.2

Data Driven method has an advantage in terms of systematic uncertainty.

Predicted/Observed Event Yields

Process	Event Yields			
	ee	$\mu\mu$	$e\mu$	
Drell-Yann + jets	$1.5^{+1.4}_{-1.0}$	5.2 ± 2.5	N/A	
$Z(\to \tau\tau) + \text{jets}$	0.2 ± 0.2	0.3 ± 0.2	0.7 ± 0.5	
Fake leptons	0.5 ± 0.5	0.5 ± 0.5	1.9 ± 1.1	
Single top	0.6 ± 0.1	1.2 ± 0.2	1.9 ± 0.4	
Dibosons	0.2 ± 0.1	0.2 ± 0.1	0.4 ± 0.1	
Total Predicted Backgrounds	$2.9^{+1.5}_{-1.1}$	7.4 ± 2.6	5.0 ± 1.3	
Predicted tt Signal	12.1 ± 1.4	$21.9^{+1.9}_{-2.2}$	$41.4^{+3.5}_{-3.9}$	
Total Predicted	15.0 ± 1.9	29.3 ± 3.3	$46.4^{+3.7}_{-4.1}$	
Data	15	32	46	

Estimated BGs

Observed and Predicted Yields are consistent!!

cross-section extraction

- ee : $\sigma_{t\bar{t}} = 163^{+57}_{-48}(\text{Stat.})^{+31}_{-27}(\text{Syst.})^{+8}_{-5}(\text{Lumi.})[\text{pb}]$
- $\cdot \mu \mu = \sigma_{t\bar{t}} = 185^{+51}_{-45} (\text{Stat.})^{+34}_{-21} (\text{Syst.})^{+8}_{-7} (\text{Lumi.}) [\text{pb}]$
- $\cdot e\mu : \sigma_{t\bar{t}} = 162^{+28}_{-25}(Stat.)^{+19}_{-14}(Syst.)^{+7}_{-5}(Lumi.)[pb]$
- combined : $\sigma_{t\bar{t}} = 171 \pm 22(\text{Stat.})^{+21}_{-16}(\text{Syst.})^{+7}_{-6}(\text{Lumi.})[\text{pb}]$
- · NLO Prediction : $164.57^{+8.34}_{-11.33}[pb] @ M_t = 172.5 GeV$

Consistent with theoretical prediction

Systematic Uncertainties

	ee	μμ	еμ	combined
Uncertainty Source	$\Delta\sigma/\sigma$ [%]	$\Delta\sigma/\sigma$ [%]	$\Delta\sigma/\sigma$ [%]	$\Delta\sigma/\sigma$ [%]
Data Statistics	+34.8/-29.3	+27.5/-24.2	+17.2/-15.6	+13.2/-12.3
Luminosity	+ 4.7/- 2.9	+ 4.4/- 3.9	+ 4.1/- 3.2	+ 4.2/- 3.4
MC Statistics	+ 2.5/- 2.9	+ 3.2/- 5.3	+ 0.8/- 1.0	+ 2.2/- 0.5
Lepton energy scale	+ 1.4/- 3.1	+ 1.5/ 0.0	+ 0.0/- 0.6	+ 0.0/- 0.5
Lepton energy resolusion	+ 2.0/- 1.9	+ 0.0/- 3.5	+ 0.0/- 0.6	+ 0.7/- 0.9
Lepton ID/Trigger Efficiency	+ 8.3/- 5.2	+ 0.0/- 2.7	+ 4.5/- 3.5	+ 3.9/- 3.2
Jet energy scale	+ 8.1/-12.4	+10.7/- 4.5	+ 4.1/- 3.4	+ 5.1/- 4.8
Jet energy resolusion	+ 4.2/- 4.0	+ 0.0/- 3.6	+ 0.0/- 0.6	+ 1.5/- 1.5
Drell-Yann estimation	+ 2.0/- 2.4	+ 0.0/- 3.4	+ 0.0/ 0.0	+ 1.8/ 0.0
fake lepton estimation	+ 3.8/- 4.2	+ 0.0/- 3.6	+ 2.6/- 2.8	+ 2.4/- 1.0
b-tag efficiency	+ 9.3/- 4.9	+10.1/- 5.8	+ 8.2/- 5.1	+ 8.3/- 5.6
<i>l</i> -tag efficiency	+ 0.8/- 0.8	+ 0.0/- 3.0	+ 0.6/- 0.6	+ 0.5/- 0.5
Generator	+ 1.4/- 0.8	+ 0.0/- 2.9	+ 1.0/- 1.0	+ 1.3/- 1.1
Parton shower modeling	+ 3.1/- 1.9	+ 0.0/ 0.0	+ 3.6/- 2.7	+ 2.6/- 2.1
Initial state radiation	+ 1.7/- 1.1	+ 0.0/- 2.9	+ 0.6/- 0.6	+ 0.9/- 0.9
Final state radiation	+ 4.8/- 2.8	+ 3.9/- 3.8	+ 1.2/- 1.0	+ 2.2/- 1.7
Parton Distribution Function	+ 3.5/- 2.0	+ 2.8/- 3.4	+ 2.5/- 1.9	+ 2.8/- 2.1
Under lying event modeling	+ 3.3/- 3.1	+ 2.0/- 4.7	+ 1.2/- 0.8	+ 2.1/- 1.7
Theorical X-sec	+ 0.8/- 1.3	+ 0.0/- 2.8	+ 0.8/- 1.0	+ 0.7/- 0.9
All systematics	+19.3/-16.9	+19.2/-11.7	+12.6/- 9.0	+13.0/-10.0
Stat. + Syst.	+39.8/-33.8	+33.5/-26.9	+21.3/-18.0	+18.6/-15.9

measurement with 18% precision is achieved!!

Systematic Uncertainties

$$\begin{split} \delta_{\sigma_{t\bar{t}}} &\propto 2(1-\varepsilon_b)\delta_{\varepsilon_b} \ (\delta_{\varepsilon_b} \text{--} 14\%) \\ &\text{when } \varepsilon_b = 50\% \to \delta_{\sigma_{t\bar{t}}} \propto 1.0 \times \delta_{\varepsilon_b} \\ &\text{when } \varepsilon_b = 70\% \to \delta_{\sigma_{t\bar{t}}} \propto 0.6 \times \delta_{\varepsilon_b} \ \text{(this analysis)} \end{split}$$

Drell-Yann estimation	+ 2.0/- 2.4	+ 0.0/- 3.4	+ 0.0/ 0.0	+ 1.8/ 0.0
fake lepton estimation	+ 3.8/- 4.2	+ 0.0/- 3.6	+ 2.6/- 2.8	+ 2.4/- 1.0
b-tag efficiency	+ 9.3/- 4.9	+10.1/- 5.8	+ 8.2/- 5.1	+ 8.3/- 5.6
<i>l</i> -tag efficiency	+ 0.8/- 0.8	+ 0.0/- 3.0	+ 0.6/- 0.6	+ 0.5/- 0.5
Generator	+ 1.4/- 0.8	+ 0.0/- 2.9	+ 1.0/- 1.0	+ 1.3/- 1.1
Parton shower modeling	+ 3.1/- 1.9	+ 0.0/ 0.0	+ 3.6/- 2.7	+ 2.6/- 2.1
Initial state radiation	+ 1.7/- 1.1	+ 0.0/- 2.9	+ 0.6/- 0.6	+ 0.9/- 0.9
Final state radiation	+ 4.8/- 2.8	+ 3.9/- 3.8	+ 1.2/- 1.0	+ 2.2/- 1.7
Parton Distribution Function	+ 3.5/- 2.0	+ 2.8/- 3.4	+ 2.5/- 1.9	+ 2.8/- 2.1
Under lying event modeling	+ 3.3/- 3.1	+ 2.0/- 4.7	+ 1.2/- 0.8	+ 2.1/- 1.7
Theorical X-sec	+ 0.8/- 1.3	+ 0.0/- 2.8	+ 0.8/- 1.0	+ 0.7/- 0.9
All systematics	+19.3/-16.9	+19.2/-11.7	+12.6/- 9.0	+13.0/-10.0
Stat. + Syst.	+39.8/-33.8	+33.5/-26.9	+21.3/-18.0	+18.6/-15.9

- measurement with 18% precision is achieved!!
- → Thanks to small uncertainty from b-tag efficiency

Conclusions

- measurement of ttbar cross-section with b-tagging@35pb-1
 - ▶ b-tagging : 70% efficiency point
- measured Cross-Section is consistent with NLO prediction
 - rightharpoonup combined result : $\sigma_{t\bar{t}} = 171 \pm 22 (\mathrm{Stat.})^{+21}_{-16} (\mathrm{Syst.})^{+7}_{-6} (\mathrm{Lumi.}) [\mathrm{pb}]$ (ATLAS Preliminary)
 - ▶ NLO predicted : $\sigma_{t\bar{t}} = 164.57^{+8.34}_{-11.33} [pb] @ M_t = 172.5 GeV$

measurement with 18% precision is achieved!!

backup

Object Definition(detail)

- · Electrons
 - "Tight" electron with track matching
 - Pt > 20GeV, 0<|eta|<1.37 or 1.52<|eta|<2.47</p>
- Muons
 - ▶ Reconstructed with MuID algorithm, pass "Tight" requirement
 - Requirement on number of hits in ID, cosmic rejection
 - Pt>20GeV, |eta| < 2.5</p>
 - ▶ Remove muons overlapping with selected jet(Pt>20GeV) within dR<0.4
- Jets
 - ▶ AntiKt 0.4 TopoCluster jets with EM+JES calibration
 - Pt>20GeV, |eta| < 2.5
 - ▶ Remove a jet overlapping with selected electron within dR<0.2

b-tagging algorithm

- SVO: Secondary Vertex(SV) base
 - ▶ Distance between Primary Vertex and Secondary Vertex ~ Lxy
 - ▶ discriminant : L_{xy}/ σ_{Lxy}
- JetProb : charged track base

$$\mathscr{P}_i = \int_{-\infty}^{-|d_0^i/\sigma_{d_0}^i|} \mathscr{R}(x) dx$$
: Likelihood of tracks comes from PV

 $\mathscr{P}_{jet} = \mathscr{P}_0 \sum_{j=0}^{N-1} \frac{(-ln\mathscr{P}_0)^j}{j!}$: Likelihood of jet is light-flavor jet

(where
$$\mathscr{P}_0 = \prod_{i=1}^N \mathscr{P}_i'$$
 and $\left\{ \begin{array}{ll} \mathscr{P}_i' = \frac{\mathscr{P}_i}{2} & \text{if } d_0^i > 0 \\ \mathscr{P}_i' = \left(1 - \frac{\mathscr{P}_i}{2}\right) & \text{if } d_0^i < 0 \end{array} \right. \right\}$

b-tagging optimization(detail)

Calculate statistical significance(S/√S+B) assuming 35pb⁻¹

analysis with SVO shows higher significance

→ SV0 has good performance in terms of a light-flavor jet rejection (JetProb@50% efficiency: Light jet rejection factor(1/Eff.) ~ 130 SV0@50% efficiency: Light jet rejection factor(1/Eff.) ~ 270)

MEt/Ht/Z-window optimization

· To maximize statistical significance with JetProb. 70% Efficiency point.

Preferred Cut Values

- MEt>30GeV(ee, $\mu\mu$), Ht>110GeV(e μ)
- Z-window = 5GeV(ee, $\mu\mu$)

BG Estimation for Fake Leptons

Matrix Method

- ▶ Define "Tight/Loose" lepton
 - \rightarrow count the remaining #events(N_{TT} , N_{LL} etc.)
- ▶ Measure a probability "r" and "f"
 - → "r(f)": the probability of a real(fake) lepton which pass the "loose" criteria will pass the "tight" criteria.
 - "r": measured in Z→II process
 - "f": measured in QCD process
- Solve this matrix...

$$\begin{bmatrix} N_{TT} \\ N_{TL} \\ N_{LT} \\ N_{LL} \end{bmatrix} = \begin{bmatrix} rr & rf & fr & ff \\ r(1-r) & r(1-f) & f(1-r) & f(1-f) \\ (1-r)r & (1-r)f & (1-f)r & (1-f)f \\ (1-r)(1-r) & (1-r)(1-f) & (1-f)(1-r) & (1-f)(1-f) \end{bmatrix} \begin{bmatrix} N_{RR} \\ N_{RF} \\ N_{FR} \\ N_{FF} \end{bmatrix}$$

- **Results**: ee : 0.5 ± 0.5 (Stat.+Syst.)
 - $\mu\mu$: 0.5 ± 0.5 (Stat.+Syst.)
 - $e\mu$: 1.9 ± 1.1 (Stat.+Syst.)

contribution from fake leptons

Event Selection Criteria

cut	ee	μμ	$e\mu$		
no cut					
trigger	EF_e15_medium	EF_mu13_tight	EF_e15_medium or EF_mu13_tight		
Jet Cleaning		not include bad j	ets		
Non collision BG rejection	include vertex with #tracks>4				
electron/muon overlap	reject event if electron and muon share a track				
lepton req.	$N_e \ge 2$	$N_{\mu} \geq 2$	$N_{\mu} + N_e \ge 2$		
$E_{ m T}^{ m miss}/H_{ m T}$	$E_{\rm T}^{\rm miss} > 30~{\rm GeV}$		$H_{\rm T} > 110 {\rm GeV}$		
jet req.	at least 2jets				
lepton req.	exactly 2 selected leptons				
sign req.	opposite sign				
Z-mass veto	5 GeV		-		
Trigger Match	match lepton trigger $\Delta R < 0.15$				
Truth Match	match from MCTruthClassifier to lepton from Wboson				
<i>b</i> -tagging	at least one <i>b</i> -tagged jet (-log(JetProb.)>2.05)				

MEt vs Invariant Mass

Distributions in Control Region

CR: event with 1 or 2 jet after applying all selection but #jet requirement

Measured cross-section

Measured cross-section(more)

Systematic uncertainty on the Acceptance

Process	ee	μμ	еμ
Acceptance	0.124	0.224	0.213
Uncertainty Source	$\Delta A/A[\%]$	$\Delta A/A[\%]$	$\Delta A/A[\%]$
Jet ES	+4.4/-5.6	+4.3/-5.1	± 3.1
Jet ER	± 0.8	± 0.6	± 0.1
Jet ID SF	± 3.7	± 3.8	± 3.4
El. ES	+0.9/-1.2	± 0.0	+0.2/-0.1
El. ER	+0.0/-0.1	± 0.0	± 0.0
El. ID SF	± 5.9	± 0.0	± 3.7
El. Trig. SF	± 1.0	± 0.0	± 0.5
Mu. ES	± 0.0	+0.1/-0.2	± 0.0
Mu. ER (ID)	± 0.0	± 0.1	± 0.0
Mu. ER (MS)	± 0.0	± 0.1	± 0.0
Mu. ID SF	± 0.0	± 0.1	± 0.4
Mu. Trig SF	± 0.0	± 0.3	± 0.0
<i>b</i> -tag efficiency	+5.3/-6.6	+5.3/-6.6	+5.3/-6.6
<i>l</i> -tag efficiency	± 0.2	± 0.2	± 0.3
Generator	± 1.1	± 1.6	± 0.9
Parton shower	± 2.4	± 0.0	± 3.2
ISR/FSR	± 3.7	± 3.3	± 1.0
PDF	± 2.7	± 2.0	± 2.2
Pile-up	± 0.6	± 1.7	± 1.5
Total	± 11.9	+9.0/-10.2	± 9.5

Systematic uncertainty on the BG estimation

Process	ee	μμ	еμ
Total Background	2.93	7.37	4.98
Uncertainty Source	$\Delta N/N[\%]$	$\Delta N/N[\%]$	Δ <i>N</i> / <i>N</i> [%]
MC Statistics	± 9.9	± 13.0	± 7.2
Jet ES	+36.6/- 3.6	+ 0.0/- 7.7	+7.3/-4.0
Jet ER	± 12.4	± 5.9	± 1.8
Jet ID SF	± 3.8	± 5.0	± 2.1
El. ES	+ 8.9/- 0.0	± 0.0	+0.1/-0.0
El. ER	+ 7.3/- 8.8	± 0.0	+0.1/-0.0
El. ID SF	+ 1.4/- 1.3	± 0.0	± 2.3
El. Trig. SF	± 0.3	± 0.0	± 0.3
Mu. ES	± 0.0	+ 0.0/- 3.6	± 0.0
Mu. ER (ID)	± 0.0	+ 0.0/- 4.0	± 0.0
Mu. ER (MS)	± 0.0	+ 6.5/- 3.0	+1.8/-0.0
Mu. ID SF	± 0.0	± 0.2	± 0.2
Mu. Trig SF	± 0.0	± 0.0	± 0.0
b-tag efficiency	+ 0.7/- 0.9	+ 0.6/- 0.5	± 4.5
<i>l</i> -tag efficiency	+ 0.1/- 0.2	+ 1.2/- 1.6	± 2.4
DY estimation	± 9.1	± 6.6	-
fake lepton estimation	± 16.4	± 7.2	± 22.3
diboson normalization	+ 2.0/-1.3	± 0.5	± 1.6
single top normalization	+ 4.4/-3.8	± 2.8	$+ \pm 6.9$
Pile-up	± 10.8	± 4.4	± 4.3
Total	+47.3/-29.0	± 20.6	± 26.3