# Study of delayed hit in DeeMe MWPC

Yuta Higashino

Osaka Univ.

2019/12/23

1 Introduction





# DeeMe

- Process :  $\mu^- + (A, Z) \rightarrow e^- + (A, Z)$ 
  - A single mono-energetic electron
    - ★ 105MeV
- High-Power High-Purity Pulsed
  Proton from J-PARC RCS
- Single Event Sensitivity
  - $1 \times 10^{-13}$  (Graphite,  $2 \times 10^7$ sec)
  - ▶  $2 \times 10^{-14}$  (SiC,  $2 \times 10^7$ sec)





# HV-Swiching MWPC





- Cathode strip read out
  - X : 3mm strip
  - Y : 5 × 3 mm strip
- Wire diameter
  - Anode wire :  $\phi 15 \mu m$
  - Potential wire :  $\phi 50 \mu m$

# gas amplification

## ionization

$$A + e^- \to A^+ + e^- + e^-$$

excitaion • deexcitation

- $A + e^- \rightarrow A^* + e^-$ 
  - $A^* \to A + \gamma$

electron attachment

$$A + e^- \rightarrow A^-$$

### charge transfer

$$A^+ + B \to A + B^+$$



# suppression of delayed hit



We used several kinds of gases

• c2H4, iC4H10, SF6, HFC-134a,etc

Let's use methylal !

• but, methylal is liquid



Figure: Ar:80 iC4H10:20

1 Introduction





## gas system





(a) controlled evapolator system

- (b) evaporation process
- Advantage
  - precise control
  - available for low vapor pressure liquid



#### Figure: gas system



Figure: side view

## gas system

gas circuit



## tolerance test





Figure: jummper pin





Figure: rubber sheet

## tolerance test



(a) before



(b) after



# 2019/11 beamtest



Figure: prototype



Figure: Ar:70 iC4H10:20 C3H8O2:10

# For stable operation

problem

plan

accumlation of unknown liquid in the tube from cem

• analysis of component

liquid trap ... etc





(b) enlarged view

Yuta Higashino (Osaka Univ.)

1 Introduction





# Garfield++ simulation



Decision of the best gas proportion

- ratio of the numbers of ion that reach cathode
- reappearance of the results of the past experiments

1 Introduction

2 gas system



### summary

- We want to suppress delayed hit
- modification of gas system
  - We can use liquid for MWPC gas
  - We should solve a problem for stable operation
- Garfield++ simulation

# Back up

#### Table: parts

| 22-SHV-50-0-2            | PFA PTFE            | 564R30GAT10       | epoxy resin         |
|--------------------------|---------------------|-------------------|---------------------|
| HIF3BA-34PA-2.54DS       | PBT                 | MOS1CT52A10R0F    |                     |
| flat cable               |                     | film              |                     |
| ERJ-8ENF2004V            |                     | WL-8-11           | PBT                 |
| ERJPA3F1001V             |                     | AW106 HV953V      | epoxy resin         |
| CC1812KKX7RDBB103        |                     | conductive film   |                     |
| 22BNC-50-0-16            | PFA PTFE            | tygon tube        | tygon               |
| HTC-50-1-1,0.5/1.5,CEH50 | XPE                 | LH-0425-M3        | POM                 |
| heat shrink tube         |                     | SBD-J3-13         | duracon             |
| PM-14-20                 | PPS                 | SPA-M3-N          | PENY                |
| JX-2                     | PBT                 | SPE-M3-50-C-FT    | PEEK                |
| JK-1                     | nylon               | SPS-M3X30-P       | PPS                 |
| JM-1                     | nylon               | PACK-SWSJJ8-3-0.5 | polyacetal          |
| DEBF33D103ZA2B           | epoxy resin         | viton sheet       | viton               |
| MF1/4CC1000F             |                     | resist substrate  |                     |
| kapton tube              | kapton              | silicon sheet     | silicon             |
| nylon tube               | nylon               | urethan tube      | urethan             |
| CLN-658                  | conductive adhesive | 006736            | conductive adhesive |
| MR3863                   | conductive adhesive |                   |                     |