Rejection Power for the Hadron-cluster Background with the upgraded KOTO Csl calorimeter

> 2019/12/23 Osugi Mayu @ Year End Presentation

• Introduction

KOTO Experiment Hadron-cluster background & both-end readout

- Data samples
- Timing Calculation
- Performance of both-end readout

• Summary

KOTO Experiment

Search for $K_L \to \pi^0 \nu \bar{\nu}$

Signal $\pi^{0} \rightarrow 2\gamma$: @ Csl caloriemeter nothing : @ other detectors Sensitive to new physics

Hadron-cluster background

Hadron-cluster background

Data Samples

Used data taken in 2019 run Gamma Sample

• Used $K_L \rightarrow 3\pi^0$ decay (BR: 19.52%)

Neutron Sample

- Used special run data as a neutron samples
- \rightarrow Enhance the neutron events by placing Al plate

Timing Calculation (1)

Event Display of the Csl calorimeter

Calculate cluster timing (used in analysis)

Channel Timing \rightarrow Constant Friction Time (t_{CF})

Timing Calculation (2)

$$\Rightarrow \Delta T_{\text{M.E.}} = T_{\text{MPPC}}^{\text{Max Energy}} - T_{\text{PMT}}$$
$$\Rightarrow \Delta T_{\text{E.W.}} = T_{\text{MPPC}}^{\text{Enegy Weighted}} - T_{\text{PMT}}$$

Performance of ΔT Cut

 ΔT range : ΔT : 25 ns < ΔT < 31.05 ns gamma efficiency = 89.9%

<u>hadron-cluster background is suppressed to $(2.1 \pm 0.1)\%$ </u>

Efficiency of ΔT cut

By changing the higher threshold of ΔT , efficiency (γ , hadron-cluster) are calculated

<u>Energy weighted timing($\Delta T_{E.W.}$) has better performance</u>

than maximum energy channel timing

Correlation (Pulse Shape Related Cut)

Correlation btw. △T cut and other neutron cut **Pulse Shape Cut : Fourier Pulse Shape Discriminator (FPSD)**

11

Correlation (FPSD vs ΔT)

Any correlation btw. FPSD vs ΔT ?

Small correlation but hadron-cluster BG is suppress to 4%

Performance of ΔT

Hadron-cluster background is suppressed to 2.1% (w/90% gamma efficiency)

Energy weighted timing has better performance than maximum energy channel timing.

Correlation btw. pulse shape cut vs ΔT
Correlation can be seen but enough small.

N/S Ratio

 $\Delta T_{M.E.} = T_{MPPC \ Maximum \ Energy} - T_{PMT}$ $\Delta T_{E.W.} = T_{MPPC \ Enegy \ Weighted} - T_{PMT} (\text{MPPC channel energy} > 10 \text{MeV})$