Status of the $K_L \rightarrow \pi^0 \nu \bar{\nu}$ search at J-PARC KOTO experiment

Satoshi Shinohara 2019/12/23

Kuno and Yamanaka Groups End-of-the Year Presentation

KAON2019 @ Perugia Univ. Italy

KOTO

• $K_L \to \pi^0 \nu \overline{\nu}$

 highly suppressed : BR(SM) : 3.0 × 10⁻¹¹

- small theoretical uncertainty(~2%)
- \rightarrow good probe for new physics search
- signal : $(\pi^0 \rightarrow 2\gamma)$ + Nothing
 - $-2\gamma \rightarrow CsI$ calorimeter
 - Nothing \rightarrow Hermitic veto detectors

J-PARC

History of data taking

Single event sensitivity (S.E.S)

S.E.S = 1/((K_L yield) × (signal acceptance))

Signal box : optimized better for S/N S.E.S : 6.9×10^{-10} (\leftrightarrow S.E.S₂₀₁₅ : 1.3×10^{-9})

Hadron cluster BG

Physics run

Special run

Hadron cluster BG in 2015 analysis

Hadron cluster BG

2015 run background summary table

BG source	No. events	
$K_L \to \pi^+ \pi^- \pi^0$	0.05 ± 0.02	
$K_L \rightarrow 2\pi^0$	0.02 ± 0.02	- K _L BG
Other K_L decays	0.03 ± 0.01	
Hadron cluster	0.24 ± 0.17	
Upstream π^0	0.04 ± 0.03	Neutron
$CV \eta$	0.04 ± 0.02	BG
Total	0.42 ± 0.18	

Phys. Rev. Lett. 122, 021802

Hadron cluster BG update from 2015 (cut)

- 1. Cluster shape cut with deep learning
 - −S/N : × ~2 from 2015
- 2. Pulse shape discrimination with Fourier transformation

-S/N : ×~1.8 from 2015

Fourier Template

Hadron cluster BG estimation

Scattered K_L contamination

- Found contamination in the control sample
 - -Developed more reliable estimation method
 - based on single cluster reduction
 - –reduction : $\times 27(\pm 19)$ from w/o concerning scatter $K_L \rightarrow 2\gamma$

Hadron cluster BG

Overlapped pulse BG

- Overlapped pulse shifts measured time for veto detectors
 - Narrower veto window
 - recover signal acceptance
 - increase BG from overlapped pulse

Overlapped pulse BG

- Overlapped pulse discriminator
 - Pulse shape information : Fourier transformation

True pulse interval [clk = 8 ns]

 $-\chi^2$: compared with single hit template

Efficiency of Identifying Double Pulse

Overlapped pulse BG

Narrower veto window + overlapped pulse discriminator

Narrower veto window : Recovered 10% signal acceptance No remaining event due to overlapped pulse

BG summary

Preliminar		
	#BG	
$K_L \to 2\pi^0$	<0.18	
$K_L \to \pi^+ \pi^- \pi^0$	<0.02	
$K_L \rightarrow 3\pi^0$ (overlapped pulse)	<0.04	
Ke3 (overlapped pulse)	<0.09	
$K_L \rightarrow 2\gamma$	0.001 ± 0.001	
Upstream π^0	0.001 ± 0.001	
Hadron cluster	0.02 ±0.00	
CV-pi0	<0.10	
CV-eta	0.03±0.01	
Total	0.05±0.02	

Unblinded

Unblinded

unblinded in the end of Aug. 2019

expectation

On-timing peak is shifted by large pulse

expectation

BG estimation related overlapped pulse

overlapped pulse	Prelimina
	#BG
KL3pi0 (overlapped pulse)	<0.04
Ke3 (overlapped pulse)	<0.09

Underestimated the BG from overlapped pulse?

- Checking the properties of the other candidates
- Did we miss other background sources?
 - planning to reevaluate other BG sources

Summary

- $K_L \rightarrow \pi^0 \nu \bar{\nu}$ at J-PARC KOTO experiment
- S.E.S : 6.9×10^{-10}
- BG estimation : 0.05 ± 0.02
- Opened the box
 - → 4 candidate events in the signal region Event properties:
 - One event : overlapped waveform Checking other candidates carefully

Detector and DAQ upgrade in 2016-2018

 $K_L \rightarrow$

Kuno and Yamanaka Groups End-of-the Year

Presentation

- Barrel detector was upgraded in 2016.4
 - $-13.5X_0 \rightarrow 18.5X_0$
 - $-K_L \rightarrow 2\pi^0 \text{ BG} : \times 1/3$

Inner barrel (IB)

- DAQ upgrade (covered in poster session)
 - Online cluster counting (2017~)
 - Higher DAQ live time ratio
 - ~80% (2015 @ 42kW beam)
 - \rightarrow ~99% (2018 @ 51kW beam)

Result of 2015 physics run

Phys. Rev. Lett. 122, 021802

	PHYSICAL REVIEW LETTERS 122 , 021802 (2019)
Sea	arch for $K_L o \pi^0 \nu \bar{\nu}$ and $K_L o \pi^0 X^0$ Decays at the J-PARC KOTO Experiment
J. K. Ahi H. Haraguc J. W. Ko, ⁹ J. Ma, ¹² Y. R. Murayan N. Sasac S. Shinohai	n, ¹ B. Beckford, ² J. Beechert, ² K. Bryant, ² M. Campbell, ² S. H. Chen, ³ J. Comfort, ⁴ K. Dona, ² N. Hara, ⁵ hi, ⁵ Y. B. Hsiung, ³ M. Hutcheson, ² T. Inagaki, ⁶ I. Kamiji, ⁷ N. Kawasaki, ⁷ E. J. Kim, ⁸ J. L. Kim, ¹ Y. J. Kim, ⁹ T. K. Komatsubara, ⁶¹⁰ K. Kotera, ⁵ A. S. Kurlin, ^{11,*} J. W. Lee, ^{5,4} G. Y. Lim, ⁶¹⁰ C. Lin, ³ Q. Lin, ¹² Y. Luo, ¹² Maeda, ³² T. Mari, ⁵ T. Masuda, ³¹ T. Matsumura, ¹³ D. McFarland, ¹ N. McNeal, ² J. Micallet, ⁵ K. Miyazaki, ⁵ na, ⁵⁵ D. Naito, ⁷⁴ K. Nakagiri, ⁷ H. Nanjo, ^{7*} H. Nishimiya, ⁵ T. Nomura, ⁶¹⁰ M. Ohsugi, ⁵ H. Okuno, ⁶ M. Sasaki, ¹⁴ na, ¹⁵ C. Sato, ⁵⁴ T. Sato, ⁶ Y. Sudya, ⁶¹ S. S. Suzuki, ¹⁶ Y. Tajima, ¹⁴ M. Taylor, ² M. Teechio, ⁵ M. Togawa, ⁵⁵ Y. C. Tung, ¹² Y. W. Wah, ¹² H. Watanabe, ⁶¹⁰ J. K. Woo, ⁹ T. Yamanaka, ⁵ and H. Y. Yoshida ¹⁴
	(KOTO Collaboration)

• Single event sensitivity : $(1.30 \pm 0.01_{stat} \pm 0.14_{syst}) \times 10^{-9}$

– No event in the signal region

⇒ Upper limit (90% C.L.) : $Br(K_L \rightarrow \pi^0 \nu \overline{\nu}) < 3.0 \times 10^{-9}$ × 10 improvement from previous limit (KEK E391a)

Toward 2016-2018 data analysis

- Higher beam power
 - → larger signal loss due to the accidental hit (76% loss in 2015 analysis)
- To achieve better sensitivity
 - → Narrower veto window
 - Need BG study due to the narrower veto window

study from 2015 data

Single event sensitivity (S.E.S)

S.E.S = 1/((K_L yield) × (signal acceptance))

- Signal box : determined by S/N
- S.E.S : $6.9 \times 10^{-10} \stackrel{Preliminary}{} (S.E.S_{2015} : 1.3 \times 10^{-9})$

Upstream-π⁰ BG

- Halo-neutron hits upstream detector
 - $-\gamma$ + γ
 - small visible energy shifted reconstructed Z position
 - -n+γ
 - various reconstructed Z position
 - Shrink signal box of upstream Z
- $\#BG_{upstream-\pi0}$: 0.001 ± 0.001

CV-η BG

- Neutron hits Charged Veto (CV) and generates η
 - reconstruction : assumed π⁰ mass
 - $-m_\eta \sim 4m_{\pi^0}$
 - \rightarrow reconstructed Z position : shifted in the signal region

 $\#BG_n = 0.03 \pm 0.01$

 $K_L \rightarrow \pi^+ \pi^- \pi^0$ BG

- Neural net with deep leaning for $K_L \rightarrow \pi^+ \pi^- \pi^0$ BG
 - Similar behavior as $\pi^0 P_t$ and Z cut
 - S/N : improved even after applying P_t and Z cut which is optimized $K_L \rightarrow \pi^+ \pi^- \pi^0$ BG

$$K_L \rightarrow \pi^+ \pi^- \pi^0 \text{ BG}$$

Applying neural net with deep leaning cut

$$-\#BG_{K, \rightarrow \pi^+\pi^-\pi^0}$$
 : 0.02 \rightarrow <0.02 (90% C.L.)

– signal acceptance : 90%

$$K_L \rightarrow 2\pi^0, K_L \rightarrow 2\gamma \text{ BG}$$

Result from $K_L \rightarrow 2\pi^0$ MC study

Result from $K_L \rightarrow 2\gamma$ MC study

