Study of Accidental Activity at the Front Barrel of the KOTO Detector

Ryota Shiraishi Yamanaka Group

Kuno-Yamanaka Group Year-End Presentation 2019

Introduction

The KOTO experiment

Purpose : To observe the decay $K_{L} \rightarrow \pi^{0} \nu \bar{\nu}$.

Signal : 2 photons + "nothing"

detected at the other veto detectors Csl calorimeter make sure of no extra hits

Accidental Signal Loss

Accidental hits on veto detectors coincident with the π^0 decay could cause signal loss.

Major sources...

- Other K_L decay
- Neutron from the J-PARC primary beam line

3

Purpose of This Study

- To understand accidental activities at the Front Barrel of the KOTO detector.
- To calculate accidental hit rates by using data taken in 2019.
- To check consistency of accidental hit rates between physics-triggered data and TMONtriggerd data.

Physics trigger...trigger to collect $K_L \rightarrow \pi^0 \nu \bar{\nu}$ data

TMON trigger...trigger to reproduce accidental hits

4

Front Barrel

- Sandwich of lead & plastic scintillators
- 2.75m long
- Sampled by125MHz FADC
- 16 modules
- 32 readout channels

View from the downstream side

(inner/outer layers are read separately)

TMON Trigger

TMON trigger is...

A random trigger generated from the signals of the **Target Monitor**. The rate is proportional to the beam intensity.

We use this trigger to reproduce accidental activities and overlay the waveforms on generated waveforms in simulation.

Energy Distribution

TMON data

Energy is distributed up to ~600 MeV.

Now, set the energy threshold to 2 MeV.

Consider only events with FBAREne > 2 MeV.

Higher counts in inner channels Lower counts in outer channels

Comparison between Phys. & TMON data

Rates in 10 - 20 clock timing

How we will reduce accidental hits

Accidental activities by neutrons coming from the J-PARC primary beam line

Iron Wall

10

To reduce the neutron flux, we installed a 33cm-thick iron wall.

Summary / To do

- Confirmed consistency of accidental counting rates in physics/TMON data.
- To reduce neutrons from the primary beam line, we installed an iron wall and will check the reduction effect.

Backup

Detector

View from the downstream side

Waveforms at the Front Barrel

Waveform Examples

Consider an energy threshold and timing distributions.

Time Distribution

Take the moving average -> make waveforms smoother

Calculate a parabolic curve using three samples around the peak.

The parabola time closer to the **nominal time** (~31 clocks) for the Front Barrel is selected.

Tend to have a structure like a broad hill.

Moving Average

Parabola Interpolation Method

Rates in 10 - 20 clock timing

Rates in 35 - 50 clock timing

