Development of Drift Chamber for Element Mapping utilizing DC Muon Beam

2019/12/23 Year-end workshop Kuno-lab M2 Takayuki Hori

Research background and purpose

Drift chamber specifications

Proton beam test in Kumatori

Summary and future prospects

Background: Nondestructive elemental analysis by muon X-ray Munonic X-ray

Particle kinetic energy of atomic orbitals in Bohr's equation

Muonic X-ray has 200 times the energy of electron fluorescent X-rays

Background: Nondestructive elemental analysis by muon X-ray

- Munonic X-ray
- Has 200 times the energy of electron fluorescent X-rays
- Analyze light elements that could not be analyzed using electrons
- ➢ electron fluorescent X-rays
 ➢ : Can analyze up to 100 µ m depth Muonic X-ray: Can analyze up to 10 mm depth

Used for nondestructive analysis of samples with unknown compositions such as meteorites and archaeological materials. @RCNP MuSIC

Background: Two-dimensional elemental mapping

Two-dimensional elemental mapping using synchrotron radiation(SPring8)

カドミウム蓄積植物の高エネルギー蛍光X線分析 http://www.spring8.or.jp/wkg/BL37XU/sol ution/lang/SOL-0000001575

Mapping using synchrotron radiation Scan with beam size reduced to $10\,\mu$ m order

Background: Two-dimensional elemental mapping

Mapping using muon beam The beam size is ~ 5cm (bottom right image)

Purpose of research

Realization of muon two-dimensional mapping with position accuracy of $100\,\mu\,\mathrm{m}$

Gas, cell and layer specifications

Gas: He: iC4H10 = 90:10 1atm

1 cell position resolution

>Incident 30MeV/c μ -

Garfield++ simulation

>Assume that the threshold is exceeded by one electron

Picture of drift chamber

Beam window (2µm Aluminized mylar)

Readout circuit

Number of sense wires to read: 60 → Use Hayashi Repic 64ch READOUT BOARD

Gas system

Pressure Gauge

> Mass flow controller Adjust flow rate to $He:iC_4H_{10} = 90:10$

Proton beam test in Kumatori (2019 12/16~20) Evaluate chamber performance before elemental mapping Drift Ф2mm chamber **Readout board** Beam flange Trigger scinti.

Proton beam test in Kumatori Cross Hit \downarrow Signal monitor talk \downarrow Hit map annel : 38 Y-axis [mm] 700 Studies Counts First Layer 25 20 ---------------...... --------15 500 400 300 200 -10 100 -15 -15 -10 -5 0 5 10 15 20 X-axis [mm] annel : 52 30 Y-axis [mm] 700 Store Second Layer 25 600 20 500 -------..... ----400 300 200 -10 100 -15 -20 -15 -10 -5 0 5 10 15 20 X-axis [mm] Y-axis [mm] 800 stin 25 Third Layer 700 0 20 15 600 10 500 400 300 -5200 -10 100 -15 -20 N. -15 -10 -5 0 5 10 20 15 X-axis [mm]

Tracking event by event

➤We are investigating the establishment of a twodimensional element mapping method by nondestructive analysis using muon X-rays, and this is realized by detecting the tracks of each muon using a DC beam.

- > According to simulation, the position resolution of one cell is about 50 μ m.
- > The other day, we conducted a beam test in Kumatori.

Future prospects

>2020 3/3~
 Beam test at RAL muon beam in UK
 ->2D elemental mapping test with Ge detectors

Back up

Request of drift chamber

Assumed

Sample is rock such as meteorites (Main component: SiO₂)

The size of the material is a few cm, analysis of about 1 mm depth

- \rightarrow DC muon p \sim 30MeV/c
- > Beam rate : ~10kHz, Beam size: ϕ ~5cm

Determining factor of position resolution 1.Multiple scattering inside the sample 2.Multiple scattering inside the detector 3.Performance of the position resolution of the chamber itself

Request to drift chamber

Multiple scattering inside the sample

≤inside the sample

->Evaluation by simulation

Multiple scattering inside the sample

Setting

- beam : μ- pencil beam(Δp/p=0)
- Sample : SiO₂

Momentum [MeV/c]	Average Stopping position[mm]	Spread of position [µm]
30	0.81	74
32.5	1.1	97
35	1.4	124

Develop a drift chamber with a position resolution of 74 μ m or less and a small amount of material

Beam stop 30MeV/c z-x

Beam stop 30MeV/c x-y

Optimization of distance between layers by simulation

Distance between layers

= distance between sense wires in the same direction

- Position accuracy on the material surface 2mm downstream of the chamber
- Decided to be 16mm between sense wires

Expected accuracy of muon stop position

- Place material (SiO2) 2mm downstream of the chamber
- \rightarrow p = 30 MeV / c μ incident
- Assuming muon stop position depth is 0.81mm

The muon stop position can be measured with position accuracy of about $100\,\mu$ m

Future plans

- Check chamber operation with cosmic rays
- ≻12/16~
- Beam test at proton linear accelerator in Kumatori ≻2020 3/3~
 - Beam test at RAL muon beam in UK

Current status

Gas system

For the Kumatori beam test

30MeV/c Muon

1 cell spatial resolution (p=30MeV/c Muon)

spatial_resolution

Tracking accuracy (p=30MeV/c Muon)

7MeV proton

1 cell spatial resolution (E=7MeV proton)

spatial_resolution

Beam spread by multiple scattering (7MeV proton)

Tracking accuracy (7MeV Proton)

11MeV proton

1 cell spatial resolution (E=11MeV proton)

spatial_resolution

Beam spread by multiple scattering (11MeV proton)

Tracking accuracy (7MeV Proton)

トラッキング精度分布

トラッキング精度分布

以下の方法でヒストグラムを作成
① 各層でヒット位置情報を記録(シ
ミュレーション)
② 1 セルの位置分解能に従いヒット
位置情報を鈍らせる
 ③ ② の3点を1時間数でfitし、資料
の位置での予想ヒット位置を導く
④ 資料での真のヒット位置と④の
ヒット位置との差をヒストグラム
に詰める

トラッキング精度分布の定義

トラッキング精度分布

トラッキング精度分布の定義

トラッキング精度分布

ワイヤーの配置:実際の図面

ガス、セルの仕様

ガス

使用するガス:He:iC₄H₁₀=90:10

▶ 久野研究室COMET実験のドリフトチェンバーで使用されているものと同じガス ▶ チェンバー内部での多重散乱の影響を小さくする為に、物質量の小さいHeベー スのガスを使用

セル

セル形状:正方形セル

▶センスワイヤを中心に対称な電場を形成

セルサイズ:4mm

➢ Diffusionの効果を小さくするために、技術的に実現可能な最小サイズに設定

センスワイヤー径:20µm

▶ 小さい電圧で高いゲインを出し、かつ多重散乱の影響を減らすため、細めに設定

フィールドワイヤ径:80µm

▶ 多重散乱の影響を減らすため、表面電場が20kV を越えない範囲で細めに設定

X,Y各3層を使って大まかな飛跡を決定

2層で飛跡を引き、残り1層を評価

現在取り組んでいること

- ▶ 熊取のプロトンビーム、7MeV,11MeVを使ったときのトラッキング精度の確認
- ➤ COMETのデータを元にした解析マクロの作成

- ▶ 1GeVの宇宙線ミューオン入射時のトラッキング精度の確認
- ▶ 宇宙線ミューオン中、30MeV/cのミューオンのレートの把握
 ▶ オンラインモニタの作成