Status of para-positronium lifetime measurement by utilizing magnetic field

2017/12/28 Ohsugi Mayu, Hori Takayuki, Yamagaya Shohei Yamanaka Group

Outline

- · What is para-positronium
- · How to measure p-Ps lifetime
- · Measurement of ortho-positronium lifetime
- Future prospect

What's para-positronium

positronium(Ps): bound state of electron and positron

Ps has 2 types of Hamiltonian eigenstates

2 types of new eigenstates

E : mixing parameter ← depends on magnetic field

Kyoto University P2 experiment Positronium Hyperfine structure in its ground state

Measurement of p-Ps lifetime

Measurement of olthopositronium lifetime

Measurement of o-PS lifetime

Setup

ADC Calibration

Energy resolution@662keV: 6%

ADC Calibration

TDC Calibration

Time-walk correction

Measurement without aerogel \rightarrow pair annihilation Time walk time threshold $T = \frac{A}{E} + B$ energy

←After time-walk Correction

14

total energy of 3Nals

Selection of o-Ps

- \cdot each γ energy
- \cdot simultaneously 3 γ detection

Energy cut of Nal

check simultaneously

Time of Plasticscinti (Aerogel ON/OFF)

Decay time of o-Ps

Result

Lifetime of ortho-positronium in the air $\tau = 68.1 \pm 4.4$ [ns] consistent Last year $\tau = 70.6 \pm 1.9$ [ns]

Future prospect

- Increase the number of o-Ps data
- Study more about physics of Ps in magnetic field
- Use magnetic field and measure $|+\rangle$ lifetime $\rightarrow p-Ps$ lifetime

Future prospect

$\left|+\right\rangle$ lifetime in the air

2 types of positronium

positronium: mixture of electron and positron

$$|Ps\rangle = |e^+\rangle |e^-\rangle$$

$$\left| p - Ps \right\rangle = \frac{1}{\sqrt{2}} \left| \frac{1}{2}, \frac{1}{2} \right\rangle_{e^{-}} \left| \frac{1}{2}, -\frac{1}{2} \right\rangle_{e^{+}} - \left| \frac{1}{2}, -\frac{1}{2} \right\rangle_{e^{-}} \left| \frac{1}{2}, \frac{1}{2} \right\rangle_{e^{+}} \right)$$

$$\begin{split} |o - Ps\rangle = & \left\{ \begin{array}{l} |1,1\rangle = |\frac{1}{2}, \frac{1}{2}\rangle_{e^{-}} |\frac{1}{2}, \frac{1}{2}\rangle_{e^{+}} \\ |1,0\rangle = \frac{1}{\sqrt{2}}(|\frac{1}{2}, \frac{1}{2}\rangle_{e^{-}} |\frac{1}{2}, -\frac{1}{2}\rangle_{e^{+}} + |\frac{1}{2}, -\frac{1}{2}\rangle_{e^{-}} |\frac{1}{2}, \frac{1}{2}\rangle_{e^{+}}) \\ |1,-1\rangle = |\frac{1}{2}, -\frac{1}{2}\rangle_{e^{-}} |\frac{1}{2}, -\frac{1}{2}\rangle_{e^{+}} \end{split} \right. \end{split}$$

Decay of positronium

Conservation of charge conjugation number

$$(-1)^{l+s} = (-1)^n$$

positronium

I: orbit anglar momentum

s: spin

n; number of photon

o-Ps[s=1,l=0(ground state)]

 $-1 = (-1)^n \rightarrow 3\gamma$ lifetime: 140ns \cdot p-Ps[s=0,l=0] $1 = (-1)^n \rightarrow 2\gamma$ 125ps

Lifetime of positronium

Lifetime of particle

 $dN = -\Gamma N(t)dt$

 \rightarrow N(t)-N(0)exp(- Γ t)

 $\tau = 1/\Gamma \quad \leftarrow \text{lifetime}$

$$\left|+\right\rangle : \frac{1}{\sqrt{1+|\varepsilon|^2}}(|o-Ps\rangle+\varepsilon|p-Ps\rangle)$$

New eigenstate lifetime

 $|+\rangle$

|angle

Setup

Nal angle

ADC Calibration

ADC Calibration Nal#0

ADC Calibration Nal#1

ADC Calibration Nal#2

Energy resolution

	Na	Cs
Nal#0	4.6%	4.1%
Nal#1	6.0%	5.5%
Nal#2	4.6%	4.0%

ADC Calibration

ADC Calibration

Е	Nal#0	Nal#1	Nal#2
0	140.3±0.1	169.4±0.3	131.7±0.3
511.0	1393±58	1261±67	1325±54
661.7	1774±67	1620±79	1667±62

Nal#0:E[keV]= (0.41 ± 0.01) ×ADC[ch]-57±2 Nal#1:E[keV]= (0.46 ± 0.02) ×ADC[ch]-78±3 Nal#0:E[keV]= (0.43 ± 0.01) ×ADC[ch]-57±2

Through of positron

TDC Calibration

Time-walk correction

Measurement without aerogel →pair annihilation

Time-walk correction

After time-walk Correction

Fitting range

Total energy with the cuts

cut E:70keV-430keV | T_i -T_j | < 25ns(Nal) T_{plascin}>30ns