

ATLAS実験における 終状態に4つのbクォークを含む ヒッグス粒子対生成事象を通じた新粒子探索

Search for new particles via Higgs boson pair production in the 4b final state with the ATLAS experiment

2017年山中研・久野研合同年末発表会

矢島 和希 (大阪大学理学研究科 山中卓グループ)

2017年山中研・久野研合同年末発表会

LHC-ATLAS Experiment

- ATLAS experiment
 - Goal: Search for new physics, Precise measurement of Higgs boson
 - Using Large Hadron Collider (CM energy = 13TeV)
 - Unique experiment which can observe Higgs as well as CMS

2017年山中研・久野研合同年末発表会

Target

- Search for Higgs pair production events
 - Vector boson fusion (VBF)
 - Gluon gluon fusion (ggF)
 - Theory
 - 2 Higgs Doublet Model
 - Heavy higgs (H₀)
 - Randall-Sundrum model
 - Graviton (G_{RS})
 - Discrepancy from SM
 - hhVV 4-point coupling
 - Higgs self-couplings
 - Dimension-6 operator

矢島 和希

$hh \rightarrow 4b$ (VBF) analysis

2017年山中研・久野研合同年末発表会

2017 / 12 / 28

4

Strategy

- Dataset
 - Signal : 2HDM MC samples
 + Background : 2016 data
- Searches for di-Higgs events
 via gluon gluon Fusion(ggF) process
 - Results of ATLAS Run1, 2(~2015) analysis are published
- Optimize and introduce new method to current ggF analysis for this VBF analysis

Characteristic signal

- di-Higgs
 - 4 b-jets in the final state
 - Correlation between distance of 2 b-jets and Higgs momentum

- VBF
 - 2 forward jets
 - Large m_{jj}
 - Large $\Delta \eta$

2017 / 12 / 28

矢島 和希

6

Reconstruction of Higgs

- At least 4 b-tagged jets
- b-jet pair from Higgs decay
 - $\rightarrow \Delta R_{jj}$ is highly correlating to M_{4j}
- Apply cuts avoiding biasing toward M_{4j} distribution

2017年山中研・久野研合同年末発表会

Event selection for ggF

- 0. Pre-selection : #jets > 4 & #b-jet > 1 with (p_T > 25 GeV & | η | < 2.5)
- + 1. At least 4 b-jets with (p_T > 40 GeV & | η | < 2.5)
 - 4 b-jets with the highest b-tagging score are used for pairing
- 2. ΔR_{jj} cut :
 - If multiple pairings pass this cut, choose the pairing with minimum D_{hh}
- 3. p_T m_{4j} cut
- 4. $|\Delta \eta_{hh}| < 1.5$
 - $\bullet \rightarrow \text{Depends on } m_{4j}$
- 5. Xhh cut :
 - $\bullet \rightarrow \text{Signal region}$

From 2015 analysis Phys. Rev. D94 (2016) 052002

矢島 和希

New selection for VBF process

- Unique kinematic features for VBF process
 - Forward jets
 - Large invariant mass
- Add selections below
 - For non b-tagged jets
 - Jet pairs requiring mjj $> 1200 {\rm GeV}, \ \Delta \ \eta \ > 5.0$

Invariant mass of VBF jets

2017年山中研・久野研合同年末発表会

2017 / 12 / 28

Background Estimation

- Backgrounds
 - QCD multi jet、ttbar+jets, VBF WW, WZ, ZZ …
- Estimate the number of QCD background from the data
 - Shape : 2-tag category
 - Scale : (2-tag)/(4-tag) ratio in side-band region

Sensitivity Estimation

- Calculate sensitivity to new particle based on Signal/BG ratio
 - Assuming 2HDM Type-II model (tan β = 2.0, sin(β α) = 0.6) and $\int L dt = 80 fb^{-1}$
- 0.20 (mH=260GeV) 3.24 σ (800GeV)

2017年山中研・久野研合同年末発表会

Plan for hh \rightarrow 4b (ggF) analysis

2017年山中研・久野研合同年末発表会

ggF analysis

EXPERIMENT

- Resolved
 - Pair of b-jets separates
 - Reconstucted by Anti k_T (R=0.4)
 - Target
 - \rightarrow Lighter new particle(< 1TeV)
- Boosted
 - Pair of b-jets is merged
 - Anti $k_T (R=1.0) \rightarrow Large-R$ jets
 - Target
 - \rightarrow Heavier new particle(> 1TeV)

Ideas

- Variable-R jet reconstruction
 - ΔR_{bb} depends on Higgs pt
 - But now, "R" is fixed value on reconstruction phase
 - \rightarrow make it float
- MVA for jet energy reconstruction
 - Introduce • Multi Variables Analysis(MVA) to jet energy reconstruction
 - Use information of tracks, leptons in jets, ...etc.
 - Already discussed in VH analysis

Conclusion

- Aiming to discover new particles via Higgs boson pair production in the 4b final state with the ATLAS experiment
- Discussed about possibility of discovering Higgs pair production events via VBF process for the first time
 - Optimized and introduced new method to the current ggF analysis for this VBF analysis → Improve
- Developing new analysis techniques for searching hh→4b events via ggF process

Additional slides

2017年山中研・久野研合同年末発表会

2017 / 12 / 28

16

Event selections for ggF di-Higgs Resolved

- 0. Pre-selection : #jets > 4 & #b-jet > 1 with (p_T > 25 GeV & | η | < 2.5)
- 1. At least 4 b-jets with (p_T > 40 GeV & $|\eta| < 2.5$)
 - 4 b-jets with the highest b-tagging score are used for pairing
- 2. ΔR_{jj} cut : Formula 1.
 - If multiple pairings pass this cut, choose the pairing with minimum D_{hh} (Formula 2.)
- 3. pT cut : Formula 3.
- 4. $|\Delta \eta_{hh}| < 1.5$
 - $\bullet \rightarrow \text{Depends on } m_{4j}$
- 5. Xhh cut : Formula 4.
 - $\bullet \rightarrow Signal \ region$

$ \frac{60}{n_{4j}} - 0.5 < \Delta R_{jj,\text{lead}} < \frac{653}{m_{4j}} + 0.475 \\ \frac{35}{n_{4j}} < \Delta R_{jj,\text{subl}} < \frac{875}{m_{4j}} + 0.35 $ if $m_{4j} < 1250 \text{GeV}$
$ \begin{array}{l} 0 < \Delta R_{jj,\text{lead}} < 1 \\ 0 < \Delta R_{jj,\text{subl}} < 1 \end{array} \end{array} \text{ if } m_{4j} > 1250 \text{GeV} \end{array} $

2.
$$D_{hh} = \sqrt{\left(m_{2j}^{\text{lead}}\right)^2 + \left(m_{2j}^{\text{subl}}\right)^2} \left|\sin\left(\tan^{-1}\left(\frac{m_{2j}^{\text{subl}}}{m_{2j}^{\text{lead}}}\right) - \tan^{-1}\left(\frac{110}{120}\right)\right)\right|$$

3.
$$p_{\rm T}^{\rm lead} > 0.5m_{\rm 4j} - 90 \,\text{GeV}$$

 $p_{\rm T}^{\rm subl} > 0.33m_{\rm 4j} - 70 \,\text{GeV}$

4.
$$X_{hh} = \sqrt{\left(\frac{m_{2j}^{\text{lead}} - 120 \,\text{GeV}}{0.1 m_{2j}^{\text{lead}}}\right)^2 + \left(\frac{m_{2j}^{\text{subl}} - 110 \,\text{GeV}}{0.1 m_{2j}^{\text{subl}}}\right)^2} < 1.6$$

矢島 和希