Estimation of the number of negative muons at MuSIC by measurement of muonic X-rays

Kuno group M1 Yuuko Hino

2011/12/19 Year-end presentation

1

Outline

Introduction

About MuSIC

Muonic X-ray

MuSIC beamtest

Estimation of Number of muon

Summary

About MuSIC

◇Pion capture system with
 3.5T magnetic field
 ◇High intensity DC beam
 ◇Dipole magnet
 →choose momentum and
 the sign of charge

My purpose

- Estimate the number of μ^- by measuring **muonic X-rays**
- Check the linearity of proton beam current
 - Number of μ -s \propto p beam current ?

Muonic X-ray

Principle

• μ^- is captured by an atom

Transition to lower orbit level

•Emit **muonic X-rays**, whose energy is characteristic to the atom

 \rightarrow Possible to specify the element

Muonic X-ray

Muonic X-ray's from Mg Energy[keV] (intensity)

n	n→1	n→2
2	296.4 (79.71)	
3	352.6 (7.65)	56.6 (62.5)
4	372.3 (3.96)	

K α = transition(2p \rightarrow 1s) K β = transition(3p \rightarrow 1s) L α = transition(3d,s \rightarrow 2p)

MuSIC beamtest

Date

2011/6/18~21, 10/22~24

Muon stopping target

Mg (20mm)

Oetector

Ge detector

(GL0515R, CANBERRA)

Estimation of the number of μ -s

ΜgμKα

Date	Proton beam current [pA]	µ-s stopped in target	μ -s in the beam
June, 2011	26	(2.8±0.6)×10 ²	(8.7±2.0)×10 ³
October, 2011	134	(5.3±0.6)×10 ²	(1.6±0.3)×10 ³
	59	(2.2±0.4)×10 ²	(6.7±1.1)×10 ³
	435	(1.53±0.10)×10 ³	(4.7±0.7)×10 ⁴

ΜgμLα

Date	Proton beam current [pA]	µ-s stopped in target	μ -s in the beam		
October, 2011	134	(5.6±0.6)×10 ²	(1.7±0.3)×10 ⁴		
	59	(1.9±0.3)×10 ²	(6.0±2.0)×10 ³		
	435	(1.08±0.10)×10 ³	(3.4±0.5)×10 ⁴		
11					

Conclusion

At proton beam current $1 \mu A$, the number of μ^- in the beam is calculated:

Compere to other high intense muon beam facilities

	PSI	MUSE(J-PARC)	MuSIC
Proton beam power	~1000kW	~1000kW	0.4kW
Intensity	5×10 ⁸ /sec (DC)	~10 ⁸ /sec (pulse)	~10 ⁸ /sec (DC)

World's highest efficiency of muon creation

Summary

•MuSIC is the high intense μ beam facility, and I estimated the number of μ^- by measuring muonic X-rays

In MuSIC beam tests with Mg target, we could see muonic and pionic X-rays

•By calculation of beam current linearity, MuSIC can achieve the highest efficiency of μ^- creation

 $(1.2\pm0.3)\times10^8 \mu^-$ /sec @beam current 1μ A

Backup

Trigger counters

- Plastic scintillation counter
 - 50mm × 380mm × 3.5mm(thickness)
 - · Light guides at both ends

Readout…MPPC

Sensitive area : 3mm×3mm

• Pixel size [number] : 25μ m [14400] and 50μ m [3600]

feature

- \cdot usable with low voltage(\sim 70V) and at room temperature
- $\boldsymbol{\cdot}$ not affected by magnetic field

Efficiency of Ge detector

Solid angle

Simulation by GEANT4

Calculate the solid angle of Ge detector

Emit virtual photons isotropically, from random point in target

$$\frac{\Omega}{4\pi} = \frac{N_{\text{Detect}}}{N_{\text{Emit}}}$$

N_{Emit}: Number of photons which are emitted from target N_{Detect}: Number of photons which hit Ge in detector

Simulation

momentum distribution of μ – at the 36° exit of the solenoid

Outer shield

Shieldings to cut neutrons

 Paraffin (100~200mm)
 Change faster neutrons into thermal neutrons

Cd (2mm)
 Reduce thermal neutrons
 ※and emit γ-rays

•Pb (50mm) Shield γ -rays

Inner shield

Shield for the background from Pb

①Cylindrical shield

Components

Al(5mm), Cu(1mm), Sn

Length=13cm

2Wall shield

Components Al(5mm), Cu(10mm)

Simulation

How many X-rays from Pb will be reduced

Relation between X-ray emitting position(x,y) of the Pb surface and Ge hit.

Simulation results

