Joint Year-end Meeting - Welcome

Yoshitaka Kuno Department of Physics Osaka University

December 19th, 2011 from Tsukuba, Japan Welcome!

Elementary Particle Physics in 2011

- LHC starts...
 - A hint for Higgs
 - but not conclusive yet!
 - No sign of new physics beyond the Standard Model
- Neutrinos
 - A hint for neutrino mixing parameter of large θ¹³ from T2K and Double Chooz (and Minos)
 - but not conclusive yet!

Elementary Particle Physics in 2012

- Wish some impacts from LHC
- Wish some impacts from Neutrino experiments
- Wish some impact realized in rare processes such as in flavor physics.

2012 could be an exciting time

Search for $\mu^- + e^- \rightarrow e^- + e^$ in a muonic atom

What is Lepton Flavor Violation of Charged Leptons (cLFV) ?

What is Lepton Flavor Violation of Charged Leptons (cLFV) ?

LFV of charged leptons (cLFV) has not been observed.

Charged Lepton Flavor Violation with Muons

$$\Delta L=1$$

• $\mu^+ \rightarrow e^+ \gamma$
• $\mu^+ \rightarrow e^+ e^+ e^-$
• $\mu^- + N(A, Z) \rightarrow e^- + N(A, Z)$
• $\mu^- + N(A, Z) \rightarrow e^+ + N(A, Z-2)$

current future

$\Delta L=2$ • $\mu^+e^- \to \mu^-e^+$ • $\mu^- + N(A, Z) \to \mu^+ + N(A, Z-2)$ • $\nu_\mu + N(A, Z) \to \mu^+ + N(A, Z-1)$ • $\nu_\mu + N(A, Z) \to \mu^+\mu^+\mu^- + N(A, Z-1)$

Charged Lepton Flavor Violation with Muons

$$\begin{array}{c} \Delta L=1 \\ \bullet \mu^{+} \rightarrow e^{+} \gamma \\ \bullet \mu^{+} \rightarrow e^{+} e^{+} e^{-} \\ \bullet \mu^{-} + N(A,Z) \rightarrow e^{-} + N(A,Z) \\ \bullet \mu^{-} + N(A,Z) \rightarrow e^{+} + N(A,Z-2) \end{array} \begin{array}{c} <10^{-11} \\ <10^{-12} \\ <10^{-12} \\ <10^{-12} \\ <10^{-18} \end{array}$$

 µ⁺→e⁺e⁺e⁻ is hard to detect since it is a 3-body decay and the spectrum fraction to be measured is limited

- µ⁺→e⁺e⁺e⁻ is hard to detect since it is a 3-body decay and the spectrum fraction to be measured is limited
- A muonium CLFV decay such as μ⁺e⁻→e⁺e⁺ is a 2-body decay having a larger phase space, but the overwrap of μ⁺ and e⁻ is small.

- µ⁺→e⁺e⁺e⁻ is hard to detect since it is a 3-body decay and the spectrum fraction to be measured is limited
- A muonium CLFV decay such as μ⁺e⁻→e⁺e⁺ is a 2-body decay having a larger phase space, but the overwrap of μ⁺ and e⁻ is small.

how to improve the overwrap of µ and e ?

$\mu^{-} + e^{-} \rightarrow e^{-} + e^{-}$ in a Muonic Atom

$\mu^{-} + e^{-} \rightarrow e^{-} + e^{-}$ in a Muonic Atom

The overwrap between μ^{-} and e^{-} is proportional to Z³. For example, Z=82 (Pb), the overwrap increases by a factor of 5x10⁵.over the muonium. The rate is 10⁻¹⁷ to 10⁻¹⁸.

Lagrangian and Diagram

Saturated Branching Ratios

Publication

M. Koike, M. Yamanaka, Y. Kuno and J. Sato, Phys. Rev. Lett. 105 (2010) 121601

PHYSICAL REVIEW LETTERS

New Process for Charged Lepton Flavor Violation Searches: $\mu^-e^- \rightarrow e^-e^-$ in a Muonic Atom

Masafumi Koike,^{1,*} Yoshitaka Kuno,^{2,†} Joe Sato,^{1,‡} and Masato Yamanaka^{3,§}

¹Physics Department, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, Saitama 338-8570, Japan ²Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan ³Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582, Japan (Received 8 March 2010)

Summary and Outlook

- This process has good features.
 - two charged particles (electrons) in the final state.
 - both may have 52 MeV
 - both may be back-to-back in the same time.
- This process may not be the first one to search for CLFV.
- This would be useful to pin down the physics of CLFV, together with other processes.

Wish you make your best on your presentations in the whole today.

