

Belle 崩壊点検出器アップグレード の為の読み出しチップの性能評価

目次

- I. Belle実験
- 2. SVDのアップグレード
- 3. APV25 (新SVD) の性能評価

3.1.シミュレーション

3.2.線源テスト

4. 考察・まとめ

2007年 I2月 25日 年末発表会 山中卓研 M2 黒木洋平

<u>2. Silicon Vertex Detector (SVD</u>^{3/15}

- ▶ Belle検出器の最中心部に位置
- ▶ 4層の筒状構造
- 数十ミクロンの精度で粒子の崩壊位置を 検出する、半導体検出器
- ◆ 1枚のセンサー板(79.6 mm x 28.4 mm)
 につき、ビーム軸方向 512本、動径方向
 512本の読み出しchannel

<u>2. SVDとビームバックグラウンド</u> 4/15

▶ 現在既に、1層目の Occupancy が高くなってしまっている

<u>2. 今後のビームバックグラウンド予想</u>

◆ sBelle 実験(2012年~予定)では、現在の10倍のルミノシティを 予定 ➡ ビームバックグラウンドも必然的に増加

5 / 15

SVDのアップグレード

◆ 現在のままでは、位置分解能が大幅に悪化

<u>2. SVDのアップグレード</u>

- ◆ 1 層目(&2 層目)のSVDを交換
 - ◆ 重要な変更点は、読み出しチップの更新
 - VAITA(旧SVD) → APV25(新SVD)
 - ◆ ピーキングタイムが I/I6 に(800ns→50ns)
 - ◆ 波形情報(time slice)も記録できるように

◆ I/I6ピーキングタイムの効果だけでも、Occupancy が I/I6 になることが期待

<u>3. APV25(新SVD)の性能評価</u>

ピーキングタイムが I/I6 になることにより、
 ビームバックグラウンドの影響をどのくらい抑えられるかを検証

- シミュレーションで評価
 - Ⅰ倍、3倍、I5倍のビームバックグラウンド下 でのVertex Resolution (ΔVdif)を評価
- ▶ 放射線源テストで評価
 - ◆ 放射線源からのβ線を照射して、Occupancy を 評価

7 / 15

- 放射線源(3.7MBqのSr90)からのβ線を照射して、Occupancy
 を測定
 - ▶ センサー板の DSSD は同型のものを使用

- ◆ APV25(新SVD) のモジュールは、 channel 連続部が I I ch のものを使用
- VAITA(旧SVD)も条件を揃えて、
 512ch のうち特定の ||ch を用いて解析

- ▶ 線源による hit を確認
- ▶ APV25 はVAITA よりも gain が低いことを確認

10/15

<u>3. 線源テスト Threshold の決定</u>

◆Hit 条件:ADC > Threshold(e.x. 30.0 ADC)

▶ MIPのADCの I/3 をThreshold とした

VAITA (旧SVD)

MIP: 100 ADC に calibrated

Threshold : ~33 ADC

APV25(新SVD) MIP:60-80 ADC を確認

Threshold : ~23 ADC

- ◆ 0 hit の bin は使わずに、 Poisson 分布を仮定して #hit 分布を fitting して、Occupancy を求めた
 - ▶ I粒子の hit は I strip (ch) だけを鳴らすと仮定

Poisson 分布 fitting 結果			I	
			VAITA (旧SVD)	APV25 (新SVD)
	Thre. [ADC]		33.0	23.0
	Entries		24917	97
	Occu. [%]		13.6	7.24
	Chi ² /NDF		114	0.017

VAITA → APV25 で、 I/I6 には達しなかっ たが、約半分の Occupancy が得られ た

<u>4. 考察 Occupancy 結果</u>

予想されたI/I6の Occupancy が得られていないのはなぜか

13/15

◆ APV25の Gain の低さ

- ▶ APV25 は VAITA より Gain が低く、結果として S/N が悪化
- しかし S/N の悪さを考慮しても、Occupancy は VAITA の I/I0~I/8 程度にはなりそう
- ◆ II live channel 限定の測定条件
 - 直接 Occupancy を求められないので、Poisson 分布で fitting する必要
 - ▶ しかし fitting も bin数が少なく、なかなか困難
 - ▶ 近日計画中の、512 live channel での測定に期待

他に改善の可能性:波形情報の利用

複数のパルスが重なると、本来よりも広いパルス幅で、単調 増加や単調減少で見える

▶ 解析に組み込むことで、S/Nの向上に期待

<u>まとめ</u>

◆ KEKBのルミノシティは世界一

- ▶ 増加するビームバックグラウンドに対処する必要
- ▶ SVDのアップグレード(読み出しチップをAPV25に)

◆ APV25 の、ビームバックグラウンドの影響を抑える性能の評価

- ▶ シミュレーションで高い性能が確認された
- 線源テストでは、II live channel の条件下でも、VAITA の約半 分の Occupancy が確認された

15/15

- ◆ より低い Occupancy を得るために
 - ▶ 近日計画中の 512 live channel の実験に期待
 - ▶ 波形情報の利用も進行中

Backup Slides

<u>B. 線源テスト 解析手順</u>

- I. Raw ADC から、Pedestal、Common Mode Shift を差し引く
- 2. Hit Strip を探す
 - ▶ 最初に、2種類の Threshold を用いて解析を試行
 - S/N > Ratio threshold (e.x. 4.0)
 - ADC > Constant threshold (e.x. 30.0 ~ I/3 MIP)
 - 最終的に、後者の Constant threshold を使用
- 3. Occupancy の計算
- 4. Occupancy の結果の fitting

8 / 15

<u>B. Vertex Resolution とは</u>

Beam backgrounds should be concern Synchrotron Radiation (SR) photons generated in <u>upstream magnets</u> generated in <u>downstream (QCS) magnet</u>

Shower caused by spent particles beam-gas scattering Touschek scattering

Radiative Bhabha origin

Neutrons from downstream beam line Showers caused by over bend beams

Machine Parameters of the KEKB (Nov. 15 2006)

	LER	HER	
Circumference	3016		m
RF Frequency	508.88		MHz
Horizontal Emittance	18	24	nm
Beam current	1662	1340	mA
Number of bunches	1388		
Bunch current	1.20	0.965	mA
Bunch spacing	2.1		m
Bunch trains	1		
Total RF volatage Vc	8.0	15.0	MV
Synchrotron tune $oldsymbol{\mathcal{V}}_s$	-0.0246	-0.0226	
Betatron tune v_x/v_y	45.505/43.534	44.509/41.565	
beta's at IP $oldsymbol{eta}_x^*$ / $oldsymbol{eta}_y^*$	59/0.65	56/0.59	cm
momentum compaction α	3.31 x 10 ⁻⁴	3.38 x 10 ⁻⁴	
Estimated vertical beam size at IP $\sigma_{_y}^{*}$	1.9	1.9	μ m
beam-beam parameters ξ_x / ξ_y	0.117/0.105	0.070/0.056	
Beam lifetime	110@1600	180@1340	min.@mA
Luminosity (Belle Csl)	17.12		10 ³³ /cm ² /sec
Luminosity records per day / 7days/ 30days	1.232/7.809/30.21		/fb