Zgoubiによる PRISM-FFAGの ビーム光学評価

久野研 栗山 靖敏

● PRISMプロジェクト紹介 ◎ PRISM-FFAGリング開発状況 ◎従来までのリング性能評価 ●トラッキングコード"Zgoubi"の紹介 Geant3とZgoubiでのリング性能評価の比較
 ◎ まとめ&今後の発展

PRISMとは?

- ◇ PRISM: Phase Rotated Intense Slow Muon source
 ◇ 荷電レプトンでのレプトンフレーバー破れ探索実験:µ-e転換実験
 - ◎ 大強度:10¹¹⁻¹² muon/sec
 - World Record 10⁸ muon/sec @PSI
 - ◎ 高輝度: ΔP/P = ±2% @ 68 MeV/c
 - ◎ 高純度:パイオン含有 < 10-18

PRISMとは?(2)

◎ 4つのセクション

◎ pion捕獲

■ muon生成

◎ 位相空間回転

◎現在、建設中!!◎ PRIME検出器

位相空間回転部

PRISM-FFAG ring
 運動量の広がりを抑えるために、FFAGリング内で加速空洞
 を用いて位相空間回転を行う

◎ リングパラメーター

10台のC型DFD電磁石
8台の加速空洞
R₀ = 6.5 m (P = 68 MeV/c)
ビームサイズ 100 cm X 30 cm

開発状況(1) FFAG電磁石

デザインスタディ
 Geant3 + TOSCA
 (3D磁場計算コード)
 機能結合型(D-F-D)
 トリプレットタイプ

今年度中に数台が完成予定
 2006年春に磁場測定を計画

開発状況(2)加速空洞

電源、駆動アンプ、MAコア(磁性体)を製作
試験用空洞と組み合わせた試験実施
Gap間電圧43kVを得る事に成功
位相空間回転シミュレーションにて、要求 性能を満たしていることを確認
PRISM用空洞の製作完了

トラッキングコード

◎コードへの要求

◎ 大アクセプタンスを実現するためのデザイン研究 ◎ 位相空間回転シミュレーション ●バックグラウンドの見積もり ◎ PRIME検出器シミュレーション ◎ リング内を粒子は数ターンするのみ - これまでの研究では、Geant3を使用

Geant3でのリング性能評価

Geant3での問題点

◎精度の問題 Geant3は、"単精度" 。リウビルの定理が満たされていない (粒子が占める位相空間内の体積が不変) ● 軌道距離が長くなるにつれて、計算誤差が蓄積 ◎ 数万ターン粒子が回る加速器用の計算コードでは、リ ウビルの定理を満たす事が必須条 ★ より精度のある加速器用計算コードで再検証 ★ 数セルの磁石からリングのアクセプタンスを評価 → Zgoubiを試してみる

Zgoubiとは?

0				
	使用		Geant3	Zgoubi
	Ex. LHC, FNAL recycler ring, muon storage ring	method	Runge- Kutta	Taylor Expansion
0	FFAGリングの研究に使用	precision	single	double
	Nufact FFAG	symplectic	×	\bigcirc
0	リウビルの定理を満たす			

シミュレーション条件

 $\oslash P = 68.0 \text{ MeV/c Muon}$ IO cell ring @ w/o RF Cavity TOSCA 3D map Step size (@r=650cm) Geant3: 0.14 (mrad) Zgoubi : 0.15 (mrad)

symplecticの確認

phase space plot (1) (水平方向)

phase space plot (2) (水平方向)

Phase space plot (3) (垂直方向)

N_{hori}.: 2.74 w/ Zgoubi 2.75 w/ Geant3

Tune (Vertical)

Nvert. : 1.5 w/ Zgoubi 1.5 w/ Geant3

初期条件 : 6241.4 mm ≦ r ≦ 6441.4 mm, 0 mm ≦ z ≦ 140 mm, ur=uz=0

まとめ&今後の発展

 加速器用コード"Zgoubi"にて、PRISM-FFAGリング
 の性能評価を行った ● Geant3による結果の正当性を再確認 際のアクセプタンスの正確な見積りを目指す ◎精度の高い計算コードが必要