

Belle 実験における B^o D^{*+}D^{*-}崩壊を用いた CPの破れの研究

イントロダクション
D^{*}D^{*}事象の再構築
Angular analysis
CPの破れの測定
まとめ

大阪大学大学院理学研究科 山中卓研究室

三宅 秀樹

2003年12月22日年末発表会

基本的な対称性

P:パリティ変換 C:粒子反粒子変換 T:時間反転

弱い相互作用に対して非保存(P,C

 $Vub^*Vud + Vcb^*Vcd + Vtb^*Vtd = 0$

 $\frac{Vub^*Vud}{Vcd^*Vcd}$

1957 60Cにおけるパリティの破れの発見 (C.S.Wu)

- 1964 K中間子系における間接的なCPの破れの発見 (V.Fitch, J.Cronin)
- 1973 小林益川理論
- 1999 K中間子系における直接的なCPの破れの発見 (KTeV,NA48)
- 2001 B中間子系における間接的なCPの破れの発見 (Belle, BaBar)
- 2003 超対称性理論の兆候? (Belle,BaBar)

標準理論の確立から、未知の物理の探索へ

Belle B-factory & B⁰ - B⁰ mixing B中間子の崩壊に伴うCPの破れは、bクォークがあらわに存在する為、K中間子のそれより大きく現れる 大質量(約5.28GeV)の為に崩壊モードが極めて多い

Belle (KEK B - factory)

BELLE

・茨城県つくば市
・非対称衝突型加速器
(電子8GeV陽電子3.5GeV)
・ルミノシティフロンティアとして世界最高の性能

BaBar:152fb⁻¹

11.3×10³³(cm²•s)⁻¹ 2003.12月現在

高精度なシリコンバーテックス検出器
(乙分解能~200um)
高い粒子識別能力(+,K+,e+, ,µ+,K_L)

B^0 $D^{*+}D^{*-}$ mode

J/ Ks(b ccs遷移)による測定とは 異なるクォーク過程(b ccd)による 独立なsin2 1測定 B中間子の混合による 時間に依存した CPの破れの測定 (CP非保存パラメータsin2 1)

B⁰ D^{*}+D^{*}- 背景事象の少ない クリーンな崩壊

b ccs遷移によるsin2 1測定のクロスチェック

異なるペンギンダイヤグラムや未知の物理の寄与

予測されているペンギンの寄与は数%

直接的CPの破れや ₃測定の可能性

CP eigenstates and Polarizations

•B^o D^{*+}D^{*-} 崩壊の終状態はCP固有状態を取り得るが、B Vector Vector 崩壊に起因して CPの偶奇混合状態となっている(S,D,P部分波の混合)。 逆のCP位相によって見かけのCP非対称度が薄められてしまう しかし、混合比が分かっていれば、統計的に二つの固有状態を分離できる

versity frame

崩壊平面に沿って上図のようなtransversity frameを定義すると、 CP固有状態と偏極、角度分布の対応がよくなる

D*+D*- Transversity frame

Full angular PDF:

時間に依存しない角度分布

D*D* transversity frame

ne Integ

$$R_i \equiv \frac{|A_i|^2}{\sum_{i=0,\dots,||} |A_i|^2}$$

2つの角度(cos _{tr}とcos ₁)の測定で、3つの偏極度が求まる

D*+D*- reconstruction (1) 2000年1月から2003年7月にかけて得られた140fb⁻¹の (4S)共鳴データ(1億5千万個のBB対)を用いた

イベントシェイプの違いを利用して、Bを経由 しないチャーム対生成事象などの混入を排 除する

衝突点近傍から来た荷電粒子の 飛跡よりD、D^{*}、Bの不変質量を 組み、再構築を行う

> Ksは衝突点より十分離れた 崩壊点で崩壊する事を考慮 された上で、同様に 再構築される

イベントシェイプの違い

BELLE

中性パイ中間子については検出された二つの光子の エネルギーより同様に不変質量を組む

反対側(D^{*-})も同様に組む 但しS/Nおよび検出効率を考慮して 両側にD⁺⁽⁻⁾を含む組み合わせ及び Ksを含む組み合わせは除外した。

140fb⁻¹ data sample

DATA

Beam constrained mass:

$$M_{bc} \equiv \sqrt{E_{beam}^2 - (\sum P_i^*)^2}$$

$$\Delta E \equiv \left(\sum_{i} E_{i}^{*}\right) - E_{\text{beam}}$$

 M_{bc} > $M_{B(PDG)}$ -3 | E|<40MeV

Fitted Yield:138.9 ± 12.9

Polarization measurement

$$PDF = \sum_{i=0,\perp,l'} R_{rec_i} P_i(\cos\theta_{tr},\cos\theta_1) + P_{BG}(\cos\theta_{tr},\cos\theta_1)$$

更に偏極度毎に検出効率 が 異なる分も補正

$$\mathbf{R}_{\mathrm{rec}_{i}} = \frac{\varepsilon_{i} R_{i}}{\sum_{j=0,\perp,\parallel} \varepsilon_{j} R_{j}}$$

偏極毎に娘粒子の運動量分布は大きく異なり、 アクセプタンスや角度分解能で施すべき補正は 極めて複雑になる。 完全に偏極した、多数のMCの分布から これらの補正を"込み"にしたPDFの形状を求めた。

$$\mathbf{P}_{\mathrm{BG}} = \mathbf{P}_{\mathrm{BG}_{\mathrm{tr}}}(\cos \theta_{\mathrm{tr}})\mathbf{P}_{\mathrm{BG}_{\mathrm{1}}}(\cos \theta_{\mathrm{1}})$$

BGの形状は DATAのサイドパンド より決定

$$P_{BG_{tr}} = N_{BG}(a_1 \sin^2 \theta_{tr} + a_2 \cos^2 \theta_{tr})$$
$$= \frac{1}{2} + 3(\frac{1}{2} - \alpha \cos 2\theta_{tr})$$
$$P_{BG_1} = \sum_{i=0,1,2,3} P_i \cos \theta_1^{i}$$

入力に対する線形性が正しく保たれている。

Polarization @140fb⁻¹

 $R_0 = 0.56 \pm 0.08$

Systematic Uncertainty

	Preliminary	R ₀	R
_	Signal yield estimation :	<1e-5	1.2e-5
_	BG polarization:		
	□ COS _{tr}	0.001	0.005
	□ COS ₁	0.003	0.002
_	Linearity shift:	0.057	0.014
	Slow pion efficiency:		
	• • • •	0.053	0.012
	_ 0	0.033	0.001
	Angular resolution:	0.012	0.016
_	MC - PDF binning:	0.011	0.012
	D* D 由来の遅い が主因	0.09	0.03

CP-fit outline

・時間に依存した角度および t分布より、CP非対称度を抽出する ・CPモード側のバーテックス(Z_{cp}) ・Tagging側のバーテックス(Z_{tag})及びフレーバー情報

 $Z Z_{cp} - Z_{taq}$

度関数
$$L = \prod (1 - f_{ol})(f_{sig} P_{sig} + (1 - f_{sig})P_{bg}) + f_{ol}P_{ol}$$

検出器の分解能等の補正は、Resolution functionの形で畳み込まれる。

$$P_{sig}(q,\Delta t,\omega;\mathbf{A}_{cp}) = \int \rho_{sig}(q,\Delta t',\omega;\mathbf{A}_{cp})\mathbf{R}_{sig}(\Delta t - \Delta t')d\Delta t'$$

f_{sig} :event毎のsignal probability f_{ol} :全体にかかる微小な補正項 q :Bのフレーバー(B_{tag}=B⁰の時q=+1) :flavor taggingの誤謬率

Signal PDF

時間に依存した角度分布:

$$\frac{1}{\Gamma} \frac{d^2 \Gamma}{d \cos \theta_{tr} d \cos \theta_1 d\Delta t} = \frac{e^{-|\Delta t|/\tau_B}}{4\tau_B} \{ \mathbf{P}_{\text{odd}} (1 + A_{CP}) + \mathbf{P}_{\text{even}} (1 - A_{CP}) \}$$

時間に依存したCP非対称度:

$$A_{CP} = q(1 - 2\omega)(S_{D^*D^*} \sin \Delta m \Delta t \pm A_{D^*D^*} \cos \Delta m \Delta t)$$

opposite for

Peven

Resolution function

■ 検出器分解能(CP,tag) 1つ又は2つのgaussianを用い、event-by-eventに得ら れるvertex fitのエラー及びscale factorでぼかす 二次生成チャーム粒子に由来するずれの補正(tag) lifetime component(exp.)と非lifetime component(dirac's delta)に分けて表現 tにおける運動学的近似の補正(CP,tag) <u>CにおいてB中間子の運動量を無視した分</u> t~ Z/ を解析的に補正

Background PDF

Backgroundもシグナル同様にresolution functionで 畳み込まれる。Effective lifetimeを持つ成分と、 Dirac's delta関数で表現される速い成分に分けられる

$$P_{bg}(\Delta t) = \int \rho_{bg}(\Delta t') \mathbf{R}_{bg}(\Delta t - \Delta t') d\Delta t'$$

$$\rho_{bg} = (1 - f_{\delta}) \frac{1}{2\tau_{bg}} \exp(-\frac{|t - \mu_{\tau}|}{\tau_{bg}}) + f_{\delta}\delta(t - \mu_{\delta})$$

$$R_{bg}(t) = (1 - f_{tail})G(t; 0, s_{main}) + f_{tail}G(t; 0, s_{tail})$$

G:gaussian

Lifetime fit

PDFが正しいかどうかを、Dataを用いて B lifetimeをfitする事で確認する。

 $D^{(*)}D_{S}^{(*)}$

約3000事象の コントロールサンプル

D*D*
 約140事象

 1.58 ± 0.06 ps

 1.65 ± 0.06 ps

W.A. _{B0}=1.542 ± 0.016 _{B+}=1.674 ± 0.018

t (ps)

 1.59 ± 0.21 ps

Lifetimeは世界平均と一致しており、 正しくfitできているように見える。

CP-fit result

1 parameter fit
 S_{D*D*}: +0.68^{+0.57}-0.61
 2 parameters fit
 S_{D*D*}: +0.69^{+0.57}-0.61
 A_{D*D*}: -0.21^{+0.28}-0.27

BaBar: $Im = 0.05 \pm 0.29 \pm 0.10$

t

Ensemble test

データと同じ統計量を使った 1000回の模擬実験を行い、 今回の実験結果の 統計的妥当性を調べた。

今回の実験が再現される確率は 4%であり、「十分起こり得る」

Pull: x/ をgaussianでfitした時のエラー

Systematic Uncertainty

Preliminary	S _{D*D*}	A _{D*D*}
Vertexing :	0.096	0.042
Flavor tagging:	0.054	0.029
Resolution function:	0.037	0.0089
Background:	0.034	0.0032
Physics:	0.022	0.035
Polarization:	0.053	0.011
バーテックス測定に伴うものが主因	0.13	0.064

まとめ

■ Belle実験においてB⁰ D*+D*-崩壊の解析を 行い、138.9事象を得た。 ■ 偏極度の測定を行った: R =0.20 $^{+0.08}_{-0.07}$ ± 0.03 $R_0 = 0.56 \pm 0.08 \pm 0.09$ ■ 同様にCPの破れの測定も行った: S_{D*D*} : + 0.69^{+0.57} 0.61 ± 0.13 A いたの結果は、他実験及び標準理論と矛盾 しない。

Next plan

 統計を増やす
 イベント数そのものを増やす 厳しい
 今まで使っていなかった質の悪いものも使う
 PDFを細分化し、質の良いものと悪いものと を分離する

言うまでも無いものを書く

Selection Criteria D⁰K ,K ⁰, Ks ,Ks

- Full data set
- R2<0.4
- Track selection
 - $|dR|_{CDC} < 0.4, |dZ|_{CDC} < 4.0$
 - $|dR|_{SVD} < 6.0, |dZ|_{SVD} < 5.0$
 - Kaon>0.1(2prong), 0.2(3, 4prong)
 - Pion<0.95</p>
 - Slow pion is not required any IP/PID
 - ^{0;*} ²<25,P ^o>0.1GeV,E >0.03GeV
 - M(Ks)|<3 and modified goodKs</p>
- D⁰, D^{*} reconstruction
 - M(D⁰) < 6 (2prong), 3 (3,4prong)</p>
 - M(D*-D)<3.00MeV(D⁰),2.25MeV(D⁺)
 - Mass vertex constrained fit is applied for all D
 - Slow pion is at first constrained to IP, then associated to B vertex

D+D-pair and Ks-Ks pair are excluded

,Ks

.KK

Ks

K

⁰,K3

⁰,KsK

,KK

We decided to use D(*)Ds(*) as control sample, because decay topology is quite similar and yield is much plenty After applying final selection criteria, we got: **B**⁰ B± DDs ~500 ~1020 ■ DDs* ~180 ~350 ■ D*Ds ~420 ~160 ■ D*Ds* ~260 ~140

Total: ~3000 events

1111

....

4.100

A-27187

4.178

.......

-

15

-. -

.... -

A-315

Control samples (cont'd)

DDs

Signal MC lifetime fit

D*-Ds*+: 1.59 ± 0.07 D-Ds*+: 1.67 ± 0.12

Same Rdet as D*D* For data, \downarrow 1 × 3 parameters are floated B⁻ D⁰DS⁻ :1.55 ± 0.08 B⁰ D⁻DS⁺ :1.40 ± 0.14

D*D* Rdet should be work

t D⁰Ds+

Gsim Ensemble test

Mbc- E fit result

Ensemble test(80evts)

)8

