Doctoral Thesis

$\begin{array}{l} \mbox{Magnetic and Fermi Surface Properties in } RCu_2Si_2 \\ (R: Rare Earth), \ Ce_2Pd_3Si_5 \ and \ Lu_2Rh_3Ga_9 \end{array}$

NGUYEN DUC DUNG

Department of Physics, Graduate School of Science Osaka University, Japan

December, 2008

Abstract

In the rare earth compounds, the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction and the crystalline electrical field (CEF) effect play an important role in their electrical and magnetic properties. In some Ce- and Yb-based compounds, the hybridization between the localized 4f-electrons and the conduction electrons leads to electronic instabilities associated with the Kondo effect, giving rise to a variety of characteristic features such as spin and valence fluctuations, heavy fermions and unconventional superconductivity. In the present thesis, we studied three kinds of compounds RCu₂Si₂ (R: rare earth), Ce₂Pd₃Si₅ and Lu₂Rh₃Ga₉, from a viewpoint of the crystal structure vs. the magnetic and Fermi surface properties.

 RCu_2Si_2 compounds crystallize in the ThCr_2Si_2-type body-centered crystal structure. Among RCu_2Si_2 , $CeCu_2Si_2$ is well known as a heavy fermion superconductor. We grew high-quality single crystals of RCu_2Si_2 by the Sn-flux method. The anisotropy in the magnetic susceptibility and magnetization was found to be relatively small. This is due to a small overall 4f-level splitting energy of about 100 K, which was clarified from the CEF calculation based on the previous results of neutron scattering experiment. From the de Haas-van Alphen (dHvA) experiment and the energy band calculation, the Fermi surface in YCu_2Si_2, LuCu_2Si_2 and YbCu_2Si_2 was clarified to be three dimensional in topology. In YbCu_2Si_2, the 4f-electrons were found to be itinerant and contribute to the volume of the Fermi surface, with large cyclotron effective masses of 5-40 m₀.

We observed the typical magnetization curve with a metamagnetic transition at $H_c = 5.7$ T and a saturation at $H_s = 12.1$ T in Ce₂Pd₃Si₅ of which the orthorhombic crystal structure is similar to the ThCr₂Si₂-type tetragonal one, but is highly distorted. The magnetization process was clarified as follows. The antiferromagnetic moments are canted at H_c , and a canted angle decreases as a function of magnetic field and becomes zero at H_s .

The orthorhombic structure of $Lu_2Rh_3Ga_9$ possesses a hexagonal-like network in the (001) plane and is stacked along the [001] direction. The electronic state of $Lu_2Rh_3Ga_9$ was found to be quasi-two dimensional, indicating nearly cylindrical Fermi surfaces along the [001] direction, which was clarified by the dHvA experiment and the energy band calculation.